Tools for Formal Epistemology: Doxastic Logic, Probability and Default Logic

Aleks Knoks, University of Luxembourg Eric Pacuit, University of Maryland

Lecture 1

ESSLLI 2023

Doxastic Logic: Models

Model: $\langle W, R, V\rangle$

States/possible worlds: $W \neq \emptyset$
Quasi-partitions: $R \subseteq W \times W$ is serial, transitive and Euclidean

Doxastic Logic: Models

Model: $\langle W, R, V\rangle$

States/possible worlds: $W \neq \emptyset$
Quasi-partitions: $R \subseteq W \times W$ is serial, transitive and Euclidean

- serial: for all $w \in W$, there is a $v \in W$ such that $w R v$
- transitive: for all $w, v, u \in W$, if $w R v$ and $v R u$, then $w R u$
- Euclidean: for all $w, v, u \in W$, if $w R v$ and $w R u$, then $v R u$

Doxastic Logic: Models

Model: $\langle W, R, V\rangle$

States/possible worlds: $W \neq \emptyset$
Quasi-partitions: $R \subseteq W \times W$ is serial, transitive and Euclidean

- serial: for all $w \in W$, there is a $v \in W$ such that $w R v$
- transitive: for all $w, v, u \in W$, if $w R v$ and $v R u$, then $w R u$
- Euclidean: for all $w, v, u \in W$, if $w R v$ and $w R u$, then $v R u$

Valuation function: $V:$ At $\rightarrow \wp(W)$, where At is a set of atomic propositions.

Doxastic Logic: Language and Semantics

$$
p|\varphi \wedge \varphi| \neg \varphi \mid B \varphi
$$

Doxastic Logic: Language and Semantics

$$
p|\varphi \wedge \varphi| \neg \varphi \mid B \varphi
$$

Boolean connectives:

- $\mathcal{M}, w \vDash p$ iff $w \in V(p)$
- $\mathcal{M}, w \models \neg \varphi$ iff it is not the case that $\mathcal{M}, w \models \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$

Doxastic Logic: Language and Semantics

$$
p|\varphi \wedge \varphi| \neg \varphi \mid B \varphi
$$

Boolean connectives:

- $\mathcal{M}, w \models p$ iff $w \in V(p)$
- $\mathcal{M}, w \models \neg \varphi$ iff it is not the case that $\mathcal{M}, w \models \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$

Belief operators: $\mathcal{M}, w \models B \varphi$ iff for all v, if $w R v$, then $\mathcal{M}, v \models \varphi$.

Doxastic Logic: Language and Semantics

$$
p|\varphi \wedge \varphi| \neg \varphi \mid B \varphi
$$

Boolean connectives:

- $\mathcal{M}, w \models p$ iff $w \in V(p)$
- $\mathcal{M}, w \models \neg \varphi$ iff it is not the case that $\mathcal{M}, w \models \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$

Belief operators: $\mathcal{M}, w \models B \varphi$ iff for all v, if $w R v$, then $\mathcal{M}, v \models \varphi$.

$$
\mathcal{M}, w \models B \varphi \text { iff } R(w) \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}}
$$

Doxastic Logic: Language and Semantics

$$
p|\varphi \wedge \varphi| \neg \varphi \mid B \varphi
$$

Boolean connectives:

- $\mathcal{M}, w \vDash p$ iff $w \in V(p)$
- $\mathcal{M}, w \models \neg \varphi$ iff it is not the case that $\mathcal{M}, w \models \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$

Belief operators: $\mathcal{M}, w \models B \varphi$ iff for all v, if $w R v$, then $\mathcal{M}, v \models \varphi$.

$$
\mathcal{M}, w \models B \varphi \text { iff } R(w) \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}}
$$

$$
\{v \mid w R v\} \quad\{v \mid \mathcal{M}, w \models \varphi\}
$$

Doxastic Logic: KD45

$$
\begin{array}{ll}
K & B(\varphi \rightarrow \psi) \rightarrow(B \varphi \rightarrow B \psi) \\
D & B \varphi \rightarrow \neg B \neg \varphi \\
4 & B \varphi \rightarrow B B \varphi \\
5 & \neg B \varphi \rightarrow B \neg B \varphi
\end{array}
$$

Doxastic Logic: KD45

$$
\begin{array}{ll}
K & B(\varphi \rightarrow \psi) \rightarrow(B \varphi \rightarrow B \psi) \\
D & B \varphi \rightarrow \neg B \neg \varphi \\
4 & B \varphi \rightarrow B B \varphi \\
5 & \neg B \varphi \rightarrow B \neg B \varphi
\end{array}
$$

The logic KD45 adds the above axiom schemes to an axiomatization of classical propositional logic with the rules Modus Ponens, Substitution of Equivalents, and Necessitation (from φ infer $B \varphi$).

