
Chapter 6
A Dynamic Analysis of Interactive Rationality

Eric Pacuit and Olivier Roy

Abstract Epistemic game theory has shown the importance of informational
contexts to understand strategic interaction. We propose a general framework to
analyze how such contexts may arise. The idea is to view informational contexts
as the fixed points of iterated, rational responses to incoming information about
the agents’ possible choices. We discuss conditions under which such fixed points
may exist. In the process, we generalize existing rules for information updates used
in the dynamic epistemic logic literature. We then apply this framework to weak
dominance. Our analysis provides a new perspective on a well known problem with
the epistemic characterization of iterated removal of weakly dominated strategies.

Keywords Game theory • Dynamic epistemic logic • Rationality • Update •
Fixed points • Admissibility

6.1 Introduction

A crucial assumption underlying classical game-theoretic analyses is that there is
common knowledge that all the players are rational. Rationality, here, is understood
in the decision-theoretic sense: The players’ choices are optimal according to
some choice rule (such as maximizing subjective expected utility). Recent work
in epistemic game theory has focused on developing sophisticated mathematical
models to study the implications of assuming that all the players are rational
and that this is commonly known (or commonly believed).1 However, if common

1See Perea (2012), Dekel and Siniscalchi (2015), and Pacuit and Roy (2015) for surveys of this
literature.
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knowledge of rationality is to have an “explanatory” role in the analysis of a game-
theoretic situation, then it is not enough to simply assume that it has obtained in
an informational context of a game. It is also important to describe how the players
were able to arrive at this crucial state of information.2

There is a growing body of literature focused on analyzing games in terms of
the “process of deliberation” that leads the players to select their component of
a rational outcome. Many different frameworks have been used to represent this
process of deliberation:

1. John Harsanyi’s “tracing procedure” identifies a unique Nash equilibrium in any
finite strategic game that is the limit of a sequence of Nash equilibria from a
related set of strategic games. Harsanyi thought of the tracing procedure as “a
mathematical formalization of the process by which rational players coordinate
their choices of strategies” (Harsanyi 1975).

2. Brian Skyrms assumes that players deliberate by calculating their subjective
expected utility and then use the results of their calculations to adjust their
probabilities about what they are going to do and what they expect their
opponents to do (Skyrms 1990).

3. Robin Cubitt and Robert Sugden apply David Lewis’s “common modes of
reasoning” to game-theoretic situations. They describe the players’ process
of deliberation as an iterative procedure for classifying strategies (Cubitt and
Sugden 2011, 2014).

4. Johan van Benthem and colleagues use ideas from dynamic epistemic logic to
characterize solution concepts as fixed points of iterated “(virtual) rationality
announcements” (Baltag et al. 2009; van Benthem 2014).

Although the details of these frameworks3 are different, they share a common line
of thought: The rational outcomes of a game are arrived at through a process in
which each player settles on an optimal choice given her evolving beliefs about her
own and her opponents’ choices. This is not intended to be a formal account of
the players’ practical reasoning in game situations. Rather, the goal is to describe
deliberation in terms of a sequence of belief changes about what the players are
doing and what their opponents may be thinking. The general conclusion is that
the rational outcomes of a game depend not only on the structure of the game
and the players’ initial beliefs, but also on which dynamical rule the players are
using to update their inclinations and beliefs, and what exactly is commonly known
about the process of deliberation. For instance, the outcomes of Harsanyi’s tracing
procedure and Skryms’s model of dynamic deliberation are qualitatively similar:
Both procedures lead players to choose their component of a Nash equilibrium.
However, in Skyrms’s model, the rate of convergence depends on the players’

2David Lewis already appreciated this general point about common knowledge when he first
formulated his notion of common knowledge (Lewis 1969). See Cubitt and Sugden (2003) for
an illuminating discussion and a reconstruction of Lewis’ notion of common knowledge, with
applications to game theory.
3See Pacuit (2015) for an extensive discussion of these different models of deliberation in games.
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initial beliefs and the dynamical rule changing the players’ inclinations during
deliberation; and this, in turn, suggests a more refined analysis of Nash equilibrium
(Skyrms 1990, pp. 154–158).

There are two key components of the above models of deliberation in games.
The first component is a formal representation of the players’ state of indecision.
This is intended to be a “snapshot” of the players’ inclinations about what they
are going to choose and their beliefs about their opponents’ choices and beliefs
during the process of deliberation. The second component is the dynamical rule
that governs the changes in the players’ state of indecision. The general idea is
that, at each stage of the deliberation, the players determine which of their available
strategies are “optimal” and which they ought to avoid. Typically, it is assumed that
the players are guided by some decision-theoretic choice rule, such as maximizing
expected utility or avoiding dominated strategies. Using the information about the
players’ own choices and what they expect their opponents to do, the players’ state
of indecision is transformed according to some fixed dynamical rule. The picture to
keep in mind is:

M0 M1 M2 · · ·
initial
model

What
should
I do?

What
should
I do?

What
should
I do?

Deliberation concludes when the players reach a fixed point in the above process.
The central question is: What types of transformations match different game-
theoretic analyses?

