Neighborhood Semantics for Modal Logic Lecture 4

Eric Pacuit, University of Maryland

August 8, 2024

Plan for Today

- ✓ Completeness
- ✓ Incompleteness
- ▶ Simulating non-normal modal logics
- \triangleright Brief discussion of decidability and complexity
- **Bisimulations**
- \triangleright Neighborhood semantics for inquisitive logic

General Neighborhood Frames

A general neighborhood frame is a tuple $\mathcal{F}^g = \langle W, N, \mathcal{A} \rangle$ where $\langle W, N \rangle$ is a neighborhood frame and $\mathcal A$ is a collection of subsets of W closed under intersections, complements, and the m_N operator.

A valuation $V: At \to \wp(W)$ is admissible for a general frame if for each $p \in At$, $V(p) \in \mathcal{A}$.

Suppose that $\mathcal{F}^g = \langle W, N, A \rangle$ is a general neighborhood frame. A general **modal** based on $\mathcal{F}^{\mathcal{B}}$ is a tuple $\mathcal{M}^{\mathcal{B}} = \langle W, N, \mathcal{A}, V \rangle$ where V is an admissible valuation.

General Neighborhood Frames

Lemma

Let $\mathcal{M}^g = \langle W, N, \mathcal{A}, V \rangle$ be an general neighborhood model. Then for each $\varphi \in \mathcal{L}$, $\llbracket \varphi \rrbracket_{\mathcal{M}\mathcal{S}} \in \mathcal{A}$.

Lemma

Let L be any logic extending E . Then a general canonical frame for L validates L.

Corollary

Any modal logic extending E is strongly complete with respect to some class of general frames.

Summary

For any consistent modal logic L:

- \blacktriangleright If L is Kripke complete, then it is neighborhood complete
- \blacktriangleright L is complete with respect to its class of general frames

Summary

For any consistent modal logic L:

- \blacktriangleright If L is Kripke complete, then it is neighborhood complete
- \blacktriangleright L is complete with respect to its class of general frames

There are modal logics showing that

- ▶ neighborhood completeness does not imply Kripke completeness
- ▶ algebraic completeness does not imply neighborhood completeness

Non-Normal Modal Logic with a Universal Modality

Non-Normal Modal Logic with a Universal Modality

Theorem. The logic EMA is sound and strongly complete with respect to neighborhood frames that are consistent, non-trivial and monotonic.

We can simulate any non-normal modal logic with a bi-modal normal modal logic.

Given a neighborhood model $M = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^\circ = \langle V, R_N, R_{\not\supseteq}, R_N, Pt, V \rangle$ as follows:

Given a neighborhood model $M = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^\circ = \langle V, R_N, R_{\not\supseteq}, R_N, Pt, V \rangle$ as follows: $\blacktriangleright \; V = W \cup \wp(W)$

Given a neighborhood model $M = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^\circ = \langle V, R_N, R_{\not\supseteq}, R_N, Pt, V \rangle$ as follows:

$$
\blacktriangleright \; V = W \cup \wp(W)
$$

$$
\blacktriangleright R_{\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \in u\}
$$

Given a neighborhood model $M = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^\circ = \langle V, R_N, R_{\not\supseteq}, R_N, Pt, V \rangle$ as follows:

$$
\blacktriangleright \; V = W \cup \wp(W)
$$

$$
\blacktriangleright R_{\ni} = \{ (u, w) \mid w \in W, u \in \wp(W), w \in u \}
$$

$$
\blacktriangleright R_{\not\ni} = \{ (u, w) \mid w \in W, u \in \wp(W), w \notin u \}
$$

Given a neighborhood model $M = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^\circ = \langle V, R_N, R_{\not\supseteq}, R_N, Pt, V \rangle$ as follows: $\mathbf{v} = \mathbf{v} \cdot \mathbf{v}$

$$
V = W \cup \wp(W)
$$

\n
$$
R_{\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \in u\}
$$

\n
$$
R_{\not} = \{(u, w) \mid w \in W, u \in \wp(W), w \notin u\}
$$

$$
\blacktriangleright R_N = \{ (w, u) \mid w \in W, u \in \wp(W), u \in N(w) \}
$$