KD45 is sound and strongly complete with respect to all quasi-partition frames.

Exercise: Show that the following axiom schemes and rules are valid on quasi-partition models and are theorems of KD45:

- agglomeration: $(B \varphi \wedge B \psi) \rightarrow B(\varphi \wedge \psi)$
- consistency: $\neg B \perp$
- monotonicity: From $\varphi \rightarrow \psi$ infer $B \varphi \rightarrow B \psi$

Exercise: Show that the following axiom schemes and rules are valid on quasi-partition models and are theorems of KD45:

- agglomeration: $(B \varphi \wedge B \psi) \rightarrow B(\varphi \wedge \psi)$
- consistency: $\neg B \perp$
- monotonicity: From $\varphi \rightarrow \psi$ infer $B \varphi \rightarrow B \psi$
- secondary-reflexivity: for all $w, v \in W$, if $w R v$ then $v R v$ $B(B \varphi \rightarrow \varphi)$

Exercise: Show that the following axiom schemes and rules are valid on quasi-partition models and are theorems of KD45:

- agglomeration: $(B \varphi \wedge B \psi) \rightarrow B(\varphi \wedge \psi)$
- consistency: $\neg B \perp$
- monotonicity: From $\varphi \rightarrow \psi$ infer $B \varphi \rightarrow B \psi$
- secondary-reflexivity: for all $w, v \in W$, if $w R v$ then $v R v$ $B(B \varphi \rightarrow \varphi)$
- correctness of own beliefs:
$B \neg B \varphi \rightarrow \neg B \varphi$
for all w, there is a v such that $w R v$ and for all z if $v R z$ then $w R z$ $B B \varphi \rightarrow B \varphi$
density: for all w and v if $w R$ then there is a z such that $w R$ and $z R v$
- Defining beliefs from evidence.
- Defining beliefs from knowledge.
- Extending the basic logic of beliefs:
- Conditional beliefs
- Strong belief and robust belief
- Paradoxes of belief
- The Buriden-Burge Paradox
- Can an ideally rational agent be modest about her beliefs?
- Prior's Theorem
- Problems with Agglomeration: The Preface Paradox and The Lottery Paradox

Defining beliefs from evidence

J. van Benthem and EP. Dynamic logics of evidence-based beliefs. Studia Logica, 99(61), 2011.
J. van Benthem, D. Fernández-Duque and EP. Evidence and plausibility in neighborhood structures. Annals of Pure and Applied Logic, 165, pp. 106-133.

Evidence Models: Basic Assumptions

Let W be a set of possible worlds or states one of which represents the "actual" situation.

Evidence Models: Basic Assumptions

Let W be a set of possible worlds or states one of which represents the "actual" situation.

1. Sources may or may not be reliable: a subset recording a piece of evidence need not contain the actual world. Also, agents need not know which evidence is reliable.

Evidence Models: Basic Assumptions

Let W be a set of possible worlds or states one of which represents the "actual" situation.

1. Sources may or may not be reliable: a subset recording a piece of evidence need not contain the actual world. Also, agents need not know which evidence is reliable.
2. The evidence gathered from different sources (or even the same source) may be jointly inconsistent. And so, the intersection of all the gathered evidence may be empty.

Evidence Models: Basic Assumptions

Let W be a set of possible worlds or states one of which represents the "actual" situation.

1. Sources may or may not be reliable: a subset recording a piece of evidence need not contain the actual world. Also, agents need not know which evidence is reliable.
2. The evidence gathered from different sources (or even the same source) may be jointly inconsistent. And so, the intersection of all the gathered evidence may be empty.
3. Despite the fact that sources may not be reliable or jointly inconsistent, they are all the agent has for forming beliefs.

Evidential States

An evidential state is a collection of subsets of W.

Evidential States

An evidential state is a collection of subsets of W.

Assumptions:

- No evidence set is empty (no contradictory evidence),
- The whole universe W is an evidence set (agents know their 'space').

Evidential States

An evidential state is a collection of subsets of W.

