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Course Plan

1. Introduction and Motivation: Background (Relational
Semantics for Modal Logic), Subset Spaces, Neighborhood
Structures, Motivating Non-Normal Modal
Logics/Neighborhood Semantics
(Monday, Tuesday)

2. Core Theory: Completeness, Decidability, Complexity,
Incompleteness, Relationship with Other Semantics for Modal
Logic, Model Theory
(Tuesday, Wednesday, Thursday)

3. Extensions and Applications: First-Order Modal Logic,
Common Knowledge/Belief, Dynamics with Neighborhoods:
Game Logic and Game Algebra, Dynamics on Neighborhoods
(Thursday, Friday)
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Course Website: pacuit.org/esslli2014/nbhd

Course notes: Neighborhood Semantics for Modal Logic, by EP,
available on the website (updated during the week)

Additional readings

I Modal Logic: an Introduction, Chapters 7 - 9, by Brian Chellas

I Monotonic Modal Logics by Helle Hvid Hansen, available at
www.few.vu.nl/~hhansen/papers/scriptie_pic.pdf

I Modal Logic by P. Blackburn, M. de Rijke and Y. Venema.
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Plan

I Introductory Remarks

I Background: Relational Semantics for Modal Logic

I Why Non-Normal Modal Logic?
I Fundamentals

• Subset Spaces
• Neighborhood Semantics

I Why Neighborhood Semantics?
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The Basic Modal Language: L

p | ¬ϕ | ϕ ∧ ψ | �ϕ | ♦ϕ

where p is an atomic proposition (Let At be the set of atomic
propositions)

Eric Pacuit 5



One Language, Many Interpretations

tense: henceforth, eventually, previously, now, tomorrow,
yesterday, since, until, it will have been, it is being,. . .

epistemic: it is known to a that, it is common knowledge that

doxastic: it is believed that, it is commonly believed that

deontic: it is obligatory/forbidden/permitted/unlawful that

dynamic: after the program/computation/action finishes, the
program enables, throughout the computation

geometric: it is locally the case that

metalogic: it is valid/satisfiable/provable/consistent that

game/action: there exist a strategy/action to guarantee that
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Relational Structures

Relational (Kripke) Frame: 〈W ,R〉

I W 6= ∅
I R ⊆W ×W

Relational (Kripke) Model: 〈W ,R,V 〉

I 〈W ,R〉 is a frame

I V : At→ ℘(W )
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Aw1

Bw2 B w3

B,C w4 A,B w5

1. Set of states
(propositional valuations)

2. Accessibility relation
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Aw1

Bw2 B w3

B,C w4 A,B w5

1. Set of states
(propositional valuations)

2. Accessibility relation

denoted w3Rw5
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Truth: M,w |= ϕ

1. M,w |= p iff w ∈ V (p)

2. M,w |= ¬ϕ iff M,w 6|= ϕ

3. M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

4. M,w |= �ϕ iff for each v ∈W , if wRv then M, v |= ϕ

5. M,w |= ♦ϕ iff there is a v ∈W such that wRv and
M, v |= ϕ

Eric Pacuit 9



Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w4 |= B ∧ C
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Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w5 |= �C∧
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Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w5 |= �(B ∧ ¬B)
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Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w5 |= ¬♦B∧
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Standard Logical Notions

Valid on a model: M |= ϕ

Valid at a state on a frame: F ,w |= ϕ

Valid on a frame: F |= ϕ

Valid in a class F of frame: |=F ϕ

Eric Pacuit 11



Example

ϕw1

ϕ

w3

ϕ

w2

ϕ

w4

F ,w1 |= �♦ϕ→ ♦�ϕ
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Some Validities

(M) �(ϕ ∧ ψ)→ �ϕ ∧�ψ

(C) �ϕ ∧�ψ → �(ϕ ∧ ψ)

(N) �>

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(Dual) �ϕ↔ ¬♦¬ϕ

(Nec) from ` ϕ infer ` �ϕ

(Re) from ` ϕ↔ ψ infer ` �ϕ↔ �ψ

(RM)
` ϕ→ ψ

` �ϕ→ �ψ

Eric Pacuit 13



Some Validities

(M) �(ϕ ∧ ψ)→ �ϕ ∧�ψ

(C) �ϕ ∧�ψ → �(ϕ ∧ ψ)

