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Yesterday: Bayes and counterfactual rationality

1. Bayesian rationality and counterfactual rationality

2. Stalnaker-Lewis semantics for counterfactuals

3. Bayesian rationality ‰ counterfactual rationality

4. Bayesian rationality = counterfactual rationality given independence

5. Counterfactual rationality and ratifiability (started)

Shin H.S.. A reconstruction of Jeffrey’s notion of ratifiability in terms of counterfactual belief.
Theory and Decision 31, pp. 21-47, 1991.



Shin’s theorems

Theorem 1. pi is modestly ratifiable iff pi is a correlated equilibrium.

§ Assuming that the players have common prior probabilities (i.e. pi = p´i ),
correlated equilibria can be viewed as the result of Bayesian rationality.

R. Aumann. Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55,
pp. 1-18, 1987.

Theorem 2. Player i is counterfactually rational at w iff i is Bayes rational at w .

No need of independence??
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Plan for today

1. Shin’s notion of counterfactual rationality

2. Dropping independence, way 1: conditional choice rules & communication

3. Dropping independence, way 2: translucent agents



Shin’s notion of counterfactual rationality



Intuitive idea

A player should never find herself at a possible world at which ... her
payoff would be higher if she were to deviate from the strategy she has
chosen. This is the principle which motivates our rationality criterion.
(p. 29)



Another way to define a model of a game

At world (T , L), player 1 believes that she is at a world where she plays T with
probability 1 and player 2 plays L (R) with probability 0.5

§ Define β1 : W Ñ S1 ˆ S, where S is the one dimensional unit simplex
representing the set of all probability distributions over tL,Ru
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Belief space
The belief space of player 1 is tT ,Bu ˆ S:
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“Library stack metric”

We now define a distance measure, λ, to measure the distance (or closeness)
between states in player 1’s belief space.

Let xa, yy and xa1, y 1y be two worlds in i ’s belief space:

§ a, a1 P tT ,Bu

§ y = xy1, y2y P R2 with y1 + y2 = 1

§ y 1 = xy 11, y 12y P R2 with y1 + y2 = 1

Then:

λ(xa, yy ,
@

a1, y 1
D

) =

$
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&

’
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a

|y1 ´ y 11|
2 + |y2 ´ y 12|

2 if a = a1

a

|y1 ´ y 11|
2 + |y2 ´ y 12|

2 + 1 if a ‰ a1
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Counterfactual rationality
Player 1 is λ-rational at (T , L) if she believes that she is at a world at which,

according to the metric λ, her payoff would not be higher if she were to play B.

(Expected payoff at xT , x.5, .5yy = 4; expected payoff at xB, x.5, .5yy = 3.5.)

0 1

1

.51 .5 0

.5

1

probability of R

pr
ob

ab
ili

ty
of

L

probability of L

prob
ab

ility
of

R
β1((T ,L))



Counterfactual rationality
Player 1 is λ-rational at (T , L) if she believes that she is at a world at which,

according to the metric λ, her payoff would not be higher if she were to play B.

(Expected payoff at xT , x.5, .5yy = 4; expected payoff at xB, x.5, .5yy = 3.5.)

0 1

1

.51 .5 0

.5

1

probability of R

pr
ob

ab
ili

ty
of

L

probability of L

prob
ab

ility
of

R
xT , x.5, .5yy



Counterfactual rationality
Player 1 is λ-rational at (T , L) if she believes that she is at a world at which,

according to the metric λ, her payoff would not be higher if she were to play B.

(Expected payoff at xT , x.5, .5yy = 4; expected payoff at xB, x.5, .5yy = 3.5.)

0

.5

.5

xB, x.5, .5yy

1

1

.51 .5 0

.5

1

probability of R

pr
ob

ab
ili

ty
of

L

probability of L

prob
ab

ility
of

R
xT , x.5, .5yy



Counterfactual rationality
Player 1 is λ-rational at (T , L) if she believes that she is at a world at which,

according to the metric λ, her payoff would not be higher if she were to play B.

(Expected payoff at xT , x.5, .5yy = 4; expected payoff at xB, x.5, .5yy = 3.5.)

0

.5

.5

xB, x.5, .5yy

1

1

.51 .5 0

.5

1

probability of R

pr
ob

ab
ili

ty
of

L

probability of L

prob
ab

ility
of

R
xT , x.5, .5yy



Counterfactual rationality
Player 1 is λ-rational at (T , L) if she believes that she is at a world at which,

according to the metric λ, her payoff would not be higher if she were to play B.

(Expected payoff at xT , x.5, .5yy = 4; expected payoff at xB, x.5, .5yy = 3.5.)

