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Plan

Day 1 Introduction to belief revision, AGM, possible worlds models,
Bayesian models (time permitted)

Day 2 Bayesian models (continued), Justifying Bayesian models
(Dutch books, Accuracy-based arguments), Updating
probabilities

Day 3 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Iterated belief revision, Context shifts,
Becoming aware

Day 4 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Iterated belief revision, Context shifts,
Becoming aware (continued)

Day 5 Interactive epistemology (Agreement Theorems, Belief
Revision in Games)
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Plan for today

I Quick recap (AGM, possible worlds models)

I Bayesian models

I

I Updating probabilities
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K0 Kt = K0 ∗ ϕ=⇒

Learn that ϕ

Suppose that ϕ

p0 pt = ???=⇒
Learning experience
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Conditioning
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p0 pt(·) = p0(· | E )=⇒
Learn that E
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Conditional Probability

The probability of E given F , dented p(E |F ), is defined to be

p(E |F ) =
p(E ∩ F )

p(F )
.

provided P(F ) > 0.
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Setting pt(·) = p0(· | E ) is demonstrably the correct thing to do
just in case, for all propositions H ∈ Σ, both:

1. Certainty: pt(E ) = 1

2. Rigidity: pt(H | E ) = p0(H | E )
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People are often not aware of all that they have learnt or they fail
to adequately represent it, and it is only the failure of the Rigidity
condition that alerts us to this.
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Three Prisoner’s Problem

Three prisoners A,B and C have been tried for murder and their
verdicts will told to them tomorrow morning. They know only that
one of them will be declared guilty and will be executed while the
others will be set free. The identity of the condemned prisoner is
revealed to the very reliable prison guard, but not to the prisoners
themselves. Prisoner A asks the guard “Please give this letter to
one of my friends — to the one who is to be released. We both
know that at least one of them will be released”.
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Three Prisoner’s Problem

An hour later, A asks the guard “Can you tell me which of my
friends you gave the letter to? It should give me no clue regarding
my own status because, regardless of my fate, each of my friends
had an equal chance of receiving my letter.” The guard told him
that B received his letter.

Prisoner A then concluded that the probability that he will be
released is 1/2 (since the only people without a verdict are A and
C ).
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Three Prisoner’s Problem

But, A thinks to himself:

Before I talked to the guard my chance of being executed
was 1 in 3. Now that he told me B has been released,
only C and I remain, so my chances of being executed
have gone from 33.33% to 50%. What happened? I
made certain not to ask for any information relevant to
my own fate...

Explain what is wrong with A’s reasoning.
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A’s reasoning

Consider the following events:

GA: “Prisoner A will be declared guilty” (we have p(GA) = 1/3)

IB : “Prisoner B will be declared innocent” (we have p(IB) = 2/3)

We have p(IB | GA) = 1: “If A is declared guilty then B will be
declared innocent.”

Bayes Theorem:

p(GA | IB) = p(IB | GA)
p(GA)

p(IB)
= 1 · 1/3

2/3
= 1/2
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A’s reasoning, corrected

But, A did not receive the information that B will be declared
innocent, but rather that “the guard said that B will be declared
innocent.” So, A should have conditioned on the event:

I ′B : “The guard said that B will be declared innocent”

Given that p(I ′B | GA) is 1/2 (given that A is guilty, there is a
50-50 chance that the guard could have given the letter to B or
C ). This gives us the following correct calculation:

p(GA | I ′B) = p(I ′B | GA)
p(GA)

p(I ′B)
= 1/2 · 1/3

1/2
= 1/3
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Setting pt(·) = p0(· | E ) is demonstrably the correct thing to do
just in case, for all propositions H ∈ Σ, both:

1. Certainty: pt(E ) = 1

2. Rigidity: pt(H | E ) = p0(H | E )
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Observation by candlelight

An agent inspects a piece of cloth by candlelight, and gets the
impression that it is green (G ), although he concedes that it might
be blue (B) or even (but very improbably) violet (V ).

p0(G ) = p0(B) = 0.3, p0(V ) = 0.4

⇓

pt(G ) = 0.7, pt(B) = 0.25, pt(V ) = .05

Is there a proposition E such that pt(·) = p0(· | E )?
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Jeffrey Conditionalization

When an observation bears directly on the probabilities over a
partition {Ei}, changing them from p(Ei ) to q(Ei ), the new
probability for any proposition H should be

q(H) =
∑
i

p(H | Ei )q(Ei )

Fact: If q is obtained from p by Jeffrey Conditioning on the
partition {E ,E} with q(E ) = 1, then q(·) = p(· | E ).