Given a neighborhood model $M = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^\circ = \langle V, R_N, R_{\not\supseteq}, R_N, Pt, V \rangle$ as follows: $V = W \cup \alpha(W)$

►
$$
R_3 = \{(u, w) | w \in W, u \in \wp(W), w \in u\}
$$

\n► $R_3 = \{(u, w) | w \in W, u \in \wp(W), w \notin u\}$
\n► $R_N = \{(w, u) | w \in W, u \in \wp(W), u \in N(w)\}$
\n► $Pt = W$

Given a neighborhood model $\mathcal{M} = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^\circ = \langle V, R_N, R_{\neq}, R_N, Pt, V \rangle$ as follows: $\blacktriangleright \; V = W \cup \wp(W)$ ▶ $R_{\exists} = \{(u, w) | w \in W, u \in \wp(W), w \in u\}$ $\blacktriangleright R_{\not\exists} = \{(u, w) \mid w \in W, u \in \wp(W), w \notin u\}$ ▶ $R_N = \{(w, u) \mid w \in W, u \in \wp(W), u \in N(w)\}\$ \blacktriangleright Pt = W

Let \mathcal{L}' be the language

$$
\varphi := p \mid \neg \varphi \mid \varphi \land \psi \mid [\ni] \varphi \mid [\not\ni] \varphi \mid [N] \varphi \mid \mathsf{Pt}
$$

where $p \in At$ and Pt is a unary modal operator.

Define $ST: \mathcal{L} \rightarrow \mathcal{L}'$ as follows

Define
$$
ST : \mathcal{L} \to \mathcal{L}'
$$
 as follows
\n \triangleright $ST(p) = p$

Define $ST: \mathcal{L} \rightarrow \mathcal{L}'$ as follows

$$
\begin{aligned} \n\blacktriangleright \quad &ST(p) = p \\ \n\blacktriangleright \quad &ST(\neg \varphi) = \neg ST(\varphi) \n\end{aligned}
$$

Define $ST: \mathcal{L} \rightarrow \mathcal{L}'$ as follows

 \blacktriangleright $ST(p) = p$ \blacktriangleright $ST(\neg \varphi) = \neg ST(\varphi)$ ▶ ST(*^φ* [∧] *^ψ*) = ST(*φ*) [∧] ST(*φ*) Define $ST: \mathcal{L} \rightarrow \mathcal{L}'$ as follows \blacktriangleright $ST(p) = p$ \blacktriangleright $ST(\neg \varphi) = \neg ST(\varphi)$ ▶ ST(*^φ* [∧] *^ψ*) = ST(*φ*) [∧] ST(*φ*)

 \blacktriangleright *ST*(□*ϕ*) = $\langle N \rangle$ ([∋]*ST*(*ϕ*) \land [∌]¬*ST*(*ϕ*))

Define
$$
ST : \mathcal{L} \to \mathcal{L}'
$$
 as follows
\n \triangleright $ST(p) = p$
\n \triangleright $ST(\neg \varphi) = \neg ST(\varphi)$
\n \triangleright $ST(\varphi \land \psi) = ST(\varphi) \land ST(\varphi)$
\n \triangleright $ST(\Box \varphi) = \langle N \rangle ([\exists] ST(\varphi) \land [\not\exists] \neg ST(\varphi))$

Lemma

For each neighborhood model $\mathcal{M} = \langle W, N, V \rangle$ and each formula $\varphi \in \mathcal{L}$, for any $w \in W$,

$$
\mathcal{M}, w \models \varphi \text{ iff } \mathcal{M}^{\circ}, w \models ST(\varphi)
$$

 $\triangleright M^{\circ}, v \models \langle N \rangle (\exists \exists \bot \wedge [\not\exists] \top)$ and $M^{\circ}, w \not\models \langle N \rangle (\exists \exists \bot \wedge [\not\exists] \top)$

Monotonic Models

Lemma

On Monotonic Models $\langle N \rangle$ (\exists]*ST*(φ) \land $\not\exists$] \neg *ST*(φ)) is equivalent to $\langle N \rangle$ (\exists]*ST*(φ))

O. Gasquet and A. Herzig. From Classical to Normal Modal Logic. in Proof Theory of Modal Logic, Kluwer, pgs. 293 - 311, 1996.

