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Doxastic Logic: Models

Model: ⟨W ,R ,V ⟩

States/possible worlds: W ̸= ∅

Quasi-partitions: R ⊆ W ×W is serial, transitive and Euclidean

▶ serial: for all w ∈ W , there is a v ∈ W such that w R v

▶ transitive: for all w , v , u ∈ W , if w R v and v R u, then w R u

▶ Euclidean: for all w , v , u ∈ W , if w R v and w R u, then v R u

Valuation function: V : At → ℘(W ), where At is a set of atomic propositions.
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Doxastic Logic: Language and Semantics

p | φ ∧ φ | ¬φ | Bφ

Boolean connectives:

▶ M,w |= p iff w ∈ V (p)

▶ M,w |= ¬φ iff it is not the case that M,w |= φ

▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

Belief operators: M,w |= Bφ iff for all v , if w R v , then M, v |= φ.

Belief operator: M,w |= Bφ iff R(w) ⊆ [[φ]]M

{v | w R v} {v | M,w |= φ}
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Doxastic Logic: KD45

K B(φ→ ψ) → (Bφ→ Bψ)

D Bφ→ ¬B¬φ

4 Bφ→ BBφ

5 ¬Bφ→ B¬Bφ

The logic KD45 adds the above axiom schemes to an axiomatization of classical
propositional logic with the rules Modus Ponens, Substitution of Equivalents, and
Necessitation (from φ infer Bφ).

KD45 is sound and strongly complete with respect to all quasi-partition frames.
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Exercise: Show that the following axiom schemes and rules are valid on
quasi-partition models and are theorems of KD45:

▶ agglomeration: (Bφ ∧ Bψ) → B(φ ∧ ψ)

▶ consistency: ¬B⊥

▶ monotonicity: From φ→ ψ infer Bφ→ Bψ

▶ secondary-reflexivity: for all w , v ∈ W , if w R v then v R v
B(Bφ→ φ)

▶ correctness of own beliefs:
B¬Bφ→ ¬Bφ
for all w , there is a v such that w R v and for all z if v R z then w R z

BBφ→ Bφ
density: for all w and v if w R v then there is a z such that w R z and z R v
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▶ Defining beliefs from evidence.

▶ Defining beliefs from knowledge.

▶ Extending the basic logic of beliefs:
▶ Conditional beliefs
▶ Strong belief and robust belief

▶ Paradoxes of belief
▶ The Buriden-Burge Paradox
▶ Can an ideally rational agent be modest about her beliefs?
▶ Prior’s Theorem
▶ Problems with Agglomeration: The Preface Paradox and The Lottery

Paradox



Defining beliefs from evidence

J. van Benthem and EP. Dynamic logics of evidence-based beliefs. Studia Logica, 99(61), 2011.

J. van Benthem, D. Fernández-Duque and EP. Evidence and plausibility in neighborhood struc-
tures. Annals of Pure and Applied Logic, 165, pp. 106-133.



Evidence Models: Basic Assumptions

Let W be a set of possible worlds or states one of which represents the “actual”
situation.

1. Sources may or may not be reliable: a subset recording a piece of evidence
need not contain the actual world. Also, agents need not know which
evidence is reliable.

2. The evidence gathered from different sources (or even the same source) may
be jointly inconsistent. And so, the intersection of all the gathered evidence
may be empty.

3. Despite the fact that sources may not be reliable or jointly inconsistent, they
are all the agent has for forming beliefs.
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Evidential States

An evidential state is a collection of subsets of W .

Assumptions:

▶ No evidence set is empty (no contradictory evidence),

▶ The whole universe W is an evidence set (agents know their ‘space’).

In addition, much of the literature would suggest a ‘monotonicity’ assumption:
If the agent has evidence X and X ⊆ Y then the agent has evidence Y .
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Example: W = {w , v} where p is true at w

w v

There is no evidence
for or against p.

w v

There is evidence
that supports p.

w v

There is evidence
that rejects p.

w v

There is evidence that
supports p and also evidence
that rejects p.
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Evidence Model

Evidence model: M = ⟨W ,E ,V ⟩
▶ W is a non-empty set of worlds,

▶ V : At → ℘(W ) is a valuation function, and

▶ E ⊆ W × ℘(W ) is an evidence relation

E (w) = {X | w E X} and X ∈ E (w): “the agent accepts X as evidence at
state w”.

Uniform evidence model (E is a constant function): ⟨W , E ,V ⟩,w where E is
the fixed family of subsets of W related to each state by E .



Assumptions

(Cons) For each state w , ∅ ̸∈ E (w).

(Triv) For each state w , W ∈ E (w).