(N) �>

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(Dual) �ϕ↔ ¬♦¬ϕ

(Nec) from ` ϕ infer ` �ϕ

(Re) from ` ϕ↔ ψ infer ` �ϕ↔ �ψ

(RM)
` ϕ→ ψ

` �ϕ→ �ψ

Eric Pacuit 13



The History of Modal Logic

R. Goldblatt. Mathematical Modal Logic: A View of its Evolution. Hand-
book of the History of Logic, Vol. 7, 2006.

P. Balckburn, M. de Rijke, and Y. Venema. Modal Logic. Section 1.7,
Cambridge University Press, 2001.

R. Ballarin. Modern Origins of Modal Logic. Stanford Encyclopedia of
Philosophy, 2010.
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Neighborhoods in Topology

In a topology, a neighborhood of a point x is any set A containing
x such that you can “wiggle” x without leaving A.

A neighborhood system of a point x is the collection of
neighborhoods of x .

J. Dugundji. Topology. 1966.

Eric Pacuit 15



w |= �ϕ if the truth set of ϕ is a neighborhood of w

neighborhood in some topology.
J. McKinsey and A. Tarski. The Algebra of Topology. 1944.

contains all the immediate neighbors in some graph
S. Kripke. A Semantic Analysis of Modal Logic. 1963.

an element of some distinguished collection of sets
D. Scott. Advice on Modal Logic. 1970.

R. Montague. Pragmatics. 1968.
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Truth Sets

Given ϕ ∈ L and a model M on a set of state
W , the

I proposition expressed by ϕ

I extension of ϕ

I truth set of ϕ

is

[[ϕ]]M = {w ∈W | M,w |= ϕ}

[[·]]M : L → ℘(W )
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To see the necessity of the more general approach, we
could consider probability operators, conditional
necessity, or, to invoke an especially perspicuous example
of Dana Scott, the present progressive tense....Thus N
might receive the awkward reading ‘it is being the case
that’, in the sense in which ‘it is being the case that
Jones leaves’ is synonymous with ‘Jones is leaving’.

(Montague, pg. 73)

R. Montague. Pragmatics and Intentional Logic. 1970.
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Segerberg’s Essay

K. Segerberg. An Essay on Classical Modal Logic. Uppsula Technical
Report, 1970.

This essay purports to deal with classical modal logic.
The qualification “classical” has not yet been given an
established meaning in connection with modal
logic....Clearly one would like to reserve the label
“classical” for a category of modal logics which—if
possible—is large enough to contain all or most of the
systems which for historical or theoretical reasons have
come to be regarded as important, and which also posses
a high degree of naturalness and homogeneity.

(pg. 1)
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Neighborhoods in Modal Logic

Neighborhood Frame: 〈W ,N〉

Neighborhood Model: 〈W ,N,V 〉

I W 6= ∅
I N : W → ℘(℘(W ))

I V : At→ ℘(W )
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Two routes to a logical framework

1. Identify interesting patterns that you (do not) want to
represent

2. Identify interesting structures that you want to reason about

Eric Pacuit 21



Key Validities

(M) �(ϕ ∧ ψ)→ �ϕ ∧�ψ

(C) �ϕ ∧�ψ → �(ϕ ∧ ψ)

(N) �>

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(Dual) �ϕ↔ ¬♦¬ϕ

(Nec) from ` ϕ infer ` �ϕ

(Re) from ` ϕ↔ ψ infer ` �ϕ↔ �ψ

Eric Pacuit 22



Logics of High Probability

�ϕ means “ϕ is assigned ‘high’ probability”, where high means
above some threshold r ∈ [0, 1].

Claim: Mon (from ϕ→ ψ infer �ϕ→ �ψ) is a valid rule of
inference.

Claim: (�ϕ ∧�ψ)→ �(ϕ ∧ ψ) is not valid.

H. Kyburg and C.M. Teng. The Logic of Risky Knowledge. Proceedings
of WoLLIC (2002).

A. Herzig. Modal Probability, Belief, and Actions. Fundamenta Informat-
icae (2003).
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Abilities

Abliϕ: i has the ability to see to it that ϕ is true
(alternatively, i has the ability to bring about ϕ)

What are the core logical principles?