M. Kracht and F. Wolter. Normal Monomodal Logics can Simulate all Others. The Journal of Symbolic Logic, 64:1, pgs. 99 - 138, 1999.

Let $\mathcal{M} = \langle W, N, V \rangle$ be a neighborhood model and suppose that Σ is a set of sentences from \mathcal{L} .

For each $w, v \in W$, we say $w \sim_{\Sigma} v$ iff for each $\varphi \in \Sigma$, $w \models \varphi$ iff $v \models \varphi$.

For each $w \in W$, let $[w]_{\Sigma} = \{v \mid w \sim_{\Sigma} v\}$ be the equivalence class of \sim_{Σ} .

If $X \subseteq W$, let $[X]_{\Sigma} = \{ [w] \mid w \in X \}$.

Definition

Let $M = \langle W, N, V \rangle$ be a neighborhood model and Σ a set of sentences closed under subformulas. A filtration of M through Σ is a model $\mathcal{M}^f = \langle W^f, \mathit{N}^f, \mathit{V}^f \rangle$ where 1. $W^f = [W]$

- 2. For each $w \in W$
	- 2.1 for each $\Box \varphi \in \Sigma$, $[\![\varphi]\!]_{\mathcal{M}} \in \mathcal{N}(w)$ iff $[\![\varphi]\!]_{\mathcal{M}}] \in \mathcal{N}^f([w])$
- 3. For each $p \in$ At, $V(p) = |V(p)|$

Definition

Let $\mathcal{M} = \langle W, N, V \rangle$ be a neighborhood model and Σ a set of sentences closed under subformulas. A filtration of M through Σ is a model $\mathcal{M}^f = \langle \, \mathcal{W}^f, \, \mathcal{N}^f, \, \mathcal{V}^f \, \rangle$ where 1. $W^f = [W]$ 2. For each $w \in W$ 2.1 for each $\Box \varphi \in \Sigma$, $[\![\varphi]\!]_{\mathcal{M}} \in \mathcal{N}(w)$ iff $[\![\varphi]\!]_{\mathcal{M}}] \in \mathcal{N}^f([w])$ 3. For each $p \in At$, $V(p) = [V(p)]$

Theorem

Suppose that $\mathcal{M}^f = \langle W^f, N^f, V^f \rangle$ is a filtration of $\mathcal{M} = \langle W, N, V \rangle$ through (a subformula closed) set of sentences Σ . Then for each $\varphi \in \Sigma$, $\mathcal{M}, w \models \varphi \textit{ iff } \mathcal{M}^f, [w] \models \varphi$

Definition

Let $M = \langle W, N, V \rangle$ be a neighborhood model and Σ a set of sentences closed under subformulas. A filtration of M through Σ is a model $\mathcal{M}^f = \langle W^f, \mathit{N}^f, \mathit{V}^f \rangle$ where 1. $W^f = [W]$ 2. For each $w \in W$

- 2.1 for each $\Box \varphi \in \Sigma$, $[\![\varphi]\!]_{\mathcal{M}} \in \mathcal{N}(w)$ iff $[\![\varphi]\!]_{\mathcal{M}}] \in \mathcal{N}^f([w])$
- 3. For each $p \in At$, $V(p) = [V(p)]$

Corollary

E has the finite model property. I.e., if *φ* has a model then there is a finite model.

Logics without C (eg., **E, EM, E** + $(\neg \Box \bot)$, **E** + $(\Box \varphi \rightarrow \Box \Box \varphi)$) are in NP.

Logics without C (eg., **E, EM, E** + $(\neg \Box \bot)$, **E** + $(\Box \varphi \rightarrow \Box \Box \varphi)$) are in NP.

Logics with C are in PSPACE.

M. Vardi. On the Complexity of Epistemic Reasoning. IEEE (1989).

Is it the ability to combine information that leads to PSPACE-hardness?

Is it the ability to combine information that leads to PSPACE-hardness? No!

M. Allen. Complexity results for logics of local reasoning and inconsistent belief. in Theoretical Aspects of Rationality and Knowledge: Proc. Tenth Conference, pgs. 92 - 108, 2005.

Is it the ability to combine information that leads to PSPACE-hardness? No!