Assumptions:

- No evidence set is empty (no contradictory evidence),
- The whole universe W is an evidence set (agents know their 'space').

In addition, much of the literature would suggest a 'monotonicity' assumption: If the agent has evidence X and $X \subseteq Y$ then the agent has evidence Y.

Example: $W=\{w, v\}$ where p is true at w

Example: $W=\{w, v\}$ where p is true at w

There is no evidence for or against p.

There is evidence that rejects p.

There is evidence that supports p.

There is evidence that supports p and also evidence that rejects p.

Evidence Model

Evidence model: $\mathcal{M}=\langle W, E, V\rangle$

- W is a non-empty set of worlds,
- V : At $\rightarrow \wp(W)$ is a valuation function, and
- $E \subseteq W \times \wp(W)$ is an evidence relation
$E(w)=\{X \mid w E X\}$ and $X \in E(w)$: "the agent accepts X as evidence at state w".

Uniform evidence model (E is a constant function): $\langle W, \mathcal{E}, V\rangle, w$ where \mathcal{E} is the fixed family of subsets of W related to each state by E.

Assumptions

(Cons) For each state $w, \emptyset \notin E(w)$.
(Triv) For each state $w, W \in E(w)$.

The Basic Language $Ł$ of Evidence and Belief

$$
p|\neg \varphi| \varphi \wedge \psi|\square \varphi| B \varphi \mid A \varphi
$$

- $\square \varphi$: "the agent has evidence that φ is true" (i.e., "the agent has evidence for $\varphi^{\prime \prime}$)
- B φ says that "the agents believes that φ is true" (based on her evidence)
- $A \varphi$: " φ is true in all states" (for technical convenience/knowledge)

Example

Suppose that you are in the forest and happen to a see strange-looking animal.

Example

Suppose that you are in the forest and happen to a see strange-looking animal. You consult your animal guidebook and find a picture that seems to match the animal you see.

Example

Suppose that you are in the forest and happen to a see strange-looking animal. You consult your animal guidebook and find a picture that seems to match the animal you see. The guidebook says that the animal is a type of bird, so that is what you conclude: The animal before you is a bird. After looking more closely, you also notice that the animal is also red.

Example

Suppose that you are in the forest and happen to a see strange-looking animal. You consult your animal guidebook and find a picture that seems to match the animal you see. The guidebook says that the animal is a type of bird, so that is what you conclude: The animal before you is a bird. After looking more closely, you also notice that the animal is also red. So, you also update your beliefs with that fact.

Example

Suppose that you are in the forest and happen to a see strange-looking animal. You consult your animal guidebook and find a picture that seems to match the animal you see. The guidebook says that the animal is a type of bird, so that is what you conclude: The animal before you is a bird. After looking more closely, you also notice that the animal is also red. So, you also update your beliefs with that fact. Now, suppose that an expert (whom you trust) happens to walk by and tells you that the animal is, in fact, not a bird.

Example

$$
b, r \bullet \quad \bullet b, \neg r
$$

$$
\neg b, r \bullet \quad \bullet \neg b, \neg r
$$

Example

$$
b, r \bullet \quad \bullet b, \neg r
$$

$$
\neg b, r \bullet \quad \bullet \neg b, \neg r
$$

- Receive evidence that the animal is a bird

Example

- Receive evidence that the animal is a bird
- Receive evidence that the animal is red
- $B(b \wedge r)$

Example

- Receive evidence that the animal is a bird
- Receive evidence that the animal is red
- $B(b \wedge r)$
- Receive evidence that the animal is not a bird

Example

- Receive evidence that the animal is a bird
- Receive evidence that the animal is red
- $B(b \wedge r)$
- Receive evidence that the animal is not a bird
- Br

Defining Beliefs

w-scenario: A maximal family of evidence sets $\mathcal{X} \subseteq E(w)$ that has the finite intersection property (f.i.p.: for each finite subfamily $\left\{X_{1}, \ldots, X_{n}\right\} \subseteq \mathcal{X}$, $\bigcap_{1 \leq i \leq n} X_{i} \neq \emptyset$).

Defining Beliefs

w-scenario: A maximal family of evidence sets $\mathcal{X} \subseteq E(w)$ that has the finite intersection property (f.i.p.: for each finite subfamily $\left\{X_{1}, \ldots, X_{n}\right\} \subseteq \mathcal{X}$, $\bigcap_{1 \leq i \leq n} X_{i} \neq \emptyset$).