1. Abliϕ→ ϕ (or ϕ→ Abliϕ)

2. ¬Abli>

3. (Abliϕ ∧ Abliψ)→ Abli (ϕ ∧ ψ)

4. Abli (ϕ ∨ ψ)→ (Abliϕ ∨ Abliψ)

5. Abli (ϕ ∧ ψ)→ (Abliϕ ∧ Abliψ)

6. AbliAbljϕ→ Abliϕ, AbliAbliϕ→ Abliϕ
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Games: (Abliϕ ∧ Abliψ) 6→ Abli (ϕ ∧ ψ)
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Games: (Abliϕ ∧ Abliψ) 6→ Abli (ϕ ∧ ψ)

R. Parikh. The Logic of Games and its Applications. Annals of Discrete
Mathematics (1985).

M. Pauly and R. Parikh. Game Logic — An Overview. Studia Logica
(2003).

J. van Benthem. Logic and Games. Course notes (2007).
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Question

�iϕ means “player i has a strategy to win the game”

♦iϕ means “player i ’s opponent has a strategy to win the game”

I Is ¬♦i¬ϕ→ �iϕ valid?

I Is �iϕ→ ¬♦i¬ϕ valid? Hint: the formula is equivalent to
¬(�iϕ ∧ ♦i¬ϕ)
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ϕ 6→ Abliϕ

Suppose an agent (call her Ann) is throwing a dart and she is not
a very good dart player, but she just happens to throw a bull’s eye.

Intuitively, we do not want to say that Ann has the ability to throw
a bull’s eye even though it happens to be true.
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Abli (ϕ ∨ ψ) 6→ Abliϕ ∨ Abliψ

Continuing with this example, suppose that Ann has the ability to
hit the dart board, but has no other control over the placement of
the dart.

Now, when she throws the dart, as a matter of fact, it will either
hit the top half of the board or the bottom half of the board.

Since, Ann has the ability to hit the dart board, she has the ability
to either hit the top half of the board or the bottom half of the
board.

However, intuitively, it seems true that Ann does not have the
ability to hit the top half of the dart board, and also she does not
have the ability to hit the bottom half of the dart board.
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Abilities

Abliϕ: agent i has the ability to bring about (see to it that) ϕ is
true

What are core logical principles? Depends very much on the
intended “application” and how actions are represented...

1. Abliϕ→ ϕ (or ϕ→ Abliϕ)

2. ¬Abli>

3. (Abliϕ ∧ Abliψ)→ Abli (ϕ ∧ ψ)

4. Abli (ϕ ∨ ψ)→ (Abliϕ ∨ Abliψ)

5. Abli (ϕ ∧ ψ)→ (Abliϕ ∧ Abliψ)

6. AbliAbljϕ→ Abliϕ, AbliAbliϕ→ Abliϕ
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On the Logic of Ability

¬Abli>

�> is valid in the class of all frames, ♦> is valid on the class of
serial frames

ϕ→ Abliϕ

ϕ→ ♦ϕ is valid in the class of reflexive frames

(Abliϕ ∧ Abliψ)→ Abli (ϕ ∧ ψ)

(�ϕ ∧�ψ)→ �(ϕ ∧ ψ) is valid in the class of all frames

Abli (ϕ ∨ ψ)→ (Abliϕ ∨ Abliψ)

♦(ϕ ∨ ψ)→ (♦ϕ ∨ ♦ψ) is valid in the class of all frames

Eric Pacuit 30



On the Logic of Ability

¬Abli>

�> is valid in the class of all frames, ♦> is valid on the class of
serial frames

ϕ 6→ Abliϕ

ϕ→ ♦ϕ is valid in the class of reflexive frames

(Abliϕ ∧ Abliψ) 6→ Abli (ϕ ∧ ψ)

(�ϕ ∧�ψ)→ �(ϕ ∧ ψ) is valid in the class of all frames

Abli (ϕ ∨ ψ) 6→ (Abliϕ ∨ Abliψ)

♦(ϕ ∨ ψ)→ (♦ϕ ∨ ♦ψ) is valid in the class of all frames

Eric Pacuit 30



On the Logic of Ability

¬Abli>

�> is valid in the class of all frames, ♦> is valid on the class of
serial frames