Eric Pacuit 18
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a0.25

c0.25

b 0.25

d 0.25

F1 F2

E1

E2

The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(a) = p({a} | E1)∗p∗(E1)+p({a} | E2)∗p∗(E2) = 0.25∗0.5+0 = 0.4
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The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(b) = p0({b} | E1)∗p(E1)+p0({b} | E2)∗p(E2) = 0+0.5∗0.8 = 0.4
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a0.4

c0.25

b 0.4

d 0.25

F1 F2

E1

E2

The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(c) = p0({c} | E1)∗p(E1)+p0({c} | E2)∗p(E2) = 0+0.5∗0.2 = 0.1
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The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(d) = p0({d} | E1)∗p(E1)+p0({d} | E2)∗p(E2) = 0+0.5∗0.2 = 0.1
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P. Diaconis and S. Zabell. Updating Subjective Probability. Journal of the
American Statistical Association, Vol. 77, No. 380., pp. 822-830 (1982).
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Fact. Jeffrey conditioning is not commutative.

Commutativity on Experiences Any rule for updating degrees
of belief on experiences should be such that the result of updating
credences on one experience and then another should be the same
as the result of updating on the same two experiences in reverse
order.

Holism For any experience and any proposition, there is a
“defeater” proposition, such that your degree of belief in the first
proposition, upon having the experience, should depend on your
degree of belief in the defeater proposition.

Eric Pacuit 21



J. Weisberg. Commutativity or Holism? A Dilemma for Conditionalizers. British
Journal of the Philosophy of Science, 60(4), pp. 793-812, 2009.

M. Lange. Is Jeffrey Conditionalization Defective in Virtue of Being NonCom-
mutative? Remarks on the Sameness of Sensory Experience. Synthese 123:
393-403, 2000.

C. Wagner. Probability kinematics and commutativity. Philosophy of Science
69, 266-278, 2002.
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Conditioning

I If q comes from p by conditioning on E , then q(E ) = 1

I If p(E1) = 1 then p(E1 | E2) = 1 for any E2 consistent with E1

I If p(E1) = 1 then p(A | E2) is undefined whenever E2 is
inconsistent with E1, since p(E2) = 0
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Updating probabilities

Orthodox Bayesian Policy

I accept as admissible input only propositions;

I as response to such an input the only admissible change is
conditioning the prior on the proposition in question.

Departing from a (orthodox) Bayesian policy:

1. accept as admissible a wider variety of inputs (e.g. expected
values);

2. an admissible response to such an input can be a change in
the prior that is not the result of conditioning;

3. an admissible response to such an input may be non-unique,
that is, the posterior may not be uniquely determined by the
prior + input.

Eric Pacuit 24
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p0

E
p0(E ) > 0

p(·) = p0(· | E )

(M) p0(A | pf ) = pf (A)
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p0

(E1 : q1, . . . ,Ek : qk)
{Ei} is a partition,

∑
i qi = 1

p(·) =
∑

i qi ∗ p0(· | Ei )

(M) p0(A | pf ) = pf (A)
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p0

E

p

(M) p0(A | pf ) = pf (A)
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p0

E

p0(E )
?
= 0

p

(M) p0(A | pf ) = pf (A)
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Conditional Probabilities

What is the probability that a Republican will be the next
president?

What is the probability that a Republican will be the next
president, given that a Republican will be the next president?

A. Hájek. What conditional probability could not be. Synthese, 137, pp. 273 -
323, 2003.
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“When conditional probability is defined by the ratio rule, it has
limited expressive capacity. We would like to allow propositions
that have been accorded zero probability to serve as conditions for
the probability of other propositions. This is impossible when
p(x | a) is put as p(a∧ x)/p(a), for it is undefined when p(a) = 0.”

D. Makinson. Conditional Probability in the Light of Qualitative Belief Change.
Journal of Philosophical Logic.
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Problem: The condition a is consistent but of zero probability (the
critical zone).

Solutions:

I Carnap: If p(x) = 0, then x is inconsistent.

Define pa(·) as p(· | a). By the left projection,
pa(x) = p(x | a), then pa(¬a) = p(¬a | a) = 0 since p(a).
Thus, pa(¬a) = 0 even though ¬a is inconsistent.