In this paper, we develop a model of deliberation and characterize whether
players will reason to specific informational contexts (Sect. 6.2). We then apply
this framework to issues surrounding the epistemic characterization of iterated
elimination of weakly dominated strategies (IEWDS), aka iterated admissibility
(Sect. 6.3). Our approach builds on earlier work that describes deliberation in games
in terms of (virtual) rationality announcements (van Benthem 2007; Baltag et al.
2009; Baltag and Smets 2009; van Benthem and Gheerbrant 2010).

6.2 Belief Dynamics for Strategic Games

The main idea of this paper is to understand well-known solution concepts not
in terms of fixed informational contexts—for instance, models (e.g., type spaces
or epistemic models) satisfying rationality and common belief of rationality—but,
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rather, as a result of a dynamic, interactive deliberation process. It is important to
note that the goal is not to represent some type of “pre-play communication” or
some form of “cheap talk”. Instead, the goal is to represent the process of rational
deliberation that takes the players from the ex ante stage to the ex interim stage of
decision making. In this section, we introduce our framework, incorporating ideas
from the extensive literature on dynamic logics of belief revision (van Benthem
2010; Baltag and Smets 2009) and recent work on the reasoning-based approach to
game theory found in Cubitt and Sugden (2011, 2014).

6.2.1 Strategic Games and Game Models

A finite strategic game is a tuple G D hN; fSigi2N ; fuigi2Ni, where N is a finite set
of players; for each i 2 N, Si is a finite set of actions (also called strategies) for
player i; and for each i 2 N, ui W …i2NSi ! R is a utility function assigning real
numbers to each outcome of the game.4 A strategy profile is a tuple Es 2 …i2NSi,
specifying an action for each player. Following standard game-theoretic notation,
we write Es�i 2 …j2N�figSi for a sequence of actions for all players except i. For
simplicity, we assume that the outcomes of the game G are identified with the set of
strategy profiles S D …i2NSi.

A game model describes the players’ hard and soft information about the
possible outcomes of the game. The models that we use in this paper are standard in
the belief revision literature: a non-empty set of states, where each state is associated
with a possible outcome of the game, and a single relation � on W representing the
players’ (common) initial plausibility ordering. Originally used as a semantics for
conditionals (cf. Lewis 1973), these plausibility models have been extensively used
by logicians (van Benthem 2004, 2010; Baltag and Smets 2009), game theorists
(Board 2004) and computer scientists (Boutilier 1992; Lamarre and Shoham 1994)
to represent rational agents’ (all-out) beliefs. Thus, we take for granted that they
provide natural models of (multiagent) beliefs and focus on how they can be used
to represent “rational deliberation” in a game situation. The formal definition of a
game model is as follows.

Definition 6.2.1 (Strategy Functions). Suppose that W is a non-empty set of
states, and G D hN; fSigi2N ; fuigi2Ni is a finite strategic game. A strategy function
on W for G is a function � W W �! S assigning strategy profiles to each state.
To simplify notation, we write �i.w/ for .�.w//i (similarly, write ��i.w/ for the
sequence of strategies of all players except i).

4We assume that the reader is familiar with the basic concepts of game theory (e.g., strategic games
and various solution concepts such as iterated removal of strictly/weakly dominated strategies).
Consult Leyton-Brown and Shoham (2008) for an introduction to game theory.
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Definition 6.2.2 (Game Model). Suppose that G D hN; fSigi2N ; fuigi2Ni is a finite
strategic game. A model of G is a tuple MG D hW;�; �i, where W is a non-empty
set; � is a connected, reflexive, transitive and well-founded5 relation on W; and �
is a strategy function on W for G. Subsets of W are called events, or propositions.

Note that there is only one plausibility ordering in the above model; yet we
are interested in games with more than one player. There are different ways to
interpret the fact that there is only one plausibility ordering. First, we can take the
perspective of a single player thinking about what she is going to choose in the
game. Alternatively, we can think of the model as describing a stage of the rational
deliberation of all the players, starting from a situation in which the players have the
same beliefs (i.e., there is a common prior). The players’ private beliefs, given their
actual choice of strategy, can be defined using conditional beliefs.6 We first need
some notation. For ; ¤ X � W, let Min�.X/ D fv 2 X j v � w for all w 2 X g be
the set of minimal elements of X according to �. This set contains the most plausible
states in X.

Definition 6.2.3 (Belief and Conditional Belief). Suppose that MG D hW;�; �i
is a model of a finite strategic game G. For all subsets E and F of W, E is believed
conditional on F is defined as follows:

B.E j F/ D fw j Min�.F/ � Eg:

We also write BF.E/ for B.E j F/. If w 2 BF.E/, then we say that “E is believed
conditional on F at w”. Also, we say that E is believed in MG if E is believed
conditional on W. Thus, E is believed when Min�.W/ � E.

Of course, the game models from Definition 6.2.2 can be (and have been: see
Baltag and Smets 2009; van Benthem 2010) be extended to include plausibility
orderings for each player, state-dependent plausibility ordering(s), explicit relations
representing the players’ knowledge about the game situation, and other notions of
beliefs (e.g., strong belief or robust belief ). To keep things simple, we focus on
models with a single plausibility ordering.