ϕ 6→ Abliϕ

ϕ→ ♦ϕ is valid in the class of reflexive frames

(Abliϕ ∧ Abliψ) 6→ Abli (ϕ ∧ ψ)

(�ϕ ∧�ψ)→ �(ϕ ∧ ψ) is valid in the class of all frames

Abli (ϕ ∨ ψ) 6→ (Abliϕ ∨ Abliψ)

♦(ϕ ∨ ψ)→ (♦ϕ ∨ ♦ψ) is valid in the class of all frames

Eric Pacuit 30



On the Logic of Ability

¬Abli>

�> is valid in the class of all frames, ♦> is valid on the class of
serial frames

ϕ 6→ Abliϕ

ϕ→ ♦ϕ is valid in the class of reflexive frames

(Abliϕ ∧ Abliψ) 6→ Abli (ϕ ∧ ψ)

(�ϕ ∧�ψ)→ �(ϕ ∧ ψ) is valid in the class of all frames

Abli (ϕ ∨ ψ) 6→ (Abliϕ ∨ Abliψ)

♦(ϕ ∨ ψ)→ (♦ϕ ∨ ♦ψ) is valid in the class of all frames

Eric Pacuit 30



On the Logic of Ability

¬Abli>

�> is valid in the class of all frames, ♦> is valid on the class of
serial frames

ϕ 6→ Abliϕ

ϕ→ ♦ϕ is valid in the class of reflexive frames

(Abliϕ ∧ Abliψ) 6→ Abli (ϕ ∧ ψ)

(�ϕ ∧�ψ)→ �(ϕ ∧ ψ) is valid in the class of all frames

Abli (ϕ ∨ ψ) 6→ (Abliϕ ∨ Abliψ)

♦(ϕ ∨ ψ)→ (♦ϕ ∨ ♦ψ) is valid in the class of all frames

Eric Pacuit 30



On the Logic of Ability

¬Abli>

�> is valid in the class of all frames, ♦> is valid on the class of
serial frames

ϕ 6→ Abliϕ

ϕ→ ♦ϕ is valid in the class of reflexive frames

(Abliϕ ∧ Abliψ) 6→ Abli (ϕ ∧ ψ)

(�ϕ ∧�ψ)→ �(ϕ ∧ ψ) is valid in the class of all frames

Abli (ϕ ∨ ψ) 6→ (Abliϕ ∨ Abliψ)

♦(ϕ ∨ ψ)→ (♦ϕ ∨ ♦ψ) is valid in the class of all frames

Eric Pacuit 30



Ability: Reproducibility vs. Reliability

“Abilities are inherently general; there are no genuine abilities
which are abilities to do things only on one particular occasion”
adsf (p. 135)

A. Kenny. Will, Freedom and Power. 1975.

“Even if opportunity only knocks once, I may be able to act on it,
and may be culpable for doing so, or for failing to do so.”
adsf (p. 1)

M. Brown. On the Logic of Ability. Journal of Philosophical Logic, Vol.
17, pp. 1 - 26, 1988.
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D. Elgesem. The modal logic of agency. Nordic Journal of Philosophical
Logic 2(2), 1 - 46, 1997.

G. Governatori and A. Rotolo. On the Axiomatisation of Elgesem’s Logic
of Agency and Ability. Journal of Philosophical Logic, 34, pgs. 403 - 431
(2005).
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A Minimal Logic of Abilities

Cϕ means “the agent is capable of realizing ϕ”

Eϕ means “the agent does bring about ϕ”

1. All propositional tautologies

2. ¬C>
3. Eϕ ∧ Eψ → E (ϕ ∧ ψ)

4. Eϕ→ ϕ

5. Eϕ→ Cϕ

6. Modus Ponens plus from ϕ↔ ψ infer Eϕ↔ Eψ and from
ϕ↔ ψ infer Cϕ↔ Cψ
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Social Choice Theory

�α mean “the group accepts α.”
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Social Choice Theory

�α mean “the group accepts α.”

Note: the language is restricted so that ��α is not a wff.
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Social Choice Theory

�α mean “the group accepts α.”

Consensus: α is accepted provided everyone accepts α.

(E) �α↔ �β provided α↔ β is a tautology

(M) �(α ∧ β)→ (�α ∧�β)

(C) (�α ∧�β)→ (�α ∧�β)

(N) �>
(D) ¬�⊥
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Social Choice Theory

�α mean “the group accepts α.”