M. Allen. Complexity results for logics of local reasoning and inconsistent belief. in Theoretical Aspects of Rationality and Knowledge: Proc. Tenth Conference, pgs. 92 - 108, 2005.

J. Halpern and L. Rego. Characterizing the NP-PSPACE gap in the satisfiability problem for modal logic. Journal of Logic and Computation, 17:4, pgs. 795-806, 2007.

Background: Bismulations for Relational Semantics

Relational Models: $M = \langle W, R, V \rangle$ where $W \neq \emptyset$, $R \subseteq W \times W$, and $V : \mathsf{At} \to \wp(W)$

Truth:

\n- $$
\mathcal{M}, w \models p
$$
 iff $w \in V(p)$
\n- $\mathcal{M}, w \models \neg \varphi$ iff $\mathcal{M}, w \not\models \varphi$
\n- $\mathcal{M}, w \models \varphi \land \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
\n- $\mathcal{M}, w \models \Box \varphi$ iff for all $v \in W$ if wRv then $\mathcal{M}, v \models \varphi$
\n- $\mathcal{M}, w \models \Box \varphi$ iff $\{v \mid wRv\} = R(w) \subseteq [\varphi]_{\mathcal{M}}$
\n

What is the difference between states w_1 and v_1 ?

What is the difference between states w_1 and v_1 ?

Is there a modal formula true at w_1 but not at v_1 ?

 $w_1 \models \Box \Diamond \neg p$ but $v_1 \not\models \Box \Diamond \neg p$.

$$
w_1 \models \Box \Diamond \neg p \text{ but } v_1 \not\models \Box \Diamond \neg p.
$$

 $w_1 \models \Box \Diamond \neg p$ but $v_1 \not\models \Box \Diamond \neg p$.

$$
w_1 \models \Box \Diamond \neg p \text{ but } v_1 \not\models \Box \Diamond \neg p.
$$

 $w_1 \models \Box \Diamond \neg p$ but $v_1 \not\models \Box \Diamond \neg p$.

What about now? Is there a modal formula true at w_1 but not v_1 ?

No modal formula can distinguish w_1 and v_1 !

Consider the following modalities:

\n- $$
\mathcal{M}, w \models A\varphi
$$
 iff for all $w \in W, \mathcal{M}, w \models \varphi$
\n- $\mathcal{M}, w \models \Diamond^{\leftarrow} \varphi$ iff there is a $v \in W$, vRw and $\mathcal{M}, v \models \varphi$.
\n- $\mathcal{M}, w \models \Diamond_n \varphi$ iff there are v_1, \ldots, v_n such that for all $1 \leq j \neq k \leq n$, $v_j \neq v_k$, for all $j = 1, \ldots, n$, wRv_j and for all $j = 1, \ldots, n$, $\mathcal{M}, v_j \models \varphi$. For instance, $\Diamond_2 \varphi$ is true at a state if there are at least two accessible states that satisfy φ .
\n

$$
\blacktriangleright \mathcal{M}, w \models \circlearrowleft \text{ iff } wRw
$$

Are these modalities definable using the basic modal language? Intuitively, the answer is "no", but how do we prove this?

A bisimulation between $\mathcal{M} = \langle \, \mathcal{W}, \mathcal{R}, \, \mathcal{V} \, \rangle$ and $\mathcal{M}' = \langle \, \mathcal{W}', \mathcal{R}', \, \mathcal{V}' \, \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw' :

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw' :

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw' :

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw' :

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw' :

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw' :

Atomic harmony: for each $p \in At$, $w \in V(p)$ iff $w' \in V'(p)$ Zig: if wRv, then $\exists v' \in W'$ such that vZv' and w'R'v' Zag: if $w'R'v'$ then $\exists v \in W$ such that vZv' and wRv

▶ We write M , $w \leftrightarrow M'$, w' if there is a Z such that wZw' .

► We write M , *w* \leftrightarrow M' , *w'* iff for all $\varphi \in \mathcal{L}$, M , $w \models \varphi$ iff M' , $w' \models \varphi$.