The Basic Language  L of Evidence and Belief

p | ¬φ | φ ∧ ψ | 2φ | Bφ | Aφ

▶ 2φ: “the agent has evidence that φ is true” (i.e., “the agent has evidence
for φ”)

▶ Bφ says that “the agents believes that φ is true” (based on her evidence)

▶ Aφ: “φ is true in all states” (for technical convenience/knowledge)



Example

Suppose that you are in the forest and happen to a see strange-looking animal.

You consult your animal guidebook and find a picture that seems to match the
animal you see. The guidebook says that the animal is a type of bird, so that is
what you conclude: The animal before you is a bird. After looking more closely,
you also notice that the animal is also red. So, you also update your beliefs with
that fact. Now, suppose that an expert (whom you trust) happens to walk by
and tells you that the animal is, in fact, not a bird.
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B(b ∧ r)

Receive evidence that the animal is not a
bird

Br
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Defining Beliefs

w-scenario: A maximal family of evidence sets X ⊆ E (w) that has the finite
intersection property (f.i.p.: for each finite subfamily {X1, . . . ,Xn} ⊆ X ,⋂

1≤i≤n Xi ̸= ∅).

An agent believes φ at w if each w -scenario implies that φ is true (i.e., φ is true
at each point in the intersection of each w -scenario).
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Defining Beliefs

X0

X1

X2

X3

X4X5

X6

X7

X8

Our definition of belief is very conservative, many other defi-
nitions are possible (there exists a w-scenario, “most” of the
w-scenarios,...)
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Truth

▶ M,w |= p iff w ∈ V (p) (p ∈ At)

▶ M,w |= ¬φ iff M,w ̸|= φ

▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

▶ M,w |= 2φ iff there exists X such that wEX and for all v ∈ X , M, v |= φ

▶ M,w |= Aφ iff for all v ∈ W , M, v |= φ

▶ M,w |= Bφ for each maximal f.i.p. X ⊆ E (w) and for all v ∈
⋂
X ,

M, v |= φ

Notation for the truth set: [[φ]]M = {w | M,w |= φ}
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Flat Evidence Models

An evidence model M is flat if every scenario on M has non-empty intersection.

Proposition. The formula 2φ→ ⟨B⟩φ is valid on the class of flat evidence
models, but not on the class of all evidence models.



Exercises

1. Prove that (2φ ∧ Aψ) ↔ 2(φ ∧ Aψ) is valid on all evidence models.

2. Prove that Bφ→ ABφ is valid on all uniform evidence models.



Defining Beliefs from Knowledge

R. Stalnaker (2006). On logics of knowledge and belief. Philosophy Studies,128,169-199.

A. Baltag, N. Bezhanishvili, A. Özgün, and S. Smets (2019). A Topological Approach to Full
Belief. Journal of Philosophical Logic, 48(2), pp. 205 - 244.

A. Bjorndahl and A. Özgün (2020). Logic and Topology for Knowledge, Knowability, and Belief.
The Review of Symbolic Logic, 13(4), pp. 748-775.



Stalnaker’s Axioms

Stalnaker bases his analysis on a conception of belief as ‘subjective certainty’:
From the point of the agent in question, her belief is subjectively
indistinguishable from her knowledge.

Bi-modal language of knowledge and belief: p | ¬φ | φ ∧ ψ | Kφ | Bψ
Define ⟨K ⟩φ as ¬K¬φ and ⟨B⟩φ as ¬B¬φ
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Proposition (Stalnaker). The following equivalence is a theorem of the
propositional modal logic that contains the previous axiom schemas (with Modus
Ponens and Necessitation for both K and B):

Bφ↔ ⟨K ⟩Kφ

Moreover, all of the axioms of KD45 and the (.2)-axiom ⟨K ⟩Kφ→ K ⟨K ⟩φ are
provable.

This means that we can take the logic of knowledge to be S4.2 (the axioms K ,
T , 4 and .2) and define full belief as above (i.e., as the ‘epistemic possibility of
knowledge’).
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✓ Defining beliefs from evidence.

✓ Defining beliefs from knowledge.
▶ Conditional beliefs
▶ Strong belief and robust belief

▶ Paradoxes of belief
▶ The Buriden-Burge Paradox
▶ Can an ideally rational agent be modest about her beliefs?
▶ Prior’s Theorem
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▶ The agent’s beliefs (soft information—-the states consistent with what the
agent believes)

The agent’s “contingency plan”: when the stronger beliefs fail, go with the
weaker ones.
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Sphere Models

Let W be a set of states, A set F ⊆ ℘(W ) is called a system of spheres provided:

▶ For each S , S ′ ∈ F , either S ⊆ S ′ or S ′ ⊆ S

▶ For any P ⊆ W there is a smallest S ∈ F (according to the subset relation)
such that P ∩ S ̸= ∅

▶ The spheres are non-empty
⋂

F ̸= ∅ and cover the entire information cell⋃
F = W



Let F be a system of spheres on W : for w , v ∈ W , let

w ⪯F v iff for all S ∈ F , if v ∈ S then w ∈ S

Then, ⪯F is reflexive, transitive, and well-founded.

w ⪯F v means that no matter what the agent learns in the future, as long as
world v is still consistent with her beliefs and w is still epistemically possible,
then w is also consistent with her beliefs.