0

.5

.5

xB, x.5, .5yy

1

1

.51 .5 0

.5

1

probability of R

pr
ob

ab
ili

ty
of

L

probability of L

prob
ab

ility
of

R
xT , x.5, .5yy



Take home messages

§ The notion of Bayesian rationality is based on the (hidden) assumption that
the players’ choices are independent of one another—and that there is
common belief that this is the case.

§ If we allow (beliefs in) dependencies between the players’ choices, then we
can distinguish two notions of rationality: Bayesian rationality and
counterfactual rationality.

Keep in mind: some relations of relative closeness (like those defined by
Shin) build in the assumption of independence of choices.

§ Besides (common belief in) independence of choices, the notion of Bayesian
rationality encodes the idea that the players’ choices are rational when they
are ratifiable (i.e., stable or non self-defeating).
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A key question

Is it plausible to assume that the principle of independence of choices
characterizes rational beliefs?

Answer 1: YES
especially when we consider games in normal form, where the players are typically
assumed to move simultaneously and be ignorant of each other’s strategies.

Answer 2: NO
if we do not exclude that the players can communicate or be “translucent” to
one another or when we consider games where the players move sequentially.
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A key question

[A] causal independence assumption is part of the idealization built into the

normal form.

W.L. Harper. Causal decision theory and game theory: A classic argument for equilibrium
solutions, a defense of weak equilibria, and a new problem for the normal form representation.
Causation in Decision, Belief Change and Statistics II, 1988.

[I]n a strategic form game, the assumption is that the strategies are cho-

sen independently, which means that the choices made by one player cannot

influence the beliefs or the actions of the other players.

R. Stalnaker. Knowledge, belief and counterfactual reasoning in games. Economics and Philos-
ophy 12, pp. 133-163, 1996.



A key question
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Conditional choice rules and communication



S.J. Brams. Newcomb’s problem and the Prisoner’s Dilemma. Journal of Conflict Resolution
19(4), pp. 596-612, 1975.



Newcomb’s paradox

Ila
ri

a

U pred B pred AB

B 1M 0 C

AB 1M+1T 1T D

Principle of dominance: take both boxes.

pi (pred B | B)1M + pi (pred AB | B)0ąpi (pred B | AB)(1M + 1T ) + pi (pred AB | AB)1T

R. Nozick. Newcomb’s Problem and Two Principles of Choice. 1969.
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Newcomb’s paradox

Ila
ri

a

U pred B pred AB

B 1M 0 C

AB 1M+1T 1T D

Expected utility maximization: take box B .

pi (pred B | B)1M + pi (pred AB | B)0ą pi (pred B | AB)(1M + 1T ) + pi (pred AB | AB)1T

R. Nozick. Newcomb’s Problem and Two Principles of Choice. 1969.



One solution: make it a decision problem

Ila
ri

a

U pred 3 pred 7

B 1M 0 C

AB 1T 1M+1T D

§ If p(pred 3) ą 0.5005, I should choose B

§ If p(pred 3) ă 0.5005, I should choose AB

§ If p(pred 3) = 0.5005, I can choose either B or AB



Game-theoretic or decision-theoretic representation?

If you believe that the Being has no control over which state of nature
obtains... then the being is not properly a player in a two-person game...
hence, the appropriate representation of Newcomb’s problem is decision-
theoretic...

On the other hand, if you believe that the Being has some control over
which state of nature obtains... then he is not an entirely passive state of
nature, at least with respect to being correct; hence the game-theoretic
representation... is the appropriate one. (pp. 600-1)

(According to Brams, the decision-theoretic representation is correct)

... it is still intriguing to ask what consequences the predictive abil-
ity assumed on the part of the Being would have if both actors in the
Newcomb’s problem could make genuine choices as players in a game.
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Newcomb’s paradox: game-theoretic representation

player 2

pl
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U pred a1 pred a2

a1 A2 A4 C

a2 A1 A3 D

Now, let us make the game symmetric so that player 1 can also make predictions.
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Newcomb’s paradox: game-theoretic representation

player 2
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U b1 b2

a1 (A2,B2) (A4,B1) C

a2 (A1,B4) (A3,B3) D

We obtained the classic Prisoner’s Dilemma!



Newcomb’s paradox: game-theoretic representation
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But why is this interesting?



Newcomb’s paradox: game-theoretic representation

[T]he condition in the symmetric version of Newcomb’s problem that
each player knows that the other player can predict—with a high de-
gree of accuracy—which strategy he will choose does have a surprising
consequence for the play of Prisoners’ Dilemma: it provides an incentive
for each player not to choose his second dominant strategy [i.e. defect].
(pp. 603-4)



Choice rules in the Prisoner’s Dilemma

Let: p1 be player 1’s degree of belief that player 2 correctly predicts her choice
Let: p2 be player 2’s degree of belief that player 1 correctly predicts her choice

Result: if p1 and p2 are sufficiently high, then there is a choice rule (i.e. a
conditional strategy based on one’s prediction) that either player can adopt that
will induce the other player to choose his cooperative strategy.