Consensus: α is accepted provided everyone accepts α.

(E) �α↔ �β provided α↔ β is a tautology

(M) �(α ∧ β)→ (�α ∧�β)

(C) (�α ∧�β)→ (�α ∧�β)

(N) �>
(D) ¬�⊥

Theorem The above axioms axiomatize consensus (provided
n ≥ 2|At|)).
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Social Choice Theory

�α mean “the group accepts α.”

Majority: α is accepted if a majority of the agents accept α.

Eric Pacuit 34



Social Choice Theory

�α mean “the group accepts α.”

Majority: α is accepted if a majority of the agents accept α.

(E) �α↔ �β provided α↔ β is a tautology

(M) �(α ∧ β)→ (�α ∧�β)

(S) �α→ ¬�¬α
(T) ([≥]ϕ1 ∧ · · · ∧ [≥]ϕk ∧ [≤]ψ1 ∧ · · · ∧ [≤]ψk)→∧

1≤i≤k([=]ϕi ∧ [=]ψi ) where ∀v ∈ VI :
|{i | v(ϕi ) = 1}| = |{i | v(ψi ) = 1}|

Theorem The above axioms axiomatize majority rule.
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Social Choice Theory

�α mean “the group accepts α.”

Majority: α is accepted if a majority of the agents accept α.

Why is �α ∧�β → �(α ∧ β) invalid?

p q p ∧ q

i 1 1 1
j 1 0 0
k 0 1 0

Majority 1 1 0
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Social Choice Theory

�α mean “the group accepts α.”

M. Pauly. Axiomatizing Collective Judgement Sets in a Minimal Logical
Language. 2006.

T. Daniëls. Social Choice and Logic via Simple Games. ILLC, Masters
Thesis, 2007.
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Logic of Deduction

Let L0 ⊆ L be the set of propositional formulas.

Let Σ ⊆ L0 be the universe

Interpretation: (·)∗ : At→ ℘(Σ)

I (ϕ ∨ ψ)∗ = (ϕ)∗ ∪ (ψ)∗

I (¬ϕ)∗ = Σ− (ϕ)∗

I (�ϕ)∗ = {α ∈ Σ | (ϕ)∗ ` α} (the deductive closure of ϕ)

Fact: �(ϕ→ ψ)→ �ϕ→ �ψ is not valid.

P. Naumov. On modal logic of deductive closure. APAL (2005).
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Let L0 ⊆ L be the set of propositional formulas.

Let Σ ⊆ L0 be the universe

Interpretation: (·)∗ : At→ ℘(Σ)

I (ϕ ∨ ψ)∗ = (ϕ)∗ ∪ (ψ)∗

I (¬ϕ)∗ = Σ− (ϕ)∗

I (�ϕ)∗ = {α ∈ Σ | (ϕ)∗ ` α} (the deductive closure of ϕ)

Validities: ϕ→ �ϕ, (Mon), �(ϕ ∨�ϕ)→ �ϕ

P. Naumov. On modal logic of deductive closure. APAL (2005).
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Key Validities

(M) �(ϕ ∧ ψ)→ �ϕ ∧�ψ

(C) �ϕ ∧�ψ → �(ϕ ∧ ψ)

(N) �>

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(Dual) �ϕ↔ ¬♦¬ϕ

(Nec) from ` ϕ infer ` �ϕ

(Re) from ` ϕ↔ ψ infer ` �ϕ↔ �ψ
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Deontic Logic

�ϕ mean “it is obliged that ϕ.”

ϕ→ ψ

�ϕ→ �ψ

J. Forrester. Paradox of Gentle Murder. 1984.

L. Goble. Murder Most Gentle: The Paradox Deepens. 1991.
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Deontic Logic

�ϕ mean “it is obliged that ϕ.”

1. Jones murders Smith

2. Jones ought not to murder Smith

3. If Jones murders Smith, then Jones ought to murder Smith
gently

4. Jones ought to murder Smith gently

5. If Jones murders Smith gently, then Jones murders Smith.

6. If Jones ought to murder Smith gently, then Jones ought to
murder Smith

7. Jones ought to murder Smith

J. Forrester. Paradox of Gentle Murder. 1984.

L. Goble. Murder Most Gentle: The Paradox Deepens. 1991.
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Deontic Logic

�ϕ mean “it is obliged that ϕ.”