Belief Revision via Plausibility

▶ W = {w1,w2,w3}
w1 ⪯ w2 and w2 ⪯ w1 (w1 and
w2 are equi-plausbile)

w1 ≺ w3 (w1 ⪯ w3 and
w3 ̸⪯ w1)

w2 ≺ w3 (w2 ⪯ w3 and
w3 ̸⪯ w2)

{w1,w2} ⊆ Min⪯([wi ])

w3

w2w1

A

B

D

E

φ
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w3 ̸⪯ w2)

{w1,w2} ⊆ Min⪯([wi ])

w3

w2w1

A

B

D

E

φ



Belief Revision via Plausibility

▶ W = {w1,w2,w3}
▶ w1 ⪯ w2 and w2 ⪯ w1 (w1 and

w2 are equi-plausbile)

▶ w1 ≺ w3 (w1 ⪯ w3 and
w3 ̸⪯ w1)

▶ w2 ≺ w3 (w2 ⪯ w3 and
w3 ̸⪯ w2)

▶ {w1,w2} ⊆ Min⪯([wi ])

w3

w2w1

A

B

D

E

φ



Belief Revision via Plausibility

φ

A

B

D

E

φ

Belief: Bφ

Min⪯(W ) ⊆ [[φ]]M
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Conditional Belief: Bφψ

Min⪯([[φ]]
M) ⊆ [[ψ]]M

Conservative Upgrade: Information from a trusted source
(↑φ): A ≺i C ≺i D ≺i B ∪ E
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Is Bφ→ Bψφ valid?

Is Bαφ→ Bα∧βφ valid?

Is Bφ→ Bψφ ∨ B¬ψφ valid?

Exercise: Prove that B , Bφ and B s are definable in the language with K (a
universal modality) and [⪯] (a modality for the plausibility ordering).
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M,w |= Bφψ if for each v ∈ Min⪯([[φ]]), M, v |= φ
where [[φ]] = {w | M,w |= φ}.

Core Logical Principles:

1. Bφφ

2. Bφψ → Bφ(ψ ∨ χ)
3. (Bφψ1 ∧ Bφψ2) → Bφ(ψ1 ∧ ψ2)

4. (Bφ1ψ ∧ Bφ2ψ) → Bφ1∨φ2ψ

5. (Bφψ ∧ Bψφ) → (Bφχ↔ Bψχ)

J. Burgess. Quick completeness proofs for some logics of conditionals. Notre Dame Journal of
Formal Logic 22, 76 – 84, 1981.
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Types of Beliefs: Logical Characterizations

▶ M,w |= Kiφ iff M,w |= Bψ
i φ for all ψ

i knows φ iff i continues to believe φ given any new information

▶ M,w |= [⪯i ]φ iff M,w |= Bψ
i φ for all ψ with M,w |= ψ.

i robustly believes φ iff i continues to believe φ given any true formula.

▶ M,w |= B s
i φ iff M,w |= Biφ and M,w |= Bψ

i φ for all ψ with
M,w |= ¬Ki(ψ → ¬φ).
i strongly believes φ iff i believes φ and continues to believe φ given any evidence

(truthful or not) that is not known to contradict φ.
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✓ Defining beliefs from evidence.

✓ Defining beliefs from knowledge.

✓ Conditional beliefs
✓ Strong belief and robust belief

▶ Paradoxes of belief
▶ The Buriden-Burge Paradox
▶ Can an ideally rational agent be modest about her beliefs?
▶ Prior’s Theorem
▶ Problems with Agglomeration: The Preface Paradox and The Lottery

Paradox



Buridan-Burge Paradox I

Suppose that q is the statement that ¬Baq.

Now, either Baq or ¬Baq.

1. Suppose ¬Baq. Then by the 5 axiom (¬Baφ→ Ba¬Baφ), we have that
Ba¬Baq. But since q is ¬Baq, we have Baq. Contradiction.

2. Suppose Baq. By by the 4 axiom (Baφ→ BaBaφ), we have that BaBaq. By
the D axioms (Baφ→ ¬Ba¬φ), we have that ¬Ba¬Baq. But since ¬Baq is
q, we have ¬Baq. Contradiction.

Tyler Burge (1984). Epistemic paradox. Journal of Philosophy, 81(1), pp. 5 - 29.



Buridan-Burge Paradox I

Suppose that q is the statement that ¬Baq. Now, either Baq or ¬Baq.