5Well-foundedness is only needed to ensure that for any set X, the set of minimal elements in
X is nonempty. This is important only when W is infinite – and there are ways around this in
current logics. Moreover, the condition of connectedness can also be lifted, but we use it here for
convenience.
6A similar idea is found in standard models of differential information from the economics
literature. In such models, it is assumed that there is a prior probability measure describing the
players’ initial beliefs (often it is the same probability measure for all the players). The players’
posterior probabilities are defined by conditioning their prior probability measure on their private
information (typically represented by some partition over the set of states).
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6.2.2 A Primer on Belief Dynamics

We are not interested in game models per se, but, rather, how a game model changes
during the process of rational deliberation. The type of changes we are interested
in is how a model MG of a game G incorporates new information about what
the players should do (according to a some decision-theoretic choice rule). As is
well known from the belief revision literature, there are many ways to transform
a plausibility model given some new information (Rott 2006). We do not have the
space to survey this entire literature here (see van Benthem (2010) and Pacuit (2013)
for modern introductions). Instead, we sketch some key ideas.

The general approach is to define a way of transforming a game model MG

given an event E. That is, we will define functions � that map game models and
events to game models. For each game model MG and event E, we write M�.E/

G
for �.MG;E/. So, given a model MG of a game G and an event E describing what
the players (might/should/will) do, M�.E/

G is the updated game model, taking this
information into account. Different definitions of � represent the different attitudes
that an agent can have towards the incoming information.

We start with an illustrative example. Suppose that MG D hW;�; �i is a game
model in which W D fw1;w2;w3;w4;w5;w6g, and � is defined as follows: w1 �
w2 � w3 � w4 � w5 � w6, where w � v means w � v and v 6� w and w � v

means w � v and v � w. This game model is pictured as follows:

w4

w6

w1 w2

w3

w5

The first transformation that we discuss is the well-known public announcement
operation (Plaza 1989; Gerbrandy 1999), denoted by Š. This operation assumes that
the players considers the source of the new information E infallible, ruling out any
states not contained in E. That is, the updated model MŠ.E/

G is hE;�0; � 0i, where
�0D�\ E and � 0 is � restricted to E.

Two other transformations have been widely discussed in the belief revision
literature. For these transformations, the players do trust the source of the new
information, though they do not treat the source as infallible. Perhaps the most
ubiquitous transformation is conservative upgrade (" .E/), which lets the players
only tentatively accept the incoming information E by making the most plausible
E-states the new minimal set and keeping the old plausibility ordering the same on
all other states. A second transformation is radical upgrade (* .E/), which moves
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all the states in E below all the other states and, otherwise, keeps the plausibility
ordering the same. The results of these two operations with E D fw4;w6g on the
above model MG are:

w1 w2

w3

w4

w5 w6

M↑(E) (E)
G

w1 w2

w3

w4

w5

w6

M⇑
G

These transformations satisfy a number of interesting logical principles (van
Benthem 2010) that we do not discuss in this paper.

We are interested in using these transformations to model the players’ process
of deliberation in a game. Given a game model (viewed as describing one stage
of the deliberation process), the players determine which options are “rationally
permissible” and which options the players ought to avoid (as specified by some
decision-theoretic choice rule). Given this information, the players use one of the
above transformations to change the game model. In this new game model, the
players reconsider what they should do leading to another transformation. The main
question is: does this process stabilize?

The answer to this question will depend on a number of factors. The general
picture is

M0

�.D0/H) M1

�.D1/H) M2

�.D2/H) � � � �.Dn/H) MnC1H) � � � ;

where each Di is some event and � is a model transformer (e.g., public announce-
ment, radical upgrade or conservative upgrade). Two questions are important for the
analysis of this process. First, what type of transformations are the players using?
For example, if � is the public announcement transformation, then it is not hard
to see that, for purely logical reasons, this process must eventually stop at a limit
model (see Baltag and Smets (2009) for a discussion and proof). Second, where do
the propositions Di come from? To see why this matters, consider the situation in
which you iteratively perform a radical upgrade with E and E (the complement of
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E). Of course, this sequence of upgrades never stabilizes. However, in the context of
reasoning about what to do in a game situation, this situation may not arise because
of special properties of the choice rule that is being used to generate the events Di.

6.2.3 Categorizing Strategies

Any sequence of game models can be viewed as the stages of a process of
deliberation in the underlying game. We are interested primarily in sequences of
game models that are generated by some fixed belief transformation (such as a
public announcement, a conservative upgrade, or a radical upgrade). However, it
is not enough to simply fix an initial game model and some model transformation
to represent the players’ deliberation about what they are going to do in a game.
We also need a way to define the events used to update the models at each stage
of the deliberation. These events should specify, for each player, which actions are
“rationally permissible” and which actions they should avoid. In this section, we
discuss the key features of any general method that can be used to identify the events
that will serve as input to the model transformation at each stage of the deliberation.