I p(x | a) = 1 for every value x when p(a) = 0. Not very useful.

I p(x | a) is the limit of the values of p(x | a′) for suitable
infinite sequence of non-critical approximations a′ to a. Only
defined on special domains.
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CPS (Popper Space)

A conditional probability space (CPS) over (W ,A) is a tuple
(W ,A,B, µ) such that A is an algebra over W , B is a set of
subsets of W (not necessarily an algebra) that does not contain ∅
and µ : A×B→ [0, 1] satisfying the following conditions:

1. µ(U | U) = 1 if U ∈ B

2. µ(E1 ∪ E1 | U) = µ(E1 | U) + µ(E2 | U) if E1 ∩ E2 = ∅,
U ∈ B and E1,E2 ∈ A

3. µ(E | U) = µ(E | X ) ∗ µ(X | U) if E ⊆ X ⊆ U, U,X ∈ B
and E ∈ A.

Eric Pacuit 29



p : L × L → [0, 1]

van Fraassen Axioms:

I vF1 p(x , a) = p(x , a′) whenever a ≡ a′

I vF2 pa is a one-place Kolmogorov probability function with
pa(a) = 1

I vF3 p(x ∧ y , a) = p(x , a) ∗ p(y , a ∧ x) for all a, x , y

“for ‘most’ values of the right argument of the two-place function,
the left projections should be proper one-place Kolmogorov
functions, while in the remaining cases it should be the unit
function.”
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(Positive): when p(a,>) > 0 then pa is a proper Kolmogorov
function.

(Carnap) When a is consistent then p(a,>) > 0.

(Unit) When a is consistent but p(a,>) = 0, then pa is the unit
function.

(HL) When a is consistent but p(a,>) = 0, then pa is a proper
Kolmogorov probability function.
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What does ‘most propositions’ mean?

I The van Fraassen system: an unspecified subset (possibly
empty) of the consistent propositions,

I The Popper system: all propositions that are above the
critical zone or in an unspecified subset (possibly empty) of it,

I The Unit system: for all propositions above the critical zone
but no others,

I The Hosiasson-Lindenbaum system: for all propositions above
or in the critical zone,

I Carnaps system: we can say any of the last three, since the
critical zone is declared empty.
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LPS (Lexicographic Probability Space)

A lexicographic probability space (LPS) (of length α) is a tuple
(W ,Σ, ~µ) where W is a set of possible worlds, Σ is an algebra over
W and ~µ is a sequence of (finitely/countable additive) probability
measures on (W ,Σ) indexed by ordinals < α.

Eric Pacuit 33



Fix an LPS ~µ = (µ0, . . . , µn)

I E is certain: µ0(E ) = 1

I E is absolutely certain: µi (E ) = 1 for all i = 1, . . . , n

I E is assumed : there exists k such that µi (E ) = 1 for all i ≤ k
and µi (E ) = 0 for all k < i < n.
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NPS (non-standard probability measures)

R∗ is a non-Archimedean field that includes the real numbers as a
subfield but also has infinitesimals.

For all b ∈ R∗ such that −r < b < r for some r ∈ R, there is a
unique closest real number a such that |a− b| is an infinitesimal.
Let st(b) denote the closest standard real to b.

A nonstandard probability space (NPS) is a tuple (W ,Σ, µ)
where W is a set of possible worlds, Σ is an algebra over W and µ
assigns to elements of Σ, nonnegative elements of R∗ such that
µ(W ) = 1, µ(E ∪ F ) = µ(E ) + µ(F ) if E and F are disjoint.
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J. Halpern. Lexicographic probability, conditional probability, and nonstandard
probability. Games and Economic Behavior, 68:1, pgs. 155 - 179, 2010.
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p0

E
p0(E ) > 0

p(·) = p0(· | E )

(M) p0(A | pf ) = pf (A)
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p0

(E1 : q1, . . . ,Ek : qk)
{Ei} is a partition,

∑
i qi = 1

p(·) =
∑

i qi ∗ p0(· | Ei )

(M) p0(A | pf ) = pf (A)
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p0(·,>)

E

p(·) = p0(·,E )

(M) p0(A | pf ) = pf (A)
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p0

C: set of constraints

p satisfies C

(M) pf (A)
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MAXENT

Let us start with the simplest case, where our outcome space, X ,
contains only a finite number of points, x1, x2, . . . , xn. Then the
entropy of a probability, p, on this space is:

−
∑
i

p(xi ) log p(xi )

and the information is the negative of the entropy.

