Neighborhood Semantics for Modal Logic Lecture 4

Eric Pacuit, University of Maryland

August 8, 2024

Plan for Today

- ✓ Completeness
- ✓ Incompleteness
- Simulating non-normal modal logics
- Brief discussion of decidability and complexity
- Bisimulations
- Neighborhood semantics for inquisitive logic

General Neighborhood Frames

A general neighborhood frame is a tuple $\mathcal{F}^g = \langle W, N, \mathcal{A} \rangle$ where $\langle W, N \rangle$ is a neighborhood frame and \mathcal{A} is a collection of subsets of W closed under intersections, complements, and the m_N operator.

A valuation $V : At \to \wp(W)$ is admissible for a general frame if for each $p \in At$, $V(p) \in A$.

Suppose that $\mathcal{F}^{g} = \langle W, N, A \rangle$ is a general neighborhood frame. A **general** modal based on \mathcal{F}^{g} is a tuple $\mathcal{M}^{g} = \langle W, N, A, V \rangle$ where V is an admissible valuation.

General Neighborhood Frames

Lemma

Let $\mathcal{M}^{g} = \langle W, N, \mathcal{A}, V \rangle$ be an general neighborhood model. Then for each $\varphi \in \mathcal{L}$, $\llbracket \varphi \rrbracket_{\mathcal{M}^{g}} \in \mathcal{A}$.

Lemma

Let L be any logic extending E. Then a general canonical frame for L validates L.

Corollary

Any modal logic extending **E** is strongly complete with respect to some class of general frames.

Summary

For any consistent modal logic L:

- ▶ If L is Kripke complete, then it is neighborhood complete
- L is complete with respect to its class of *general frames*

Summary

For any consistent modal logic L:

- ▶ If L is Kripke complete, then it is neighborhood complete
- L is complete with respect to its class of *general frames*

There are modal logics showing that

- neighborhood completeness does not imply Kripke completeness
- algebraic completeness does not imply neighborhood completeness

Non-Normal Modal Logic with a Universal Modality

(A-K)	$A(\varphi o \psi) o (A\varphi o A\psi)$
(A-T)	A arphi o arphi
(<i>A</i> -4)	A arphi ightarrow A A arphi
(A-B)	$E arphi ightarrow {\sf A} E arphi$
(A-Nec)	From φ infer $A\varphi$
({]- <i>RM</i>)	From $arphi ightarrow \psi$ infer $\langle \;] arphi ightarrow \langle \;] \psi$
$(\langle]$ -Cons)	$\neg \langle] \bot$
(A-N)	$A arphi ightarrow \langle \;] arphi$
(Pullout)	$\langle \](\varphi \wedge A\psi) \leftrightarrow (\langle \]\varphi \wedge A\psi)$

Non-Normal Modal Logic with a Universal Modality

(A-K)	$A(\varphi ightarrow \psi) ightarrow (A arphi ightarrow A \psi)$
(A-T)	A arphi o arphi
(<i>A</i> -4)	A arphi ightarrow A A arphi
(A-B)	$E arphi ightarrow {\sf A} E arphi$
(A-Nec)	From φ infer $A\varphi$
({]- <i>RM</i>)	From $arphi ightarrow \psi$ infer $\langle \;] arphi ightarrow \langle \;] \psi$
$(\langle]$ -Cons)	$\neg \langle] \bot$
(A-N)	$A arphi ightarrow \langle \;] arphi$
(Pullout)	$\langle \](\varphi \wedge A\psi) \leftrightarrow (\langle \]\varphi \wedge A\psi)$

Theorem. The logic EMA is sound and strongly complete with respect to neighborhood frames that are consistent, non-trivial and monotonic.

We can *simulate* any non-normal modal logic with a bi-modal normal modal logic.