An agent believes φ at w if each w-scenario implies that φ is true (i.e., φ is true at each point in the intersection of each w-scenario).

Defining Beliefs

Defining Beliefs

Our definition of belief is very conservative, many other definitions are possible (there exists a w-scenario, "most" of the w-scenarios,...)

Truth

- $\mathcal{M}, w \models p$ iff $w \in V(p) \quad(p \in A t)$
- $\mathcal{M}, w \models \neg \varphi$ iff $\mathcal{M}, w \not \models \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$

Truth

- $\mathcal{M}, w \models p$ iff $w \in V(p) \quad(p \in A t)$
- $\mathcal{M}, w \models \neg \varphi$ iff $\mathcal{M}, w \not \vDash \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
- $\mathcal{M}, w \models \square \varphi$ iff there exists X such that $w E X$ and for all $v \in X, \mathcal{M}, v \models \varphi$

Truth

- $\mathcal{M}, w \models p$ iff $w \in V(p) \quad(p \in A t)$
- $\mathcal{M}, w \models \neg \varphi$ iff $\mathcal{M}, w \not \models \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
- $\mathcal{M}, w \models \square \varphi$ iff there exists X such that $w E X$ and for all $v \in X, \mathcal{M}, v \models \varphi$
- $\mathcal{M}, w \models A \varphi$ iff for all $v \in W, \mathcal{M}, v \models \varphi$

Truth

- $\mathcal{M}, w \models p$ iff $w \in V(p) \quad(p \in A t)$
- $\mathcal{M}, w \models \neg \varphi$ iff $\mathcal{M}, w \not \models \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
- $\mathcal{M}, w \models \square \varphi$ iff there exists X such that $w E X$ and for all $v \in X, \mathcal{M}, v \models \varphi$
- $\mathcal{M}, w \models A \varphi$ iff for all $v \in W, \mathcal{M}, v \models \varphi$
- $\mathcal{M}, w \models B \varphi$ for each maximal f.i.p. $\mathcal{X} \subseteq E(w)$ and for all $v \in \bigcap \mathcal{X}$, $\mathcal{M}, v \models \varphi$

Notation for the truth set: $\llbracket \varphi \rrbracket^{\mathcal{M}}=\{w \mid \mathcal{M}, w \models \varphi\}$

Flat Evidence Models

An evidence model \mathcal{M} is flat if every scenario on \mathcal{M} has non-empty intersection.

Proposition. The formula $\square \varphi \rightarrow\langle B\rangle \varphi$ is valid on the class of flat evidence models, but not on the class of all evidence models.

Exercises

1. Prove that $(\square \varphi \wedge A \psi) \leftrightarrow \square(\varphi \wedge A \psi)$ is valid on all evidence models.
2. Prove that $B \varphi \rightarrow A B \varphi$ is valid on all uniform evidence models.

Defining Beliefs from Knowledge

R. Stalnaker (2006). On logics of knowledge and belief. Philosophy Studies,128,169-199.
A. Baltag, N. Bezhanishvili, A. Özgün, and S. Smets (2019). A Topological Approach to Full Belief. Journal of Philosophical Logic, 48(2), pp. 205-244.
A. Bjorndahl and A. Özgün (2020). Logic and Topology for Knowledge, Knowability, and Belief. The Review of Symbolic Logic, 13(4), pp. 748-775.

Stalnaker's Axioms

Stalnaker bases his analysis on a conception of belief as 'subjective certainty': From the point of the agent in question, her belief is subjectively indistinguishable from her knowledge.

Stalnaker's Axioms

Stalnaker bases his analysis on a conception of belief as 'subjective certainty': From the point of the agent in question, her belief is subjectively indistinguishable from her knowledge.

Bi-modal language of knowledge and belief: $p|\neg \varphi| \varphi \wedge \psi|K \varphi| B \psi$ Define $\langle K\rangle \varphi$ as $\neg K \neg \varphi$ and $\langle B\rangle \varphi$ as $\neg B \neg \varphi$

Stalnaker's Axioms

$$
\begin{array}{ll}
K & K(\varphi \rightarrow \psi) \rightarrow(K \varphi \rightarrow K \psi) \\
T & K \varphi \rightarrow \varphi \\
4 & K \varphi \rightarrow K K \varphi \\
C B & B \varphi \rightarrow \neg B \neg \varphi
\end{array}
$$