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw' :

- ▶ We write M , $w \leftrightarrow M'$, w' if there is a Z such that wZw' .
- **►** We write M , *w* \leftrightarrow M' , *w'* iff for all $\varphi \in \mathcal{L}$, M , $w \models \varphi$ iff M' , $w' \models \varphi$.
- **Lemma** If $M, w \leftrightarrow M', w'$ then $M, w \leftrightarrow M', w'$.
- **Lemma** On finite models, if M, w \longleftrightarrow M', w' then M, w \leftrightarrow M', w'.

Bisimulation for Relational Models

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw' :

Atomic harmony: for each $p \in At$, $w \in V(p)$ iff $w' \in V'(p)$ Zig: If wRv, then there is a $v' \in W'$ such that

 $w'R'v'$ and vZv'

Zag: If $w'R'v'$ then there is a $v \in W$ such that

 wRv and vZv'

Bisimulation for Relational Models

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw' :

Atomic harmony: for each $p \in At$, $w \in V(p)$ iff $w' \in V'(p)$ **Zig:** If wRv , then there is a $v' \in W'$ such that

 $w'R'v'$ and vZv'

Zag: If $w'R'v'$ then there is a $v \in W$ such that

 wRv and vZv'

Monotonic Bisimulation for Neighborhood Models

A bisimulation between $\mathcal{M}=\langle\mathsf{W},\mathsf{N},\mathsf{V}\rangle$ and $\mathcal{M}'=\langle\mathsf{W}',\mathsf{N}',\mathsf{V}'\rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw' :

Atomic harmony: for each $p \in At$, $w \in V(p)$ iff $w' \in V'(p)$ **Zig:** If $X \in N(w)$ then there is an $X' \subseteq W'$ such that

$$
X' \in N'(w') \text{ and } \forall x' \in X' \exists x \in X \text{ such that } xZx'
$$

Zag: If $X' \in N'(w')$ then there is an $X \subseteq W$ such that

 $X \in N(w)$ and $\forall x \in X \exists x' \in X'$ such that xZx'

Example

w⁰ pq pq w ′ ^w⁰ ⁰ |= ✷p ∧ ⟨]p w ′ 0 |= ¬✷p ∧ ⟨]p

23

- ▶ We write M , $w \leftrightarrow M'$, w' if there is a monotonic bisimulation Z such that wZw′ .
- **►** We write M , w $\leftrightarrow \infty$ M' , w' iff for all φ in the language with the modality $\langle \]$, M, $w \models \varphi$ iff \mathcal{M}^{\prime} , $w^{\prime} \models \varphi$.
- ▶ We write M , $w \leftrightarrow M'$, w' if there is a monotonic bisimulation Z such that wZw′ .
- **►** We write M , w $\leftrightarrow \infty$ M' , w' iff for all φ in the language with the modality $\langle \]$, M, $w \models \varphi$ iff \mathcal{M}^{\prime} , $w^{\prime} \models \varphi$.
- **Lemma** If $M, w \leftrightarrow M', w'$ then $M, w \leftrightarrow M', w'$.
- **Lemma** On finite models, if M, w \longleftrightarrow M', w' then M, w \leftrightarrow M', w'.
- ▶ We write M , $w \leftrightarrow M'$, w' if there is a monotonic bisimulation Z such that wZw′ .
- **►** We write M , w $\leftrightarrow \infty$ M' , w' iff for all φ in the language with the modality $\langle \]$, M, $w \models \varphi$ iff \mathcal{M}^{\prime} , $w^{\prime} \models \varphi$.
- **Lemma** If $M, w \leftrightarrow M', w'$ then $M, w \leftrightarrow M', w'$.
- **Lemma** On finite models, if M, w \longleftrightarrow M', w' then M, w \leftrightarrow M', w'.

M. Pauly. Bisimulation for Non-normal Modal Logic. Manuscript, 1999.

H. Hansen. Monotonic Modal Logic. Masters Thesis, ILLC, 2003.

H. Hansen, C. Kupke, EP. Neighbourhood Structures: Bisimilarity and Basic Model Theory. Logical Methods in Computer Science, 5(2:2), pp. 1 - 38, 2009.