We start with two general observations about decision making in games to
motivate the definitions in this section. The first observation is that, in general,
there are no rational principles of “rational” decision making (under ignorance or
uncertainty) that always recommend a unique choice.7 In particular, it is not hard to
find a game and a game model where there is at least one player without a unique
“rational choice”. Making use of a well-known distinction of Ullmann-Margalit and
Morgenbesser (1977), the assumption that all players are rational can help determine
which options the player ought to choose. However, since nothing distinguishes
between these on rationality grounds alone, the player is left to pick any of the
rationally permissible options.8

The second observation is that we do not intend our model of deliberation to
directly represent the practical reasoning leading to the players’ decision about
what to do in a game situation. In fact, we do not directly represent any formal
model of practical reasoning. Instead, we treat practical reasoning as a “black box”
and focus on general choice rules that are intended to describe the outcome of the
players’ practical reasoning. More generally, following Cubitt and Sugden (2014),
we assume that during each stage of deliberation, the players can categorize their
available actions. To make this precise, we need some notation:

7Consult any textbook on decision theory, such as Peterson (2009), for evidence of this fact.
8See Roy et al. (2014) and Anglberger et al. (2015) for a discussion on the rational obligations and
permissions in games.



6 A Dynamic Analysis of Interactive Rationality 195

Definition 6.2.4 (Strategies in Play). Suppose that G D hN; fSigi2N ; fuigi2Ni is a
finite strategic game and MG D hW;�; �i is a model of G. For each i 2 N, the
strategies in play for i is the set

S�i.MG/ D fs�i 2 …j¤iSj j there is a w 2 Min�.W/ such that ��i.w/ D s�ig:

The set S�i.MG/ contains the strategies that player i still believes are possible at
some stage of the deliberation process represented by the model MG. Given these
beliefs, we assume that each player can categorize her available options:

Definition 6.2.5 (Categorization). Let G D hN; fSigi2N ; fuigi2Ni be a strategic
game and MG D hW;�; �i a model of G. A categorization for player i in MG is
a pair Si.MG/ D .SC

i ; S
�
i / where SC

i [ S�
i � Si, SC

i \ S�
i D ;, and

.�/ for each a 2 Si; if there is no v 2 W with �i.v/ D a; then a 2 S�
i :

If Si.MG/ D .SC
i ; S

�
i /, we write SC

i .MG/ for SC
i and S�

i .MG/ for S�
i . Also, we

write S.MG/ for the sequence of categorizations .Si.MG//i2N .

The intended interpretation is that player i ought to pick from among the strategies
in SC

i .MG/ and ought to avoid any strategy in S�
i .MG/. The strategies in Si �

.SC
i .MG/ � S�

i .MG// have not yet been categorized. These are the strategies that
player i needs to think more about before categorizing. Condition (�) in the above
definition ensures that players will not choose any strategy that has been completely
ruled out. Note that, in general, a categorization need not be a partition of player i’s
strategies (i.e., SC

i .MG/[ S�
i .MG/ ¤ S � i). See Cubitt and Sugden (2011) for an

example of such a categorization. However, many of the familiar choice rules found
in the game theory literature lead to categorizations that do form a partition. Two
standard examples are weak and strong dominance: Let G D hN; fSigi2N ; fuigi2Ni
be a strategic game and MG a model of G. Then:

Strong Dominance (pure strategies): For each i 2 N, SDi.MG/ D .SC
i ; S

�
i / is

defined as follows: For all a 2 Si,

a 2 S�
i iff there is b 2 Si such that for all s�i 2 S�i.MG/; ui.s�i; b/ > ui.s�i; a/;

and SC
i D Si � S�

i .

Weak Dominance (pure strategies): For each i 2 N, WDi.MG/ D .SC
i ; S

�
i / is

defined as follows: For all a 2 Si,

a 2 S�
i iff there is b 2 Sisuch that for all s�i 2 S�i.MG/; ui.s�i; b/ 	 ui.s�i; a/

and there is some

s�i 2 S�i.MG/ such that ui.s�i; b/ > ui.s�i; a/;

and SC
i D Si � S�

i :
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Both of the above definitions can be modified to cover strict/weak dominance by
mixed strategies, but we leave issues about how to incorporate probabilities into the
framework sketched in this paper for another time.

We conclude this section by defining when a game model incorporates a
categorization. Suppose that MG D hW;�; �i is a game model for G, and S.M0

G/

is a categorization for a game model M0
G. We say that MG incorporates S.M0

G/

provided that for all i 2 N:

• If a 2 SC
i .M0

G/, then there is some w 2 Min�.W/ such that �i.w/ D a.
• If a 2 S�

i .M0
G/, then there is no w 2 Min�.W/ such that �i.w/ D a.

Thus, a model MG incorporating a categorization (SC
i ; S

�
i /i2N implies that (1) for

each a 2 SC
i , the players do not believe that i will not play a; and (2) for each

a 2 S�
i , players believe that i will not play a.

6.2.4 Generalized Belief Transformations

An important feature of a categorization is that more than one strategy may be
“rationally permissible” for a player. This means that the information the players
gain from a categorization should be represented by a set of events rather than
a single event. Each event in this set describes the outcomes of the game that
result from assuming that each player picks a rationally permissible strategy. In
this section, we show how to generalize the model transformations introduced in
Sect. 6.2.2 to accept finite sets of events as inputs.