Stalnaker's Axioms

$$
\begin{array}{ll}
K & K(\varphi \rightarrow \psi) \rightarrow(K \varphi \rightarrow K \psi) \\
T & K \varphi \rightarrow \varphi \\
4 & K \varphi \rightarrow K K \varphi \\
C B & B \varphi \rightarrow \neg B \neg \varphi \\
P I & B \varphi \rightarrow K B \varphi \\
\text { NI } & \neg B \varphi \rightarrow K \neg B \varphi
\end{array}
$$

Stalnaker's Axioms

$$
\begin{array}{ll}
K & K(\varphi \rightarrow \psi) \rightarrow(K \varphi \rightarrow K \psi) \\
T & K \varphi \rightarrow \varphi \\
4 & K \varphi \rightarrow K K \varphi \\
C B & B \varphi \rightarrow \neg B \neg \varphi \\
P I & B \varphi \rightarrow K B \varphi \\
N I & \neg B \varphi \rightarrow K \neg B \varphi \\
K B & K \varphi \rightarrow B \varphi \\
F B & B \varphi \rightarrow B K \varphi
\end{array}
$$

Proposition (Stalnaker). The following equivalence is a theorem of the propositional modal logic that contains the previous axiom schemas (with Modus Ponens and Necessitation for both K and B):

$$
B \varphi \leftrightarrow\langle K\rangle K \varphi
$$

Proposition (Stalnaker). The following equivalence is a theorem of the propositional modal logic that contains the previous axiom schemas (with Modus Ponens and Necessitation for both K and B):

$$
B \varphi \leftrightarrow\langle K\rangle K \varphi
$$

Moreover, all of the axioms of KD45 and the (.2)-axiom $\langle K\rangle K \varphi \rightarrow K\langle K\rangle \varphi$ are provable.

Proposition (Stalnaker). The following equivalence is a theorem of the propositional modal logic that contains the previous axiom schemas (with Modus Ponens and Necessitation for both K and B):

$$
B \varphi \leftrightarrow\langle K\rangle K \varphi
$$

Moreover, all of the axioms of KD45 and the (.2)-axiom $\langle K\rangle K \varphi \rightarrow K\langle K\rangle \varphi$ are provable.

This means that we can take the logic of knowledge to be $\mathbf{S} 4.2$ (the axioms K, $T, 4$ and .2) and define full belief as above (i.e., as the 'epistemic possibility of knowledge').
\checkmark Defining beliefs from evidence.
\checkmark Defining beliefs from knowledge.

- Conditional beliefs
- Strong belief and robust belief
- Paradoxes of belief
- The Buriden-Burge Paradox
- Can an ideally rational agent be modest about her beliefs?
- Prior's Theorem
- Problems with Agglomeration: The Preface Paradox and The Lottery Paradox

- The agent's beliefs (soft information--the states consistent with what the agent believes)

- The agent's beliefs (soft information-the states consistent with what the agent believes)
- The agent's "contingency plan"

- The agent's beliefs (soft information-the states consistent with what the agent believes)
- The agent's "contingency plan"

Sphere Models

Let W be a set of states, A set $\mathcal{F} \subseteq \wp(W)$ is called a system of spheres provided:

- For each $S, S^{\prime} \in \mathcal{F}$, either $S \subseteq S^{\prime}$ or $S^{\prime} \subseteq S$
- For any $P \subseteq W$ there is a smallest $S \in \mathcal{F}$ (according to the subset relation) such that $P \cap S \neq \emptyset$
- The spheres are non-empty $\bigcap \mathcal{F} \neq \emptyset$ and cover the entire information cell $\bigcup \mathcal{F}=W$

Let \mathcal{F} be a system of spheres on W : for $w, v \in W$, let

$$
w \preceq_{\mathcal{F}} v \text { iff for all } S \in \mathcal{F} \text {, if } v \in S \text { then } w \in S
$$

Then, $\preceq_{\mathcal{F}}$ is reflexive, transitive, and well-founded.
$w \preceq_{\mathcal{F}} v$ means that no matter what the agent learns in the future, as long as world v is still consistent with her beliefs and w is still epistemically possible, then w is also consistent with her beliefs.