1. Jones murders Smith

7 Jones ought not to murder Smith

3. If Jones murders Smith, then Jones ought to murder Smith
gently

4. Jones ought to murder Smith gently

5. If Jones murders Smith gently, then Jones murders Smith.

6. If Jones ought to murder Smith gently, then Jones ought to
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(M) �(ϕ ∧ ψ)→ �ϕ ∧�ψ

(C) �ϕ ∧�ψ → �(ϕ ∧ ψ)

(N) �>

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(Dual) �ϕ↔ ¬♦¬ϕ

(Nec) from ` ϕ infer ` �ϕ

(Re) from ` ϕ↔ ψ infer ` �ϕ↔ �ψ
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Logical Omniscience/Knowledge Closure

RM From ϕ→ ψ, infer �ϕ→ �ψ
closure under logical implication

K �(ϕ→ ψ)→ (�ϕ→ �ψ)
closure under known implication

Nec From ϕ, infer �ϕ
knowledge of all logical validities

RE From ϕ↔ ψ, infer �ϕ↔ �ψ
closure under logical equivalence
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Logical Omniscience/Knowledge Closure

W. Holliday. Epistemic closure and epistemic logic I: Relevant alternatives
and subjunctivism. Journal of Philosophical Logic, 1 - 62, 2014.

J. Halpern and R. Puccella. Dealing with logical omniscience: Expres-
siveness and pragmatics. Artificial Intelligence 175(1), pgs. 220 - 235,
2011.
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Key Validities

(M) �(ϕ ∧ ψ)→ �ϕ ∧�ψ

(C) �ϕ ∧�ψ → �(ϕ ∧ ψ)

(N) �>

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(Dual) �ϕ↔ ¬♦¬ϕ

(Nec) from ` ϕ infer ` �ϕ

(Re) from ` ϕ↔ ψ infer ` �ϕ↔ �ψ
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(Non-)Normal Modal Logic

Let L be the basic modal language.

A modal logic is a set of formulas from L. If L is a modal logic,
then we write `L ϕ when ϕ ∈ L.

A modal logic L is normal provided L is

I contains propositional logic (i.e., all instances of the
propositional axioms and closed under Modus Ponens )

I closed under Necessitation (from `L ϕ infer `L �ϕ);

I contains all instances of K (�(ϕ→ ψ)→ (�ϕ→ �ψ)); and

I closed under uniform substitution.
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Normal Modal Logic

The smallest normal modal logic K consists of

PC Your favorite axioms of PC

K �(ϕ→ ψ)→ �ϕ→ �ψ

Nec
` ϕ
�ϕ

MP
` ϕ→ ψ ` ϕ

ψ

Theorem. K +�ϕ→ ϕ+�ϕ→ ��ϕ is sound and strongly
complete with respect to the class of all reflexive and transitive
relational frames.
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PC Propositional Calculus

E �ϕ↔ ¬♦¬ϕ
M �(ϕ ∧ ψ)→ (�ϕ ∧�ψ)

C (�ϕ ∧�ψ)→ �(ϕ ∧ ψ)

N �>
K �(ϕ→ ψ)→ (�ϕ→ �ψ)

RE
ϕ↔ ψ

�ϕ↔ �ψ

Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ
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ψ

A modal logic L is classical if it
contains all instances of E and is
closed under RE .
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E is the smallest classical modal
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In E, M is equivalent to

(Mon)
ϕ→ ψ

�ϕ→ �ψ
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PC Propositional Calculus

E �ϕ↔ ¬♦¬ϕ

Mon
ϕ→ ψ

�ϕ→ �ψ
C (�ϕ ∧�ψ)→ �(ϕ ∧ ψ)

N �>
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RE
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Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ

E is the smallest classical modal
logic.

EM is the logic E + Mon

EC is the logic E + C

EMC is the smallest regular
modal logic

K = PC (+E ) + K + Nec + MP
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Are there non-normal extensions of K?

Yes!