Suppose that fE1; : : : ;Ekg is a set of events for game model MG. The generaliza-
tion of the public announcement transformation is straightforward: ŠfE1; : : : ;Ekg/ D
Š.E1 [ E2 [ � � � Ek/. The generalizations of the conservative and radical upgrade is
more subtle. To see the difficulty, consider the game model pictured below with two
events, X1 and X2:

X2

X1
A B

C D
E

F G

The sets A, B, C, D, E, F and G denote all the different subsets of states (so, W D
A [ B [ C [ D [ E [ F [ G). The plausibility ordering runs from the top to the
bottom. So, for instance, the states in A [ B are the most plausible overall, and all
states within A [ B are equiplausible. A conservative upgrade with X1 [ X2 results
in the following modification of the above plausibility ordering:
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A � B � C [ D [ E � F [ G;

where for sets X and Y , we write X � Y when for all w 2 X; v 2 Y , w � v. However,
suppose that X1 and X2 describe two different outcomes of the game. Furthermore,
in each of the outcomes, assume that the players pick a rationally permissible action.
The result of the radical upgrade with X1[X2 is that the players come to believe that
the outcome of the game will be as described by X1. The beliefs are the same after a
radical upgrade with X1 [ X2, though the resulting plausibility ordering is different.

However, if both X1 and X2 describe situations in which all the players choose
rationally, then why should the players believe that outcomes in X1 are more
plausible than outcomes in X2? Researchers interested in the epistemic foundations
of iterated removal of weakly dominated strategies have discussed this issue (Cubitt
and Sugden 2003; Samuelson 1992). For instance, Cubitt and Sugden impose a
“privacy of tie-breaking” property, which says that a player cannot know that her
opponent will not pick an option that is classified as “choice-worthy” (Cubitt and
Sugden 2014, p. 8).9 In our setting, this issue arises because, in general, for events
E1; : : : ;Ek:

Min�.E1 [ E2 [ � � � [ Ek/ ¤ Min�.E1/ [ Min�.E2/ [ � � � [ Min�.Ek/:

Returning to our example in the previous paragraph, the gray shaded regions identify
the most plausible states in X1 and X2. We have that Min�.X1 [ X2/ D A ¤
Min�.X1/ [ Min�.X2/ D A [ E. The generalization of conservative upgrade that
incorporates a constraint analogous to Cubitt and Sugden’s privacy of tie-breaking
property should result in the following plausibility ordering:

A [ E � B � C [ D � F [ G:

The formal definition is:

Definition 6.2.6 (Generalized Conservative Upgrade). Let M D hW;�; �i be
a plausibility model and fE1; : : : ;Ekg a set of events. Define M"fE1;:::;Ekg D
hW"fE1;:::;Ekg;�"fE1;:::;Ekg; �"fE1;:::;Ekgi as follows: W"fE1;:::;Ekg D W, �"fE1;:::;Ekg D �

and, if B D Min�.E1/ [ Min�.E2/ [ � � � [ Min�.Ek/, then

1. if v 2 B, then v �"fE1;:::;Ekg x for all x 2 W; and
2. for all x; y 2 W � B, x �"fE1;:::;Ekg y iff x � y.

Remark 6.2.7 (Suspending Judgement). A generalized conservative upgrade with
fE;Eg, where E is the complement of E, can be interpreted as a suspension of
judgement regarding E (cf. Holliday (2009) for a discussion). We do not offer an
extended discussion of belief suspension here, but we suggest that a natural response

9Rabinovich takes this even further and argues that from the principle of indifference, players must
assign equal probability to all choice-worthy options (Rabinowicz 1992).
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is to learning that there are more than one chose-worthy action for the players is to
suspend judgement about which options the relevant players will pick.

A generalized conservative upgrade of fE1; : : : ;Ekg “flattens” out the players’
beliefs relative to this set of events. After the upgrade, the player will consider
each of the Ei equally plausible. But this means that, if w is a most plausible Ei-
world and v is a most plausible Ej-world, the player forgets whatever reason she
had for considering state w more plausible than v (or vice versa). This suggests a
generalization of radical upgrade , where the players remember their earlier reasons
for considering some states more plausible than others. The idea is to update with a
set of events as in Definition 6.2.6, but to maintain the original ordering within the
union of the most plausible Ei-worlds.

Definition 6.2.8 (Generalized Radical Upgrade). Let M D hW;�; �i be a
plausibility model and fE1; : : : ;Ekg a set of events. Define M*fE1;:::;Ekg D
hW*fE1;:::;Ekg;�*fE1;:::;Ekg; �*fE1;:::;Ekgi as follows: W*fE1;:::;Ekg D W, �*fE1;:::;Ekg D
� and, if B D Min�.E1/ [ Min�.E2/ [ � � � [ Min�.Ek/, then

1. for all v 2 B, v �*fE1;:::;Ekg x for all x 2 W � B;
2. for all x; y 2 B, x �*fE1;:::;Ekg y iff x � y; and
3. for all x; y 2 W � B, x �*fE1;:::;Ekg y iff x � y.

Applying this definition to the running example in this section results in the
plausbility ordering:

A � E � B � C [ D � F [ G:

We will see other examples of the transformations defined above in the next
section. These transformations can be logically analyzed using standard tech-
niques from dynamic epistemic/doxastic logic literature (e.g., the “reduction axiom
method”).

6.3 Rational Deliberation via Iterated Belief Updates

In this section, we use the ideas developed in Sect. 6.2 to formally define our model
of deliberation in games. The idea is that a player’s “rational response” to a given
categorization is to transform the current informational context using one of the
transformations from the Sect. 6.2.2. To make this precise, we need to describe a
categorization.