Belief Revision via Plausibility

$$
W=\left\{w_{1}, w_{2}, w_{3}\right\}
$$

Belief Revision via Plausibility

$$
\begin{aligned}
& W=\left\{w_{1}, w_{2}, w_{3}\right\} \\
& w_{1} \preceq w_{2} \text { and } w_{2} \preceq w_{1}\left(w_{1}\right. \text { and } \\
& \left.w_{2} \text { are equi-plausbile }\right) \\
& w_{1} \prec w_{3}\left(w_{1} \preceq w_{3}\right. \text { and } \\
& \left.w_{3} \preceq w_{1}\right) \\
& w_{2} \prec w_{3}\left(w_{2} \preceq w_{3}\right. \text { and } \\
& \left.w_{3} \npreceq w_{2}\right)
\end{aligned}
$$

Belief Revision via Plausibility

$$
\begin{aligned}
& W=\left\{w_{1}, w_{2}, w_{3}\right\} \\
& w_{1} \preceq w_{2} \text { and } w_{2} \preceq w_{1}\left(w_{1}\right. \text { and } \\
& \left.w_{2} \text { are equi-plausbile }\right) \\
& w_{1} \prec w_{3}\left(w_{1} \preceq w_{3}\right. \text { and } \\
& \left.w_{3} \npreceq w_{1}\right) \\
& w_{2} \prec w_{3}\left(w_{2} \preceq w_{3}\right. \text { and } \\
& \left.w_{3} \npreceq w_{2}\right) \\
> & \left\{w_{1}, w_{2}\right\} \subseteq \operatorname{Min}_{\preceq}\left(\left[w_{i}\right]\right)
\end{aligned}
$$

Belief Revision via Plausibility

Belief: $B \varphi$

$$
M i n_{\preceq}(W) \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}}
$$

Belief Revision via Plausibility

Conditional Belief: $B^{\varphi} \psi$

Belief Revision via Plausibility

Conditional Belief: $B^{\varphi} \psi$

$$
\operatorname{Min}_{\leq}\left(\llbracket \varphi \rrbracket^{\mathcal{M}}\right) \subseteq \llbracket \psi \rrbracket^{\mathcal{M}}
$$

Example

Example

- $w_{1} \models B_{a}\left(H_{1} \wedge H_{2}\right) \wedge B_{b}\left(H_{1} \wedge H_{2}\right)$

Example

- $w_{1} \models B_{a}\left(H_{1} \wedge H_{2}\right) \wedge B_{b}\left(H_{1} \wedge H_{2}\right)$
- $w_{1} \models B_{a}^{T_{1}} H_{2}$

Example

- $w_{1} \models B_{a}\left(H_{1} \wedge H_{2}\right) \wedge B_{b}\left(H_{1} \wedge H_{2}\right)$
- $w_{1} \models B_{a}^{T_{1}} H_{2}$
- $w_{1} \models B_{b}^{T_{1}} T_{2}$

Grades of Doxastic Strength

Grades of Doxastic Strength

Suppose that w is the current state.

Grades of Doxastic Strength

Suppose that w is the current state.

- Belief ($B P$)

Grades of Doxastic Strength

Suppose that w is the current state.

- Belief ($B P$)
- Robust Belief $([\preceq] P)$

Grades of Doxastic Strength

Suppose that w is the current state.

- Belief (BP)
- Robust Belief ([$\preceq] P$)
- Strong Belief ($B^{s} P$)

Grades of Doxastic Strength

Suppose that w is the current state.

- Belief ($B P$)
- Robust Belief $([\preceq] P)$
- Strong Belief ($B^{s} P$)
- Knowledge (KP)

Is $B \varphi \rightarrow B^{\psi} \varphi$ valid?

Is $B \varphi \rightarrow B^{\psi} \varphi$ valid?

Is $B^{\alpha} \varphi \rightarrow B^{\alpha \wedge \beta} \varphi$ valid?

Is $B \varphi \rightarrow B^{\psi} \varphi$ valid?

Is $B^{\alpha} \varphi \rightarrow B^{\alpha \wedge \beta} \varphi$ valid?

Is $B \varphi \rightarrow B^{\psi} \varphi \vee B^{\urcorner \psi} \varphi$ valid?

Is $B \varphi \rightarrow B^{\psi} \varphi$ valid?

Is $B^{\alpha} \varphi \rightarrow B^{\alpha \wedge \beta} \varphi$ valid?

Is $B \varphi \rightarrow B^{\psi} \varphi \vee B^{\urcorner \psi} \varphi$ valid?