Let L be the smallest modal logic containing

I S4 (K + �ϕ→ ϕ + �ϕ→ ��ϕ)

I all instances of M: �♦ϕ→ ♦�ϕ

Claim: L is a non-normal extension of S4.
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ϕw1

ϕ

w3

ϕ

w2

ϕ

w4

F ,w1 |= �♦ϕ→ ♦�ϕ

L ⊆ Lw1 = {ϕ | F ,w1 |= ϕ}

F ,w1 6|= �(�♦p → ♦�p)
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Plan

X Introductory Remarks

X Background: Relational Semantics for Modal Logic

X Why Non-Normal Modal Logic?
I Fundamentals

• Subset Spaces
• Neighborhood Semantics

I Why Neighborhood Semantics?
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Some Terminology: Subset Spaces

Let W be a set and F ⊆ ℘(W ).

I F is closed under intersections if for any collections of sets
{Xi}i∈I such that for each i ∈ I , Xi ∈ F , then ∩i∈IXi ∈ F .

I F is closed under unions if for any collections of sets {Xi}i∈I
such that for each i ∈ I , Xi ∈ F , then ∪i∈IXi ∈ F .

I F is closed under complements if for each X ⊆W , if X ∈ F ,
then XC ∈ F .

I F is supplemented, or closed under supersets or monotonic
provided for each X ⊆W , if X ∈ F and X ⊆ Y ⊆W , then
Y ∈ F .
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Some Terminology: Subset Spaces

Let W be a set and F ⊆ ℘(W ).

I F contains the unit provided W ∈ F

I the set ∩X∈FX the core of F . F contains its core provided
∩X∈FX ∈ F .

I F is proper if X ∈ F implies XC 6∈ F .

I F is consistent if ∅ 6∈ F

I F is normal if F 6= ∅.
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Lemma
F is supplemented iff if X ∩ Y ∈ F then X ∈ F and Y ∈ F .
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A few more definitions

I F is a filter if F contains the unit, closed under binary
intersections and supplemented. F is a proper filter if in
addition F does not contain the emptyset.

I F is an ultrafilter if F is proper filter and for each X ⊆W ,
either X ∈ F or XC ∈ F .

I F is a topology if F contains the unit, the emptyset, is closed
under finite intersections and arbitrary unions.

I F is augmented if F contains its core and is supplemented.
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Some Facts

Lemma
If F is augmented, then F is closed under arbitrary intersections.
In fact, if F is augmented then F is a filter.

Fact
There are consistent filters that are not augmented.

Lemma
If F is closed under binary intersections (i.e., if X ,Y ∈ F then
X ∩ Y ∈ F), then F is closed under finite intersections.

Corollary

If W is finite and F is a filter over W , then F is augmented.
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Neighborhood Frames

Let W be a non-empty set of states.

Any function N : W → ℘(℘(W )) is called a neighborhood function

A pair 〈W ,N〉 is a called a neighborhood frame if W a non-empty
set and N is a neighborhood function.

A neighborhood model based on F = 〈W ,N〉 is a tuple 〈W ,N,V 〉
where V : At→ ℘(W ) is a valuation function.
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Truth in a Model

I M,w |= p iff w ∈ V (p)

I M,w |= ¬ϕ iff M,w 6|= ϕ

I M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

I M,w |= �ϕ iff [[ϕ]]M ∈ N(w)

I M,w |= ♦ϕ iff W − [[ϕ]]M 6∈ N(w)

where [[ϕ]]M = {w | M,w |= ϕ}.
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Let N : W → ℘℘W be a neighborhood function and define
mN : ℘W → ℘W :

for X ⊆W , mN(X ) = {w | X ∈ N(w)}

1. [[p]]M = V (p) for p ∈ At

2. [[¬ϕ]]M = W − [[ϕ]]M

3. [[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M

4. [[�ϕ]]M = mN([[ϕ]]M)

5. [[♦ϕ]]M = W −mN(W − [[ϕ]]M)
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Detailed Example

Suppose W = {w , s, v} is the set of states and define a
neighborhood model M = 〈W ,N,V 〉 as follows:

I N(w) = {{s}, {v}, {w , v}}
I N(s) = {{w , v}, {w}, {w , s}}
I N(v) = {{s, v}, {w}, ∅}

Further suppose that V (p) = {w , s} and V (q) = {s, v}.

w s v

{s} {v} {w , v} {w , s} {w} {s, v} ∅
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End of lecture 1
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