Choice rules in the Prisoner’s Dilemma

Let: p1 be player 1’s degree of belief that player 2 correctly predicts her choice
Let: p2 be player 2’s degree of belief that player 1 correctly predicts her choice

Choice rule of conditional cooperation:

Player i cooperates if she predicts that player ´i cooperates;
Player i defects otherwise.



Choice rules in the Prisoner’s Dilemma

Suppose that 2 assumes the choice rule of conditional cooperation

IF 1 chooses a1 (cooperate) c IF 1 chooses a2 (defects)

2 predicts a1 with probability p2 2 predicts a1 with probability 1´ p2

So, given his choice rule, 2 plays So, given his choice rule, 2 plays

b1 with probability p2 b1 with probability 1´ p2

b2 with probability 1´ p2 b2 with probability p2

So: EU(a1) = p2 ¨A2 + (1´ p2) ¨A4 So: EU(a2) = (1´ p2) ¨A1 + p2 ¨A3
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p2 ¨ A2 + (1´ p2) ¨ A4 ą (1´ p2) ¨ A1 + p2 ¨ A3 ?
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Suppose that A1 = 4, A2 = 3, A3 = 2, and A4 = 1
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Then EU(a1) ą EU(a2) iff p2 ą 3/4
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Choice rules in the Prisoner’s Dilemma

Suppose that 1 assumes the choice rule of conditional cooperation

IF 2 chooses b1 (cooperate) c IF 2 chooses b2 (defects)

1 predicts b1 with probability p1 2 predicts b1 with probability 1´ p1

So, given his choice rule, 1 plays So, given his choice rule, 1 plays

a1 with probability p1 a1 with probability 1´ p1

a2 with probability 1´ p1 a2 with probability p1

If p1 ą n, it is irrational for 1 not to cooperate



Conclusion

§ If the players

1. can predict their opponent’s choice with a sufficiently high probability AND
2. they adopt the choice rule of conditional cooperation AND
3. there is common knowledge of 1 and 2,

then they will be better off by playing their pareto-dominant strategies

So, if the players can communicate, they are better off by influencing each other



Translucent agents



V. Capraro and J. Halpern. Translucent Players: Explaining Cooperative Behavior in Social
Dilemmas. Proceedings of the 15th conference on Theoretical Aspects of Rationality and
Knowledge, 2015.



Prisoner’s Dilemma
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Social Dilemmas

1. There is a unique Nash equilibrium sN , which is a pure strategy profile;

2. There is a unique welfare-maximizing profile sW , again a pure strategy
profile, such that each player’s utility if sW is played is higher than his utility
if sN is played.



Traveler’s Dilemma

1. You and your friend write down an integer between 2 and 100 (without
discussing).

2. If both of you write down the same number, then both will receive that
amount in dollars from the airline in compensation.

3. If the numbers are different, then the airline assumes that the smaller
number is the actual price of the luggage.

4. The person that wrote the smaller number will receive that amount plus $2
(as a reward), and the person that wrote the larger number will receive the
smaller number minus $2 (as a punishment).

Suppose that you are randomly paired with another person from class. What
number would you write down?



Expected Utility, Best Response

Suppose that G = xN , (Si )iPN , (ui )iPNy is a game in strategic form.
For a P Si and p P ∆(S´i ), a is a best response to p when: for all a1 P Si ,

ÿ

s´iPS´i

pi (s´i )ui (a, s´i ) ě
ÿ

s´iPS´i

pi (s´i )ui (a
1, s´i )

Implicitly assumes that i ’s beliefs about what other agents are doing do not
change if i switches from si , the strategy he was intending to play, to a different
strategy.
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ÿ

s´iPS´i

pi (s´i )ui (a, s´i ) ě
ÿ

s´iPS´i

pi (s´i )ui (a
1, s´i )

Implicitly assumes that i ’s beliefs about what other agents are doing do not
change if i switches from si , the strategy he was intending to play, to a different
strategy.
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1
i

i : i ’s beliefs if he intends to play si but instead deviates to s 1i

Strategy a P Si is a best response for i with respect to the beliefs tpa,a
1

i : a1 P Siu
if for all strategies a1 P Si

ÿ

s´iPS´i

pa,ai (s´i )ui (a, s´i ) ě
ÿ

s´iPS´i

pa,a
1

i (s´i )ui (a
1, s´i )

A player is translucently rational— if he best responds to his beliefs.



p
si ,s

1
i

i : i ’s beliefs if he intends to play si but instead deviates to s 1i

Strategy a P Si is a best response for i with respect to the beliefs tpa,a
1

i : a1 P Siu
if for all strategies a1 P Si

ÿ

s´iPS´i

pa,ai (s´i )ui (a, s´i ) ě
ÿ

s´iPS´i

pa,a
1

i (s´i )ui (a
1, s´i )

A player is translucently rational— if he best responds to his beliefs.