Exercise: Prove that B, B^{φ} and B^{s} are definable in the language with K (a universal modality) and $[\preceq]$ (a modality for the plausibility ordering).
$\mathcal{M}, w \models B^{\varphi} \psi$ if for each $v \in \operatorname{Min}_{\preceq}(\llbracket \varphi \rrbracket), \mathcal{M}, v \models \varphi$ where $\llbracket \varphi \rrbracket=\{w \mid \mathcal{M}, w \models \varphi\}$.
$\mathcal{M}, w \models B^{\varphi} \psi$ if for each $v \in \operatorname{Min}_{\preceq}(\llbracket \varphi \rrbracket), \mathcal{M}, v \models \varphi$ where $\llbracket \varphi \rrbracket=\{w \mid \mathcal{M}, w \models \varphi\}$.

Core Logical Principles:

1. $B^{\varphi} \varphi$
2. $B^{\varphi} \psi \rightarrow B^{\varphi}(\psi \vee \chi)$
3. $\left(B^{\varphi} \psi_{1} \wedge B^{\varphi} \psi_{2}\right) \rightarrow B^{\varphi}\left(\psi_{1} \wedge \psi_{2}\right)$
4. $\left(B^{\varphi_{1}} \psi \wedge B^{\varphi_{2}} \psi\right) \rightarrow B^{\varphi_{1} \vee \varphi_{2}} \psi$
5. $\left(B^{\varphi} \psi \wedge B^{\psi} \varphi\right) \rightarrow\left(B^{\varphi} \chi \leftrightarrow B^{\psi} \chi\right)$
J. Burgess. Quick completeness proofs for some logics of conditionals. Notre Dame Journal of Formal Logic 22, 76-84, 1981.

Types of Beliefs: Logical Characterizations

- $\mathcal{M}, w \models K_{i} \varphi$ iff $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ
i knows φ iff i continues to believe φ given any new information

Types of Beliefs: Logical Characterizations

- $\mathcal{M}, w \models K_{i} \varphi$ iff $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ
i knows φ iff i continues to believe φ given any new information
- $\mathcal{M}, w \models\left[\preceq_{i}\right] \varphi$ iff $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ with $\mathcal{M}, w \models \psi$. i robustly believes φ iff i continues to believe φ given any true formula.

Types of Beliefs: Logical Characterizations

- $\mathcal{M}, w \models K_{i} \varphi$ iff $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ
i knows φ iff i continues to believe φ given any new information
- $\mathcal{M}, w \models\left[\preceq_{i}\right] \varphi$ iff $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ with $\mathcal{M}, w \models \psi$. i robustly believes φ iff i continues to believe φ given any true formula.
- $\mathcal{M}, w \models B_{i}^{s} \varphi$ iff $\mathcal{M}, w \models B_{i} \varphi$ and $\mathcal{M}, w \models B_{i}^{\psi} \varphi$ for all ψ with $\mathcal{M}, w \models \neg K_{i}(\psi \rightarrow \neg \varphi)$.
i strongly believes φ iff i believes φ and continues to believe φ given any evidence (truthful or not) that is not known to contradict φ.
\checkmark Defining beliefs from evidence.
\checkmark Defining beliefs from knowledge.
\checkmark Conditional beliefs
\checkmark Strong belief and robust belief
- Paradoxes of belief
- The Buriden-Burge Paradox
- Can an ideally rational agent be modest about her beliefs?
- Prior's Theorem
- Problems with Agglomeration: The Preface Paradox and The Lottery Paradox

Buridan-Burge Paradox I

Suppose that q is the statement that $\neg B_{a} q$.

Buridan-Burge Paradox I

Suppose that q is the statement that $\neg B_{a} q$. Now, either $B_{a} q$ or $\neg B_{a} q$.

Buridan-Burge Paradox I

Suppose that q is the statement that $\neg B_{a} q$. Now, either $B_{a} q$ or $\neg B_{a} q$.

1. Suppose $\neg B_{a} q$. Then by the 5 axiom $\left(\neg B_{a} \varphi \rightarrow B_{a} \neg B_{a} \varphi\right)$, we have that $B_{a} \neg B_{a} q$. But since q is $\neg B_{a} q$, we have $B_{a} q$. Contradiction.

Buridan-Burge Paradox I

Suppose that q is the statement that $\neg B_{a} q$. Now, either $B_{a} q$ or $\neg B_{a} q$.