Definition 6.3.1 (Language for a Game). Let G D hN; fSigi2N ; fuigi2Ni be a finite
strategic game. Without loss of generality, assume that each of the Si are disjoint,
and let AtG D fPi

a j a 2 Si; i 2 Ng be a set of atomic formulas (one for each
a 2 Si). The propositional language for G, denoted LG, is the smallest set of
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formulas containing AtG and closed under the boolean connectives : and ^. The
other boolean connectives (_, !, $) are defined as usual.

Formulas of LG are intended to describe possible outcomes of the game. Given a
game model MG, the formulas ' 2 LG is can be associated with subsets of the set
of states in the usual way:

Definition 6.3.2 (Interpretation of LG). Let G be a strategic game, MG D
hW;�; �i an informational context of G and LG a propositional language for
G. We define a map ŒŒ���MG W LG ! }.W/ by induction on the structure of
LG as follows: ŒŒPi

a��MG D fw j �i.w/ D ag, ŒŒ:'��MG D W � ŒŒ'��MG and
ŒŒ' ^  ��MG D ŒŒ'��MG \ ŒŒ ��MG .

Let X and Y be two sets of propositions; we define X ^Y WD f'^ j ' 2 X;  2 Yg
Definition 6.3.3 (Describing a categorization). Let G be a finite game and MG an
informational context of G. Given a categorization S.MG/, let Do.S.MG// denote
the set of formulas that describe S. This set is defined as follows. For each i 2 N,
let:

Doi.Si.MG// D fPi
a j a 2 SC

i .MG/g [ f:Pi
b j b 2 S�

i .MG/g:

Then, define Do.S.MG// D Doi.Si.MG//
V

Do2.S2.MG// � � �VDon.Sn.MG//.

The general project is to understand the interaction between types of categorizations
(e.g., choice rules) and types of model transformations (representing the rational
deliberation process). One key question, is whether (and under what conditions) a
deliberation process stabilizes? There are a number of ways to make precise what it
means to stabilize (see Baltag and Smets (2009) for a discussion).

Definition 6.3.4 (Stable in Beliefs). Suppose that M D hW;�; �i and M0 D
hW;�0; � 0i are two plausibility models based on the same set of states.10 We say that
M and M0 are stable with respect to the players’ beliefs if the set of propositions
that are believed in M is the same as those believed in M0. Equivalently, M and
M0 are stable with respect to beliefs provided Min�.W/ D Min�0.W/. We write
M 
B M0 when M and M0 are stable with respect to beliefs.

In this paper, it is enough to define stabilization in terms of the players’ simple
beliefs because, during the deliberation process, we incorporate only information
about what the players are going to do (as opposed to higher-order information11).
We are now ready to formally define a “deliberation sequence”:

10So, we assume that the models agree about which outcomes of the game have not been ruled out.
11An interesting extension would be to start with a multiagent belief model and allow players to
incorporate information not only about which options are “choice-worthy”, but also about which
beliefs their opponents may have. We leave this extension for future work and focus on setting up
the basic framework here.
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Definition 6.3.5 (Upgrade Sequence). Given a game G and an informational
context MG, an upgrade sequence of type � , induced by MG is a sequence of
plausibility models .Mm/m2N defined as follows:

M0 D MG MmC1 D �.Mm;Do.Mm//:

An upgrade sequence stabilizes if there is an n 	 0 such that Mn 
B MnC1. The
next section has a number of examples of upgrade sequences, some that stabilize
and others that do not stabilize.

In the remainder of this section, we discuss a number of abstract principles
that any upgrade sequence should satisfy. To state these properties, we need some
notation. Let U be a fixed set of states and G a fixed strategic game. We restrict
attention to transformations between models of G whose states come from the
same set of states U. Let MG be the set of all such plausibility models. A model
transformation is a function that maps a model of G and a finite set of formulas of
LG to a model in MG:

� W MG � }<!.LG/ ! MG;

where }<!.LG/ is the set of finite subsets of LG. Of course, not all functions � make
sense, given that we intend � to model belief changes as the players deliberate about
what to do. The first set of principles ensure that the categorizations are “sensitive”
to the players’ beliefs and that the players respond to the categorizations in the
appropriate way. Suppose that X D f'1; : : : ; 'kg is a finite set of LG formulas and
M 2 MG.

A1 The operation � depends only on the truth set of the formulas: If, for each i D
1; : : : ; k, ŒŒ'i��M D ŒŒ i��M, then �.M;X / D �.M; f 1; : : : ;  ng/.

A2 The operation � is idempotent12 in the language LG: �.M;X / D �.M�.X /;X /.
Property A1 says that the belief transformations depend only on the propositions

expressed by a formula by treating equivalent formulas the same way. The second
property A2 says that receiving the exact same information twice does not have any
effect on the players’ beliefs. These are natural properties that are satisfied by any
belief-change policy. Certainly, there may be other properties that one may want to
impose (for example, variants of the AGM postulates Alchourrón et al. 1985). We
leave a discussion of additional principles for another paper. The next two properties
ensure that the transformation responds “properly” to a categorization.

