Computational Game Theory in Julia

Eric Pacuit, University of Maryland

Lecture 1

ESSLLI 2023

Plan

- A brief introduction to game theory: Games in strategic form, Symmetric games, Nash equilibrium, Correlated equilibrium
- A brief Introduction to the Julia programming language
- The package GameTheory.jl
- Agent based modeling in Julia: Agents.jl

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

https://epacuit-guessavg.streamlit.app/?round=1

The Guessing Game, again

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

The Guessing Game, again

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

https://epacuit-guessavg.streamlit.app/?round=2

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess?

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess? 100

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess? 100, 99

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess? 190, 99, ..., 67

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess? 190, 99, ..., $\mathfrak{M}, \ldots, 2, 1$

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess? $100, 90, \ldots, 57, \ldots, 2, (1)$

1. You and your friend write down an integer between 2 and 100 (without discussing).

- 1. You and your friend write down an integer between 2 and 100 (without discussing).
- 2. If both of you write down the same number, then both will receive that amount in dollars from the airline in compensation.

- 1. You and your friend write down an integer between 2 and 100 (without discussing).
- 2. If both of you write down the same number, then both will receive that amount in dollars from the airline in compensation.
- 3. If the numbers are different, then the airline assumes that the smaller number is the actual price of the luggage.

- 1. You and your friend write down an integer between 2 and 100 (without discussing).
- 2. If both of you write down the same number, then both will receive that amount in dollars from the airline in compensation.
- 3. If the numbers are different, then the airline assumes that the smaller number is the actual price of the luggage.
- 4. The person that wrote the smaller number will receive that amount plus \$2 (as a reward), and the person that wrote the larger number will receive the smaller number minus \$2 (as a punishment).

- 1. You and your friend write down an integer between 2 and 100 (without discussing).
- 2. If both of you write down the same number, then both will receive that amount in dollars from the airline in compensation.
- 3. If the numbers are different, then the airline assumes that the smaller number is the actual price of the luggage.
- 4. The person that wrote the smaller number will receive that amount plus \$2 (as a reward), and the person that wrote the larger number will receive the smaller number minus \$2 (as a punishment).

Suppose that you are randomly paired with another person from class. What number would you write down?

Decision Problems

Economists distinguish between choice under:

 certainty: highly confident about the relationship between actions and outcomes

risk: clear sense of possibilities and their likelihoods

uncertainty: the relationship between actions and outcomes is so imprecise that it is not possible to assign likelihoods

L R

 $L \stackrel{\text{Bob}}{=} R$ $U \quad 1 \quad 1 \quad 0 \quad 0$ $D \quad 0 \quad 0 \quad 1 \quad 1$

Just Enough Game Theory

A game is a mathematical model of a strategic interaction that includes

- the actions the players can take
- the players' interests (i.e., preferences),
- the "structure" of the decision problem

Just Enough Game Theory

A game is a mathematical model of a strategic interaction that includes

- the actions the players can take
- the players' interests (i.e., preferences),
- the "structure" of the decision problem

It does not specify the actions that the players do take.

"[T]he fundamental insight of game theory [is] that a rational player must take into account that the players reason about each other in deciding how to play."

R. Aumann and J. Dreze. *Rational Expectations in Games*. American Economic Review, 98, pp. 72-86, 2008.

Solution Concept

A **solution concept** is a systematic description of the outcomes that may emerge in a family of games.

This is the starting point for most of game theory and includes many variants: Nash equilibrium, backwards induction, or iterated dominance of various kinds.

These are usually thought of as the embodiment of "rational behavior" in some way and used to analyze game situations.

Prisoner's Dilemma

Symmetric Games

Symmetric Games

Symmetric games are classified in terms of the relationship between R (reward), T (temptation), S (sucker) and P (punishment):

Prisoner's Dilemma

If T > R > P > S, then the game is a Prisoner's Dilemma.

d strictly dominates c

- (c, c) Pareto dominates (d, d)
- (d, d) is the unique Nash equilibrium

Stag Hunt

If R > T and P > S, then the game is called Stag Hunt.

- d is a less "risky" option than c
- (c, c) Pareto dominates (d, d)
- (c, c) and (d, d) are both Nash equilibria

Chicken

If T > R and S > P, then the game is called Chicken (or Hawk-Dove). c is a less "risky" option than d (c, c) Pareto dominates (d, d)(c, d) and (d, c) are both Nash equilibria

- A game in normal form is a tuple $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ where:
 - ► *N* is a finite set of players.
 - For each $i \in N$, S_i is a (finite) set of actions, or strategies, for player *i*.
 - For each $i \in N$, $u_i : \prod_{i \in N} S_i \to \mathbb{R}$

Notation

Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form.

- For s ∈ Π_{i∈N}S_i, s_i is the *i*th component of s and s_{-i} = (s₁,..., s_{i-1}, s_{i+1},...s_n) is the tuple of all strategies except s_i
- For i ∈ N, let S = Π_{i∈N}S_i be the set of strategy profiles, also called the outcomes of G.
- For $i \in N$, let $S_{-i} = \prod_{j \in N, j \neq i} S_j$.

Notation

Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form.

- For s ∈ Π_{i∈N}S_i, s_i is the *i*th component of s and s_{-i} = (s₁,..., s_{i-1}, s_{i+1},...s_n) is the tuple of all strategies except s_i
- For i ∈ N, let S = Π_{i∈N}S_i be the set of strategy profiles, also called the outcomes of G.
- For $i \in N$, let $S_{-i} = \prod_{j \in N, j \neq i} S_j$.
- For a set X, let $\Delta(X)$ be the set of probability measures on X.
- $m \in \Delta(S_i)$ is called a **mixed strategy** for player *i*.
- A mixed strategy profile is an element of $\prod_{i \in N} \Delta(S_i)$.

Expected Utility, Best Response

Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form.

For $a \in S_i$ and $p \in \Delta(S_{-i})$ the expected utility of a with respect to p is

$$EU_i(a, p) = \sum_{t \in S_{-i}} p(t)u_i(a, t)$$

Expected Utility, Best Response

Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form.

For $a \in S_i$ and $p \in \Delta(S_{-i})$ the expected utility of a with respect to p is

$$EU_i(a,p) = \sum_{t \in S_{-i}} p(t)u_i(a,t)$$

For $X \subseteq \Delta(S_{-i})$, the **best response set for player** *i*, $BR_i : X \to \wp(S_i)$, is defined as follows: for $p \in X$,

$$BR_i(p) = \{a \mid a \in S_i \text{ and } \forall a' \in S_i : EU_i(a, p) \ge EU_i(a', p)\}$$

Identify S_{-i} with the set $\{p \mid p \in \Delta(S_{-i}), p(s) = 1 \text{ for some } s \in S_{-i}\},\$

A strategy profile $s \in \prod_{i \in N} S_i$ is a (pure strategy) Nash equilibrium provided that for all $i \in N$, $s_i \in BR_i(s_{-i})$

Mixed Extension

Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form.

The **mixed extension of** *G* is the tuple $\langle N, (\Delta(S_i))_{i \in N}, (U_i)_{i \in N} \rangle$, where for $m \in \prod_{i \in N} \Delta(S_i)$

$$U_i(m) = \sum_{s \in S} u_i(s) \prod_{i \in N} m_i(s_i)$$

A mixed strategy Nash equilibrium in G is a tuple $m \in \prod_{i \in N} \Delta(S_i)$ that is a Nash equilibrium in the mixed extension of G.