1. Suppose $\neg B_{a} q$. Then by the 5 axiom $\left(\neg B_{a} \varphi \rightarrow B_{a} \neg B_{a} \varphi\right)$, we have that $B_{a} \neg B_{a} q$. But since q is $\neg B_{a} q$, we have $B_{a} q$. Contradiction.
2. Suppose $B_{a} q$. By by the 4 axiom $\left(B_{a} \varphi \rightarrow B_{a} B_{a} \varphi\right)$, we have that $B_{a} B_{a} q$. By the D axioms $\left(B_{a} \varphi \rightarrow \neg B_{a} \neg \varphi\right)$, we have that $\neg B_{a} \neg B_{a} q$. But since $\neg B_{a} q$ is q, we have $\neg B_{a} q$. Contradiction.

Tyler Burge (1984). Epistemic paradox. Journal of Philosophy, 81(1), pp. 5-29.

Buridan-Burge Paradox II

Of course, " q is the statement that $\neg B_{a} q$ " is not a sentence of the modal logic of beliefs.

What we have shown is that $\neg B_{a}\left(q \leftrightarrow \neg B_{a} q\right)$ is a theorem of KD45.
This is a paradox only if it should be possible for an ideally rational agent to believe that $q \leftrightarrow \neg B_{a} q$.

Wolfgang Lenzen (1981). Doxastic Logic and the Burge-Buridan-Paradox. Philosophical Studies, 39(1), pp. 43-49.

Michael Caie (2012). Belief and indeterminacy. The Philosophical Review, 121(1), pp. 1-54.

Propositional Quantifiers

While we naturally quantify over propositions in both ordinary and philosophical discussion of beliefs, the addition of propositional quantifiers is not given much attention in the literature.

Propositional Quantifiers

While we naturally quantify over propositions in both ordinary and philosophical discussion of beliefs, the addition of propositional quantifiers is not given much attention in the literature. Consider the following examples:

- "One believes that everything one believes is true": $B \forall p(B p \rightarrow p)$
- "If no matter what p stands for, one believes that φ, then one believes that no matter what p stands for, $\varphi^{\prime \prime}: \forall p B \varphi \rightarrow B \forall p \varphi$
- "There is a proposition that the agent takes to be consistent and to settle everything": $\exists q(B q \wedge \forall p(B(q \rightarrow p) \vee B(q \rightarrow \neg p))$

See the course by Peter Fritz.

Immodest Beliefs

Immod: "One believes that everything one believes is true" : $B \forall p(B p \rightarrow p)$

- Even for idealized agents or idealized beliefs, as axiomatized by KD45, it seems that Immod should not be included in a logic of belief.

Immodest Beliefs

Immod: "One believes that everything one believes is true": $B \forall p(B p \rightarrow p)$

- Even for idealized agents or idealized beliefs, as axiomatized by KD45, it seems that Immod should not be included in a logic of belief.
- Immod should be distinguished from "for every proposition p, one believes that if she believes that p then $p^{\prime \prime}: \forall p(B(B p \rightarrow p))$.

Immodest Beliefs

Immod: "One believes that everything one believes is true": $B \forall p(B p \rightarrow p)$

- Even for idealized agents or idealized beliefs, as axiomatized by KD45, it seems that Immod should not be included in a logic of belief.
- Immod should be distinguished from "for every proposition p, one believes that if she believes that p then $p^{\prime \prime}: \forall p(B(B p \rightarrow p))$.

Consider an agent who has credences about a real number x randomly generated from the interval $[0,1]$. For all measurable $X \subseteq[0,1]$, then the agent's credence that $x \in X$ is just the measure of X. Suppose that the agent outright believes precisely those propositions with credence 1 . Then, for all $a \in[0,1]$, the agent believes that $x \in[0,1] \backslash\{a\}$ since $[0,1] \backslash\{a\}$ is measure 1 . However, the agent does not believe that for all $a \in[0,1], x \in[0,1] \backslash\{a\}$ since $\left.\bigcap_{a \in[0,1]}[0,1] \backslash\{a\}\right)=\varnothing$, which is not measure 1 . Hence the agent in this situation does not believe that all her beliefs are true.

Yifeng Ding (2021). On the Logic of Belief and Propositional Quantification. Journal of Philosophical Logic, 50, pp. 1143-1198.

In any possible world semantics for KD45, $B \forall p(B p \rightarrow p)$ is valid on any frame. So, any logic validating KD45 must validate Immod. Algebraic semantics is needed for logics with do not validate Immod.

Yifeng Ding (2021). On the Logic of Belief and Propositional Quantification. Journal of Philosophical Logic, 50, pp. 1143-1198.

Also, see:
Jeremy Goodman (2020). I'm mistaken. manuscript.