Given a neighborhood model $\mathcal{M} = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^{\circ} = \langle V, R_N, R_{\not\ni}, R_N, Pt, V \rangle$ as follows:

 $\blacktriangleright V = W \cup \wp(W)$

$$\blacktriangleright V = W \cup \wp(W)$$

$$\blacktriangleright R_{\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \in u\}$$

$$\blacktriangleright V = W \cup \wp(W)$$

$$\blacktriangleright R_{\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \in u\}$$

$$\blacktriangleright R_{\not\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \notin u\}$$

Given a neighborhood model $\mathcal{M} = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^{\circ} = \langle V, R_N, R_{\not\ni}, R_N, Pt, V \rangle$ as follows: $\bigvee V = W \cup \wp(W)$

$$R_{\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \in u\}$$

$$R_{\not\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \notin u\}$$

$$R_N = \{(w, u) \mid w \in W, u \in \wp(W), u \in N(w)\}$$

$$Pt = W$$

Let \mathcal{L}' be the language

$$\varphi := p \mid \neg \varphi \mid \varphi \land \psi \mid [\ni] \varphi \mid [\not\ni] \varphi \mid [N] \varphi \mid \mathsf{Pt}$$

where $p \in At$ and Pt is a unary modal operator.

Define $ST: \mathcal{L} \to \mathcal{L}'$ as follows

Define
$$ST : \mathcal{L} \to \mathcal{L}'$$
 as follows
 $\blacktriangleright ST(p) = p$

Define $ST: \mathcal{L} \to \mathcal{L}'$ as follows

Define $ST: \mathcal{L} \to \mathcal{L}'$ as follows

►
$$ST(p) = p$$

► $ST(\neg \varphi) = \neg ST(\varphi)$
► $ST(\varphi \land \psi) = ST(\varphi) \land ST(\varphi)$

Define $ST:\mathcal{L} \to \mathcal{L}'$ as follows

ST(p) = p
ST(¬φ) = ¬ST(φ)
ST(φ ∧ ψ) = ST(φ) ∧ ST(φ)
ST(□φ) = ⟨N⟩([∋]ST(φ) ∧ [∌]¬ST(φ))

Define
$$ST : \mathcal{L} \to \mathcal{L}'$$
 as follows
 $\blacktriangleright ST(p) = p$
 $\blacktriangleright ST(\neg \varphi) = \neg ST(\varphi)$
 $\blacktriangleright ST(\varphi \land \psi) = ST(\varphi) \land ST(\varphi)$
 $\blacktriangleright ST(\Box \varphi) = \langle N \rangle ([\exists]ST(\varphi) \land [\nexists] \neg ST(\varphi))$

Lemma

For each neighborhood model $\mathcal{M} = \langle W, N, V \rangle$ and each formula $\varphi \in \mathcal{L}$, for any $w \in W$,

$$\mathcal{M}$$
, w $\models \varphi$ iff \mathcal{M}° , w \models ST (φ)

 $\mathcal{M}^{\circ}, w \models \langle N \rangle ([\exists] p \land [\not\exists] \neg p) \text{ and } \mathcal{M}^{\circ}, v \not\models \langle N \rangle ([\exists] p \land [\not\exists] \neg p)$ $\mathcal{M}^{\circ}, v \models \langle N \rangle ([\exists] \bot \land [\not\exists] \top) \text{ and } \mathcal{M}^{\circ}, w \not\models \langle N \rangle ([\exists] \bot \land [\not\exists] \top)$

Monotonic Models

Lemma On Monotonic Models $\langle N \rangle ([] ST(\varphi) \land [] \neg ST(\varphi))$ is equivalent to $\langle N \rangle ([] ST(\varphi))$

O. Gasquet and A. Herzig. *From Classical to Normal Modal Logic*. in Proof Theory of Modal Logic, Kluwer, pgs. 293 - 311, 1996.

M. Kracht and F. Wolter. *Normal Monomodal Logics can Simulate all Others*. The Journal of Symbolic Logic, 64:1, pgs. 99 - 138, 1999.

Let $\mathcal{M} = \langle W, N, V \rangle$ be a neighborhood model and suppose that Σ is a set of sentences from \mathcal{L} .

For each $w, v \in W$, we say $w \sim_{\Sigma} v$ iff for each $\varphi \in \Sigma$, $w \models \varphi$ iff $v \models \varphi$.