The minimum information or maximum entropy probability is the
one which makes the states equiprobable: p(xi ) = 1

n .
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Consider three die x1, x2, x3 and a random variable f such that
f (xi ) = i .

E[f ] = p(x1)f (x1) + p(x2)f (x2) + p(x3)f (x3)

What probabilities maximize entropy under the constraint that
E[f ] have different values?
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MAXENT

E[f ] p(x1) p(x2) p(x3)

1 1 0 0

0.1 0.907833 0.084333 0.007834

0.2 0.826297 0.147407 0.026297
...

...
...

...

0.8 0.438371 0.323257 0.238271

0.9 0.384586 0.330829 0.284586

2.0 0.333333 0.333333 0.333333

2.1 0.284586 0.330829 0.384586

2.2 0.238372 0.323257 0.438370
...

...
...

...

2.8 0.026297 0.147407 0.826296

2.9 0.007834 0.084332 0,907834

3.0 0 0 1
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Kullback-Leibler

Suppose that we start with a prior probability, p0, and move to a
posterior p1 which satisfies certain constraints. The
Kullback-Leibler “distance” is:

I (p1, p0) =
∑
i

p1(xi ) log
p1(xi )

p0(xi )
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p0

C: set of constraints

p satisfies C
p minimizes I (p, p0)

(M) pf (A)
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p0

E1 E2 Ei· · · · · · EkEk−1

{Ei} is a partition

p0(· | Ei )p0(· | E1) p0(· | E2) p0(· | Ek−1) p0(· | Ek)

· · · · · ·

(M) p0(A | pf ) = pf (A)
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p0
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{Ei} is a partition

pip1 p2 pk−1 pk

· · · · · ·

(M) p0(A | pf ) = pf (A)
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Suppose that you are in a learning situation even more amorphous
than the kind which motivates Jeffrey’s idea. There is no nontrivial
partition that you expect with probability one to be sufficient for
your belief change....Perhaps you are in a novel situation where you
expect the unexpected observational input....You are going to just
think about some subject matter and update as a result of your
thoughts...I will consider the learning situation a kind of black box
and attempt no analysis of its internal structure.
asdd (Skyrms, pg. 96, 97)
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p0

pfp1 p2 · · · pn−1pn· · ·

(M) p0(A | pf ) = pf (A)
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p0

pfp1 p2 · · · pn−1pn· · ·

(Martingale Property) p0(A | pf ) = pf (A)

Eric Pacuit 37



It was suggested by Skyrms (1990) that this principle provides a
plausible way to distinguish learning situations from situations
where one expects probabilities to change for other reasons, such
as getting drunk, having a brain lesion or having a dangerously low
blood sugar level.

Huttegger develops an account in which the reflection principle is a
necessary condition for a black-box probability update to count as
a genuine learning experience.

Simon Huttegger. Learning Experiences and the Value of Knowledge. Philo-
sophical Studies, 2013.
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The Value of Knowledge

Why is it better to make a “more informed” decision?
Suppose that you can either choose know, or perform a costless
experiment and make the decision later. What should you do?

I. J. Good. On the principle of total evidence. British Journal for the Philosophy
of Science, 17, pgs. 319 - 321, 1967.

“Never decide today what you might postpone until tomorrow in
order to learn something new”
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Choose between n acts A1, . . . ,An (with states Ki ) or perform a
cost-free experiment with possible results {ek}, then decide.

EU(A) =
∑
i

p(Ki )U(A & Ki )

Then,
U(Choose now) = max

j

∑
i

p(Ki )U(Aj & Ki )

= max
j

∑
k

∑
i

p(Ki )p(ek | Ki )U(Aj & Ki )
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A basic result about probabilities.

For any finite partition {Ei} of the state space and any event H,

p(H) =
∑
i

p(H | Ei )
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H

p(H) = p(H ∩ E1) + · · ·+ p(H ∩ E6)

= p(E1)
p(E1)

p(H ∩ E1) + · · ·+ p(E6)
p(E6)

p(H ∩ E6)

=
∑

i p(Ei )P(H | Ei )
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H

E1
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p(E6)
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H

E1

E2

E3 E4

E5 E6
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E1

E2

E3 E4

E5 E6

H ∩ E2

p(H) = p(H ∩ E1) + p(H ∩ E2) + · · ·+ p(H ∩ E6)

= p(E1)
p(E1)

p(H ∩ E1) + · · ·+ p(E6)
p(E6)

p(H ∩ E6)

=
∑

i p(Ei )P(H | Ei )
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Choose between n acts A1, . . . ,An (with states Ki ) or perform a
cost-free experiment with possible results {ek}, then decide.