A3 For all models M;M0 2 MG and categorizations S, if M 
B M0, then
S.M/ D S.M0/.

A4 For all models M;M0 2 MG, �.M;Do.S.M/// incorporates S.M/.

12Here, it is crucial that the language LG does not contain any modalities.
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Property A3 guarantees that the categorization depends only on the players’
beliefs. Property A4 ensures the players are responding to the categorizations in
the right way. The properties A1, A2, A3 and A4 are the minimal set of principles
that an upgrade sequence must satisfy in order to serve as a model of deliberation
in games. We conclude this section by discussing conditions that guarantee that an
upgrade sequence will stabilize.

There are two main reasons why an upgrade sequence would stabilize. The first
is due to the properties of the transformation (for example, it is clear that upgrade
streams with public announcements always stabilize). The second is because the
choice rule satisfies a monotonicity property so that, eventually, the categorizations
stabilize, and so, there is no new information to change the plausibility ordering.
One way to guarantee that upgrade sequences stabilize is to assume that the
categorizations satisfy a monotonicity property.

Mon� For any upgrade sequence .Mn/n2N, for all n 	 0, for all players i 2 N,
S�

i .Mn/ � S�
i .MnC1/.

MonC Either for all models MG, SC
i .MG/ D Si � S�

i .MG/ or for any upgrade
sequence .Mn/n2N, for all n 	 0, for all players i 2 N, SC

i .Mn/ � SC
i .MnC1/.

Property Mon� means that once an option for a player is classified as “not
rationally permissible”, it cannot, at a later stage of the deliberation process, drop
this classification. Property MonC says that either the rationally permissible options
satisfy the same monotonicity property or they are completely determined by the set
of rationally impermissible options.

Theorem 6.3.6. Suppose that G is a finite strategic game and that all of the above
properties are satisfied. Then, every upgrade sequence .Mn/n2N for G stabilizes.

Proof. Let G D hN; fSigi2N ; fuigi2Ni be a finite strategic game. By properties Mon�
and MonC we have either for all upgrade streams .Mn/n2N and players i 2 N,

1. S�
i .M0/ � S�

i .M1/ � � � � S�
i .Mn/ � � � � is an infinitely increasing sequence

of subsets of Si and SC
i .M0/ � SC

i .M1/ � � � � SC
i .Mn/ � � � � is an infinite

decreasing sequence of subsets of Si; or
2. Both,

S�
i .M0/ � S�

i .M1/ � � � � S�
i .Mn/ � � � �

and

SC
i .M0/ � SC

i .M1/ � � � � SC
i .Mn/ � � � �

are infinite increasing sequences of subsets of Si.

Since each Si is assumed to be finite, for each player i, there is an ni such that
S�

i .Mni/ D S�
i .MniCi/ and SC

i .Mni/ D SC
i .MniCi/. Let m be the maximum of

fni j i 2 Ng. Then, we have S.Mm/ D S.MmC1/. All that remains is to show that
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for all x > m, Mx D �.Mx/. This follows by an easy induction on x. The key
calculation is: for each x 2 N, let Dx be the appropriate description of S.Mx/.

MmC2 D �.MmC1;DmC1/ D �.M�.Dm/
m ;DmC1/

D �.M�.Dm/
m ;Dm/ (since S.Mm/ D S.MmC1/)

D �.Mm;Dm/ D MmC1

This concludes the proof. QED

A number of researchers have noticed that monotonicity of the choice rule is
important for an epistemic analysis of games (see Apt and Zvesper (2010b) for a
discussion). An immediate corollary of Theorem 6.3.6 is:

Corollary 6.3.7. If the categorization method is strict dominance, then any up-
grade sequence of type � stabilizes, where � is any of the transformations discussed
in this paper (e.g., public announcement, (generalized) radical upgrade and (gen-
eralized) conservative upgrade).

This is related to van Benthem’s iterated “soft” announcements of rationality
(van Benthem 2007) and Apt and Zvesper’s results about stabilization of beliefs in
games (Apt and Zvesper 2010a).

6.4 Case Study: Iterated Weak Dominance

Larry Samuelson (1992) points out an explicit puzzle surrounding the epistemic
foundations of iterated removal of weakly dominated strategies (IEWDS) – also
known as the IA solution. He shows (among other things) that there is no epistemic
model of the following game with at least one state satisfying “common knowledge
of admissibility” (i.e., a state in which there is common knowledge that the players
do not play a strategy that is weakly dominated).

Bob
L R

Ann
u 1; 1 1; 0

d 1; 0 0; 1

In the above game, d is weakly dominated by u for Ann. If Bob believes that Ann
is rational (in the sense that she will not choose a weakly dominated strategy), then
he can conclude that u is more plausible than d. In the smaller game, action R is
now strictly dominated by L for Bob. If Ann believes that Bob is rational and that
Bob knows that she is rational (and thus, d is rationally impermissible), then she
can conclude that L is more plausible than R. Assuming that the above reasoning is
transparent to both Ann and Bob, it is common knowledge that Ann will play u and
Bob will play L. But now, what is the reason for Bob to rule out the possibility that
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Ann will play d? He believes that Ann believes that he is going to play L, and both
u and d are best responses to L.