Locally Core-Finite Models

Suppose that $\mathcal F$ is a monotonic collection of subsets of W. The **non-monotonic core**, denoted \mathcal{F}^{nc} , is a subset of \mathcal{F} defined as follows:

$$
\mathcal{F}^{nc} = \{ X \mid X \in \mathcal{F} \text{ and for all } X' \subseteq W \text{, if } X' \subseteq X \text{, then } X' \notin \mathcal{F} \}.
$$

A monotonic collection of sets F is **core-complete** provided for all $X \in \mathcal{F}$. there exists a $Y \in \mathcal{F}^{nc}$ such that $Y \subseteq X$.

Locally Core-Finite Models

Suppose that $\mathcal F$ is a monotonic collection of subsets of W. The **non-monotonic core**, denoted \mathcal{F}^{nc} , is a subset of \mathcal{F} defined as follows:

$$
\mathcal{F}^{nc} = \{ X \mid X \in \mathcal{F} \text{ and for all } X' \subseteq W \text{, if } X' \subseteq X \text{, then } X' \notin \mathcal{F} \}.
$$

A monotonic collection of sets F is **core-complete** provided for all $X \in \mathcal{F}$. there exists a $Y \in \mathcal{F}^{nc}$ such that $Y \subseteq X$.

Question: Is every monotonic collection core-complete?

Locally Core-Finite Models

A neighborhood model $M = \langle W, N, V \rangle$ is locally core-finite provided that M is core-complete and for each $w \in W$, $N^{nc}(w)$ is finite, and for all $X \in N^{nc}(w)$, X is finite.

Proposition. Suppose that $\mathcal{M} = \langle W, N, V \rangle$ and $\mathcal{M}' = \langle W', N', V' \rangle$ are monotonic, locally core-finite models. Then, for all $w\in W$, $w'\in W',$ $\mathcal{M}, w \equiv_{\mathcal{L}} \mathcal{M}', w'$ iff $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'.$

Do monotonic bisimulations work when we drop monotonicity? No!

Bounded Morphisms

If $\mathcal{M}_1 = \langle W_1, W_1, V_1 \rangle$ and $\mathcal{M}_2 = \langle W_2, W_2, V_2 \rangle$ are two neighborhood models, and $f: W_1 \to W_2$ is a function, then f is a (frame) bounded morphism if

for all
$$
X \subseteq W_2
$$
, we have $f^{-1}[X] \in N_1(w)$ iff $X \in N_2(f(w))$;

and for all $p \in At$, and all $w \in W_1$: $w \in V_1(p)$ iff $f(s) \in V_2(p)$.

Bounded Morphisms

If $\mathcal{M}_1 = \langle W_1, W_1, V_1 \rangle$ and $\mathcal{M}_2 = \langle W_2, W_2, V_2 \rangle$ are two neighborhood models, and $f: W_1 \to W_2$ is a function, then f is a (frame) bounded morphism if

for all
$$
X \subseteq W_2
$$
, we have $f^{-1}[X] \in N_1(w)$ iff $X \in N_2(f(w))$;

and for all $p \in At$, and all $w \in W_1$: $w \in V_1(p)$ iff $f(s) \in V_2(p)$.

Lemma Let $\mathcal{M}_1 = \langle W_1, N_1, V_1 \rangle$ and $\mathcal{M}_2 = \langle W_2, N_2, V_2 \rangle$ be two neighborhood models and $f: \mathcal{M}_1 \to \mathcal{M}_2$ a bounded morphism. For each modal formula $\varphi \in \mathcal{L}$ and state $w \in W_1$, \mathcal{M}_1 , $w \models \varphi$ iff \mathcal{M}_2 , $f(w) \models \varphi$.

Definition

Two points w_1 from \mathcal{M}_1 and w_2 from \mathcal{M}_2 are **behaviorally equivalent** provided there is a neighborhood frame F and bounded morphisms $f : \mathcal{F}_1 \to \mathcal{F}$ and $g : \mathcal{F}_2 \to \mathcal{F}$ such that $f(w_1) = g(w_2)$.