EU(A) =
∑
i

p(Ki )U(A & Ki )

Then,
U(Choose now) = max

j

∑
i

p(Ki )U(Aj & Ki )

= max
j

∑
i

∑
k

p(ek)p(Ki | ek)U(Aj & Ki )
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Bayes Theorem. p(Ki |ej) = p(ej |Ki )
p(Ki )
p(ej )
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Choose between n acts A1, . . . ,An (with states Ki ) or perform a
cost-free experiment with possible results {ek}, then decide.

EU(A) =
∑
i

p(Ki )U(A & Ki )

Then,
U(Choose now) = max

j

∑
i

p(Ki )U(Aj & Ki )

= max
j

∑
i

∑
k

p(ek)p(ek | Ki )
p(Ki )

p(ek)
U(Aj & Ki )
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The value of an informed decision conditional on e:

max
j

∑
i

p(Ki | e)U(Aj & Ki )

U(Learn, Choose ) =
∑

k p(ek) maxj
∑

i p(Ki | ek)U(Aj & Ki )

=
∑

k p(ek) maxj
∑

i (
p(ek | Ki )p(Ki )

p(ek )
)U(Aj & Ki )

=
∑

k maxj
∑

i p(ek | Ki )p(Ki )U(Aj & Ki )

Compare maxj
∑

k

∑
i p(Ki )p(ek | Ki )U(Aj & Ki ) and∑

k maxj
∑

i p(ek | Ki )p(Ki )U(Aj & Ki )∑
k maxj g(k , j) is greater than or equal to maxj

∑
k g(k , j), so the

second is greater than or equal to the first.
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(M) implies value of knowledge

Suppose that (M) holds.

Then (assuming that each p(pf ) is positive) your value for
choosing an act now is

max
j

∑
i

p(Ki )u(Aj&Ki ) = max
j

∑
i

∑
f

p(Ki | pf )p(pf )u(Aj&Ki )

= max
j

∑
f

∑
i

pf (Ki )p(pf )u(Aj&Ki )

The value of choosing after the learning experience is:∑
f

p(pf ) max
j

∑
i

pf (Ki )u(Aj&Ki )

The latter term cannot be less than the former term on general
mathematical grounds.
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I The experiment is assumed to be essentially costless;

I You know that you are an expected utility maximizer and that
you will be one after learning the true member of the partition.

I In the classical theorem you know that you will update by
conditioning; in Skyrms’ extension, you know that you will
honor the martingale principle.

I By working within Savages decision theory, the states and acts
are probabilistically independent (choosing an act does not
give any information about the state).
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I The states, acts and utilities are the same before and after the
learning experience.

I Having the learning experience does not by itself alter your
probabilities for states of the world (although the outcomes of
the experience usually do); the learning experience and the
states of the world are probabilistically independent.
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...the martingale principle should not be applied to belief changes
in epistemologically defective situations. In situations of memory
loss, of being brainwashed or being under the influence of drugs,
(M) should obviously not hold. If you believe that in an hour you
will think you can fly because you’re about to consume some funny
looking pills, then you should not already now have that belief.

So, the martingale principle is claimed to apply if you learn
something in the black-box, but not if you learn nothing or other
things happen besides learning.
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A genuine learning situation is partially characterized in the
following way:

Postulate. If a belief change from p to {pf } constitutes a genuine
learning situation, then∑

f

p(pf ) max
j

∑
i

pf (Ki )u(Aj&Ki ) ≥ max
∑
i

p(Ki )u(Aj&Ki )

for all utility values u(Aj&Ki ) with strict inequality unless the same
act maximizes expected utility irrespective of which of the pf
occurs.
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If a belief change leads you to foreseeably make worse choices than
you could already make now in some decision situations, then it
cannot be a pure learning experience. Perhaps you are bolder after
having taken those funny looking pills, for example. From your
current perspective, this might help you in some decision problems,
but it will be harmful in others.
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