1. Suppose ¬Baq. Then by the 5 axiom (¬Baφ→ Ba¬Baφ), we have that
Ba¬Baq. But since q is ¬Baq, we have Baq. Contradiction.

2. Suppose Baq. By by the 4 axiom (Baφ→ BaBaφ), we have that BaBaq. By
the D axioms (Baφ→ ¬Ba¬φ), we have that ¬Ba¬Baq. But since ¬Baq is
q, we have ¬Baq. Contradiction.

Tyler Burge (1984). Epistemic paradox. Journal of Philosophy, 81(1), pp. 5 - 29.



Buridan-Burge Paradox I

Suppose that q is the statement that ¬Baq. Now, either Baq or ¬Baq.

1. Suppose ¬Baq. Then by the 5 axiom (¬Baφ→ Ba¬Baφ), we have that
Ba¬Baq. But since q is ¬Baq, we have Baq. Contradiction.

2. Suppose Baq. By by the 4 axiom (Baφ→ BaBaφ), we have that BaBaq. By
the D axioms (Baφ→ ¬Ba¬φ), we have that ¬Ba¬Baq. But since ¬Baq is
q, we have ¬Baq. Contradiction.

Tyler Burge (1984). Epistemic paradox. Journal of Philosophy, 81(1), pp. 5 - 29.



Buridan-Burge Paradox I

Suppose that q is the statement that ¬Baq. Now, either Baq or ¬Baq.

1. Suppose ¬Baq. Then by the 5 axiom (¬Baφ→ Ba¬Baφ), we have that
Ba¬Baq. But since q is ¬Baq, we have Baq. Contradiction.

2. Suppose Baq. By by the 4 axiom (Baφ→ BaBaφ), we have that BaBaq. By
the D axioms (Baφ→ ¬Ba¬φ), we have that ¬Ba¬Baq. But since ¬Baq is
q, we have ¬Baq. Contradiction.

Tyler Burge (1984). Epistemic paradox. Journal of Philosophy, 81(1), pp. 5 - 29.



Buridan-Burge Paradox II

Of course, “q is the statement that ¬Baq” is not a sentence of the modal logic
of beliefs.

What we have shown is that ¬Ba(q ↔ ¬Baq) is a theorem of KD45.

This is a paradox only if it should be possible for an ideally rational agent to
believe that q ↔ ¬Baq.

Wolfgang Lenzen (1981). Doxastic Logic and the Burge-Buridan-Paradox. Philosophical Studies,
39(1), pp. 43 - 49.

Michael Caie (2012). Belief and indeterminacy. The Philosophical Review, 121(1), pp. 1 - 54.



Propositional Quantifiers

While we naturally quantify over propositions in both ordinary and philosophical
discussion of beliefs, the addition of propositional quantifiers is not given much
attention in the literature.

Consider the following examples:

▶ “One believes that everything one believes is true”: B∀p(Bp → p)

▶ “If no matter what p stands for, one believes that φ, then one believes that
no matter what p stands for, φ”: ∀pBφ→ B∀pφ

▶ “There is a proposition that the agent takes to be consistent and to settle
everything”: ∃q(Bq ∧ ∀p(B(q → p) ∨ B(q → ¬p))

See the course by Peter Fritz.
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Immodest Beliefs

Immod: “One believes that everything one believes is true”: B∀p(Bp → p)

▶ Even for idealized agents or idealized beliefs, as axiomatized by KD45, it
seems that Immod should not be included in a logic of belief.

▶ Immod should be distinguished from “for every proposition p, one believes
that if she believes that p then p”: ∀p(B(Bp → p)).
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Consider an agent who has credences about a real number x randomly generated
from the interval [0, 1]. For all measurable X ⊆ [0, 1], then the agent’s credence
that x ∈ X is just the measure of X . Suppose that the agent outright believes
precisely those propositions with credence 1. Then, for all a ∈ [0, 1], the agent
believes that x ∈ [0, 1] \ {a} since [0, 1] \ {a} is measure 1. However, the agent
does not believe that for all a ∈ [0, 1], x ∈ [0, 1] \ {a} since⋂

a∈[0,1]([0, 1] \ {a}) = ∅, which is not measure 1. Hence the agent in this
situation does not believe that all her beliefs are true.

Yifeng Ding (2021). On the Logic of Belief and Propositional Quantification. Journal of Philo-
sophical Logic, 50, pp. 1143 - 1198.



In any possible world semantics for KD45, B∀p(Bp → p) is valid on any frame.
So, any logic validating KD45 must validate Immod. Algebraic semantics is
needed for logics with do not validate Immod.

Yifeng Ding (2021). On the Logic of Belief and Propositional Quantification. Journal of Philo-
sophical Logic, 50, pp. 1143 - 1198.

Also, see:
Jeremy Goodman (2020). I’m mistaken. manuscript.