The general framework introduced in Sects. 6.2 and 6.3 offers a new, dynamic
perspective on Samuelson’s analysis, as well as on reasoning with weak dominance
more generally. Note that we are not providing an alternative epistemic character-
ization of IEWDS. Both Brandenburger et al. (2008) and Halpern and Pass (2009)
have convincing results here. Our goal is to use this solution concept to illustrate
our general approach.

Generalized Conservative Upgrade with Weak Dominance Dynamically,
Samuelson’s analysis of the above game corresponds to non-stabilization of an
upgrade sequence. The players are not able to reason their way to stable, common
belief in admissibility. To capture this intuition, in light of Theorem 6.3.6, we
need to work with a non-monotonic categorization. Before stating the observation
formally, we need one more definition. A full model of a game G is one in which
all outcomes of the game are in the model (i.e., for any profile Es, there is a state w
satisfying �.w/ D Es) and the states are all equally plausible.

Observation 6.4.7 Starting with the initial full model of the above game, the
conservative upgrade sequence for conservative upgrade and weak dominance does
not stabilize.

The proof of this Observation is provided by the following looping stream of
conservative upgrades:

u, L u,R

d, L d,R

M0

d, L d,R

u, L u,R

M1

↑D0
d, L d,R

u,R

u, L

M2

↑D1
d,R

u,R

u, L d, L

M3

↑D2 u, L u,R

d, L d,R

M4 = M0

↑D3

where for i D 1; 2; 3; 4, Di D Do.WD.Mi//. Intuitively, from M0 to M2 the
players have reasons to exclude d and R, leading them to commonly believe that
u;L is played. At that stage, however, d is admissible for Ann, canceling the
players’ reason for ruling out this strategy. The rational response is, thus, to suspend
judgment on d, leading to M3. In this new model, the agents are similarly led to
suspend judgment on not playing R, bringing them back to M0. This process loops
forever; the agents’ reasoning does not stabilize.

Generalize Radical Upgrade with Weak Dominance Generalized radical up-
grade stabilizes plain beliefs even for non-monotonic choice rules such as weak
dominance. Consider, again, Samuelson’s game given above. Starting with the full
model of this game, the upgrade stream stabilizes on a model with the (common)
belief that all the players will play the IEWDS outcome.
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u, L u,R

d, L d,R

M0

d, L d,R

u, L u,R

M1

⇑D0

d,R

u,R

u, L

d, L

M2

⇑D1

where D0 and D1 are as above. Intuitively, what happens is the following: Just as
with conservative upgrade, M0 and M1, respectively, give the agents reasons to
believe that Ann will not play d, and that Bob will not play R. This leads to M2,
where, like before, d is admissible given that Ann believes that Bob will play L.
Radical upgrade, however, does not allow this fact to override her reason for not
playing d: her rational response is to rank u;L and d;L above all other possible
outcomes, but to keep the relative ordering of these two, reflecting the fact that she
previously ruled out u.

Stabilization of radical upgrade puts Samuelson’s observation into perspective.
Such an upgrade forces the agents to remember the reasons they had earlier in the
deliberation. Previous reasons constrain the domain of permissibility at later stages
in the deliberation process. What is permissible for Ann at M2 depends on the
deliberation process that led to this model, and, in particular, on the existence of
an (earlier) reason not to play d. This was not the case for conservative upgrade.
Reasons at each stage were evaluated de novo, without reference to the reasoning
history. This is what led the upgrade sequence for Samuelson’s game into looping, to
the “paradox” of admissibility. We leave open for discussion whether this constitutes
an argument to the effect that players “should” keep track of their reasons while
reasoning to a specific informational context. For now, we content ourselves with the
observation that there is a tight connection, on the one hand, between remembering
one’s reasons and stabilization of reasoning under admissibility and, on the other
hand, between letting new reasons override previous ones and the possibility of
never-ending reasoning chains.

6.5 Concluding Remarks

A general theory of rational deliberation for game and decision theory is a big
topic, and, thus, it is beyond the scope of this article to discuss the many different
aspects and competing perspectives on such a theory. The reader is referred to Brian
Skyrms’ (1990, Chap.7) for a broader discussion. The main contribution of this
paper is to lay the foundation for a formal theory of deliberation in games, based on
recent work on dynamic logics of knowledge and belief. We focused on one specific
question: What type of process can be used to generate a game model?
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The most pressing philosophical issue concerns the role that a theory of
deliberation plays in rational choice theory (cf. Levi 1993; Rabinowicz 2002; Schick
1979; Arntzenius 2008). On the technical side, throughout the paper, we worked
with (logical) models of all out attitudes, leaving aside probabilistic, graded beliefs,
even though they are arguably the most widely used in the current literature on
epistemic foundations of game theory. It is an important, and non-trivial, task to
transpose the dynamic perspective on informational contexts that we advocate here
to such probabilistic models. We leave that for future work.

Finally, we should stress that the dynamic perspective on informational contexts
is a natural complement, and not an alternative, to existing epistemic characteriz-
ations of solution concepts (van Benthem et al. 2011). Epistemic characterizations
of solution concepts offer rich insights into the consequences of taking the inform-
ational contexts of strategic interaction seriously. What we proposed here is a first
step towards understanding how and why such a context might arise.
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