Translucency will be used to determine pa,a
1

i :

Suppose that G is a two-player game, player 1 believes that, if he were to switch
from a to a1, this would be detected by player 2 with probability α, and if player 2
did detect the switch, then player 2 would switch to b.

Then pa,a
1

i is (1´ α)pa,ai + αp1, where p1 assigns probability 1 to b: that is,
player 1 believes that with probability 1´ a, player 2 continues to do what he
would have done all along (as described by pa,ai ) and with probability α, player 2
switches to b.
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Explaining Cooperation

Say that an player i has type (α, β,C ) if i intends to cooperate and believes that

1. if he deviates from that, then each other agent will independently realize
this with probability α;

2. if a player j realizes that i is not going to cooperate, then j will defect; and

3. all other players will either cooperate or defect, and they will cooperate with
probability β.



u C D

C b´ c , b´ c ´c , b c

D b, ´c 0, 0 d

Proposition In the Prisoner’s Dilemma, it is translucently rational for a player of
type (α, β,C ) to cooperate if and only if αβb ě c .



J. Halpern and R. Pass. Game theory with translucent players. International Journal of Game
Theory, 47:3, pp. 949 - 976, 2018.



Given a strategic-form game G = xN , (Si )iPN , (ui )iPNy, a model of G is a triple

xW , f , (Pi )iPN , σy

where W is a non-empty set of states, σ : W Ñ ΠiPNSi , and:

For each i P N , Pi : W Ñ ∆(W ).

§ For all w P W , Pi (w)([σi (w)]) = 1.

§ For all w P W , Pi (w)(tv | Pi (v) = Pi (w)u) = 1.

§ f associates with each state w , player i and strategy a a state f (w , i , a)
where player i plays a. If f (w , i , a) = w 1, then

§ σi (w 1) = a.
§ If σi (w) = a, then w 1 = w .
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Pc
i ,a(w)(w 1) =

ÿ

tw2PW | f (w2,i ,a)=w 1u

Pi (w)(w2)

§ Pc
i ,a is i ’s counterfactual beliefs at state w : what i believes would happen if

she switched to s at w

§ Pc
i ,a(w)([a]) = 1

§ It may not be the case that Pc
i ,a(w)([Pc

i ,a(w), i ]) = 1: players do not in
general know their counterfactual beliefs in state w

§ A model is a strongly appropriate counterfactual structure if at every state
w , every player i knows his counterfactual beliefs.
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Pc
i ,a(w)(w 1) =

ÿ

tw2PW | f (w2,i ,a)=w 1u

Pi (w)(w2)

Claim. For all w P W , Pc
i ,σi (w)(w)(w) = Pi (w)(w).

Proof. By the definition of Pc
i ,a, we have that:

Pc
i ,σi (w)(w) =

ÿ

tw2PW | f (w2,i ,σi (w))=wu

Pi (w)(w2)

Recall two properties of f and Pi :

1. for all states x , f (x , i , σi (x)) = x .

2. for all states x , if σi (w
1) ‰ σi (w), then Pi (w)(w 1) = 0.



Pc
i ,a(w)(w 1) =

ÿ

tw2PW | f (w2,i ,a)=w 1u

Pi (w)(w2)

Claim. For all w P W , Pc
i ,σi (w)(w)(w) = Pi (w)(w).

Proof, continued. Recall that the definition of Pc
i ,a, we have that:

Pc
i ,σi (w)(w) =

ÿ

tw2PW | f (w2,i ,σi (w))=wu

Pi (w)(w2)

Suppose that w2 P W such that f (w2, i , σi (w)) = w . If σi (w
2) = σi (w), then

f (w2, i , σi (w)) = f (w2, i , σi (w
2)) = w2 (the last equality is by part 1). Hence,

w = w2. Other the other hand, if σi (w
2) ‰ σi (w), then, by part 2, we have

that Pi (w)(w2) = 0. Putting everything together, we have that:

Pc
i ,σi (w)(w) = Pi (w)(w)



Bi (E ) = tw | Pi (w)(E ) = 1u

B˚i (E ) = tw | for all s 1 P Si ,P
c
i ,s 1(w)(E ) = 1u

Characterize solution concepts in terms of the players beliefs, common beliefs,
counterfactual beliefs and common counterfactual beliefs.
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