For each $w \in W$, let $[w]_{\Sigma} = \{v \mid w \sim_{\Sigma} v\}$ be the equivalence class of \sim_{Σ} .

If $X \subseteq W$, let $[X]_{\Sigma} = \{[w] \mid w \in X\}$.

Definition

Let $\mathcal{M} = \langle W, N, V \rangle$ be a neighborhood model and Σ a set of sentences closed under subformulas. A filtration of \mathcal{M} through Σ is a model $\mathcal{M}^f = \langle W^f, N^f, V^f \rangle$ where 1. $W^f = [W]$ 2. For each $w \in W$

2.1 for each $\Box \varphi \in \Sigma$, $\llbracket \varphi \rrbracket_{\mathcal{M}} \in \mathcal{N}(w)$ iff $\llbracket \llbracket \varphi \rrbracket_{\mathcal{M}} \rrbracket \in \mathcal{N}^{f}(\llbracket w \rrbracket)$

3. For each $p \in At$, V(p) = [V(p)]

Definition

Let $\mathcal{M} = \langle W, N, V \rangle$ be a neighborhood model and Σ a set of sentences closed under subformulas. A filtration of \mathcal{M} through Σ is a model $\mathcal{M}^f = \langle W^f, N^f, V^f \rangle$ where 1. $W^f = [W]$ 2. For each $w \in W$ 2.1 for each $\Box \varphi \in \Sigma$, $\llbracket \varphi \rrbracket_{\mathcal{M}} \in N(w)$ iff $\llbracket \llbracket \varphi \rrbracket_{\mathcal{M}} \rrbracket \in N^f(\llbracket w \rrbracket)$

3. For each $p \in \mathsf{At}$, V(p) = [V(p)]

Theorem

Suppose that $\mathcal{M}^{f} = \langle W^{f}, N^{f}, V^{f} \rangle$ is a filtration of $\mathcal{M} = \langle W, N, V \rangle$ through (a subformula closed) set of sentences Σ . Then for each $\varphi \in \Sigma$, $\mathcal{M}, w \models \varphi$ iff $\mathcal{M}^{f}, [w] \models \varphi$

Definition

Let $\mathcal{M} = \langle W, N, V \rangle$ be a neighborhood model and Σ a set of sentences closed under subformulas. A filtration of \mathcal{M} through Σ is a model $\mathcal{M}^f = \langle W^f, N^f, V^f \rangle$ where 1. $W^f = [W]$ 2. For each $w \in W$ 2.1 for each $\Box \varphi \in \Sigma$, $[\![\varphi]\!]_{\mathcal{M}} \in N(w)$ iff $[\![[\varphi]\!]_{\mathcal{M}}] \in N^f([w])$

3. For each $p \in At$, V(p) = [V(p)]

Corollary

E has the finite model property. I.e., if φ has a model then there is a finite model.

Logics without C (eg., E, EM, E + $(\neg\Box\bot)$, E + $(\Box\varphi \rightarrow \Box\Box\varphi)$) are in NP.

Logics without C (eg., E, EM, E + $(\neg\Box\bot)$, E + $(\Box\varphi \rightarrow \Box\Box\varphi)$) are in NP.

Logics with C are in PSPACE.

M. Vardi. On the Complexity of Epistemic Reasoning. IEEE (1989).

Is it the ability to combine information that leads to PSPACE-hardness?

Is it the ability to combine information that leads to PSPACE-hardness? No!

M. Allen. *Complexity results for logics of local reasoning and inconsistent belief.* in Theoretical Aspects of Rationality and Knowledge: Proc. Tenth Conference, pgs. 92 - 108, 2005.

Is it the ability to combine information that leads to PSPACE-hardness? No!

M. Allen. *Complexity results for logics of local reasoning and inconsistent belief.* in Theoretical Aspects of Rationality and Knowledge: Proc. Tenth Conference, pgs. 92 - 108, 2005.

J. Halpern and L. Rego. *Characterizing the NP-PSPACE gap in the satisfiability problem for modal logic*. Journal of Logic and Computation, 17:4, pgs. 795-806, 2007.