Proposition. Suppose that $\mathcal{M} = \langle W, N, V \rangle$ and $\mathcal{M}' = \langle W', N', V' \rangle$ are two neighborhood models. If states $w \in W$ and $w' \in W'$ are behaviorally equivalent, then for all $\varphi \in \mathcal{L}$, \mathcal{M} , $w \models \varphi$ iff \mathcal{M}' , $w' \models \varphi$.
Theorem

Over the class **N** (of neighborhood models), the following are equivalent:

- \triangleright $\alpha(x)$ is equivalent to the translation of a modal formula
- \blacktriangleright $\alpha(x)$ is invariant under behavioural equivalence.

H. Hansen, C. Kupke and EP. Neighbourhood Structures: Bisimilarity and Basic Model Theory. Logical Methods in Computer Science, 5(2:2), pgs. 1 - 38, 2009.

The language \mathcal{L}_2 is built from the following grammar:

$$
x = y \mid u = v \mid P_i x \mid xNu \mid uEx \mid \neg \varphi \mid \varphi \land \psi \mid \exists x \varphi \mid \exists u \varphi
$$

$$
\mathfrak{M} = \langle D, \{P_i \mid i \in \omega\}, N, E \rangle \text{ where}
$$
\n
$$
D = D^s \cup D^n \text{ (and } D^s \cap D^n = \emptyset),
$$
\n
$$
P_i \subseteq D^s,
$$
\n
$$
N \subseteq D^s \times D^n \text{ and}
$$
\n
$$
E \subseteq D^n \times D^s.
$$

Definition

Let $M = \langle S, N, V \rangle$ be a neighbourhood model. The first-order translation of ${\cal M}$ is the structure ${\cal M}^\circ = \langle D, \{P_i \mid i \in \omega\}, R_{\mathsf N}, R_{\ni} \rangle$ where

$$
\blacktriangleright \ D^s=S, \ D^n=\bigcup_{s\in S} N(s)
$$

► For each $i \in \omega$, $P_i = V(p_i)$

$$
\blacktriangleright R_N = \{ (s, U) \mid s \in D^s, U \in N(s) \}
$$

$$
\blacktriangleright \ \mathit{R}_{\ni} = \{ (U, s) \ \vert s \in D^s, s \in U \}
$$

Definition

The standard translation of the basic modal language are functions $st_x : L \to L_2$ defined as follows as follows: $st_x(p_i) = P_i x$, st_x commutes with boolean connectives and

$$
st_x(\Box \varphi) = \exists u(xR_N u \land (\forall y(uR_{\exists} y \leftrightarrow st_y(\varphi)))
$$

Definition

The standard translation of the basic modal language are functions $st_x : L \to L_2$ defined as follows as follows: $st_x(p_i) = P_i x$, st_x commutes with boolean connectives and

$$
st_x(\Box \varphi) = \exists u(xR_N u \land (\forall y(uR_{\exists} y \leftrightarrow st_y(\varphi)))
$$

Lemma

Let M be a neighbourhood structure and $\varphi \in \mathcal{L}$. For each $s \in \mathcal{S}$, $\mathcal{M}, \mathsf{s} \models \varphi \text{ iff } \mathcal{M}^\circ \models \mathsf{st}_\mathsf{x}(\varphi)[\mathsf{s}].$

 $\mathsf{N} = \{ \mathfrak{M} \mid \mathfrak{M} \cong \mathcal{M}^{\circ}$ for some neighbourhood model $\mathcal{M} \}$

(A1)
$$
\exists x(x = x)
$$

\n(A2) $\forall u \exists x(xR_Nu)$
\n(A3) $\forall u, v(\neg(u = v) \rightarrow \exists x((uR_{\exists}x \land \neg vR_{\exists}x) \lor (\neg uR_{\exists}x \land vR_{\exists}x)))$

Theorem

Suppose $\mathfrak M$ is an $\mathcal L_2$ -structure. Then there is a neighbourhood structure $\mathfrak M_\circ$ such that $\mathfrak{M} \cong (\mathfrak{M}_{\circ})^{\circ}$.

Theorem

Over the class **N** (of neighborhood models), the following are equivalent:

- \triangleright $\alpha(x)$ is equivalent to the translation of a modal formula
- \blacktriangleright $\alpha(x)$ is invariant under behavioural equivalence.

H. Hansen, C. Kupke and EP (2009). Neighbourhood Structures: Bisimilarity and Basic Model Theory. Logical Methods in Computer Science, 5(2:2), pp. 1 - 38.