Background: Bismulations for Relational Semantics

Relational Models: $\mathcal{M} = \langle W, R, V \rangle$ where $W \neq \emptyset$, $R \subseteq W \times W$, and $V : At \rightarrow \wp(W)$

Truth:

What is the difference between states w_1 and v_1 ?

What is the difference between states w_1 and v_1 ?

Is there a modal formula true at w_1 but not at v_1 ?

 $w_1 \models \Box \Diamond \neg p$ but $v_1 \not\models \Box \Diamond \neg p$.

$$w_1 \models \Box \Diamond \neg p$$
 but $v_1 \not\models \Box \Diamond \neg p$.

 $w_1 \models \Box \Diamond \neg \rho$ but $v_1 \not\models \Box \Diamond \neg \rho$.

 $w_1 \models \Box \Diamond \neg p$ but $v_1 \not\models \Box \Diamond \neg p$.

 $w_1 \models \Box \Diamond \neg p$ but $v_1 \not\models \Box \Diamond \neg p$.

What about now? Is there a modal formula true at w_1 but not v_1 ?

No modal formula can distinguish w_1 and v_1 !

Consider the following modalities:

•
$$\mathcal{M}, w \models \circlearrowleft$$
 iff wRw

Are these modalities definable using the basic modal language? Intuitively, the answer is "no", but how do we *prove* this?

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw':

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw':

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw':

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw':

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw':

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw':

Atomic harmony: for each $p \in At$, $w \in V(p)$ iff $w' \in V'(p)$ **Zig:** if wRv, then $\exists v' \in W'$ such that vZv' and w'R'v'**Zag:** if w'R'v' then $\exists v \in W$ such that vZv' and wRv

▶ We write $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ if there is a Z such that wZw'.

▶ We write $\mathcal{M}, w \iff \mathcal{M}', w'$ iff for all $\varphi \in \mathcal{L}, \mathcal{M}, w \models \varphi$ iff $\mathcal{M}', w' \models \varphi$.

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw':

- ▶ We write $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ if there is a Z such that wZw'.
- ▶ We write $\mathcal{M}, w \iff \mathcal{M}', w'$ iff for all $\varphi \in \mathcal{L}, \mathcal{M}, w \models \varphi$ iff $\mathcal{M}', w' \models \varphi$.
- ▶ **Lemma** If $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$.
- **Lemma** On finite models, if $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$.

Bisimulation for Relational Models

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw':

Atomic harmony: for each $p \in At$, $w \in V(p)$ iff $w' \in V'(p)$ **Zig:** If wRv, then there is a $v' \in W'$ such that

w'R'v' and vZv'

Zag: If w'R'v' then there is a $v \in W$ such that

wRv and vZv'

Bisimulation for Relational Models

A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw':

Atomic harmony: for each $p \in At$, $w \in V(p)$ iff $w' \in V'(p)$ **Zig:** If wRv, then there is a $v' \in W'$ such that

w'R'v' and vZv'

Zag: If w'R'v' then there is a $v \in W$ such that

wRv and vZv'

Monotonic Bisimulation for Neighborhood Models

A bisimulation between $\mathcal{M} = \langle W, N, V \rangle$ and $\mathcal{M}' = \langle W', N', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw':

Atomic harmony: for each $p \in At$, $w \in V(p)$ iff $w' \in V'(p)$ **Zig:** If $X \in N(w)$ then there is an $X' \subseteq W'$ such that

$$X' \in N'(w')$$
 and $\forall x' \in X' \exists x \in X$ such that xZx'

Zag: If $X' \in N'(w')$ then there is an $X \subseteq W$ such that

 $X \in N(w)$ and $\forall x \in X \exists x' \in X'$ such that xZx'

Example

$$w_0 \models \Box p \land \langle]p \quad w_0 \quad \overline{pq} \quad \cdots \quad \overline{pq} \quad w'_0 \quad w'_0 \models \neg \Box p \land \langle]p$$

- We write $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ if there is a monotonic bisimulation Z such that wZw'.
- We write $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ iff for all φ in the language with the modality $\langle], \mathcal{M}, w \models \varphi$ iff $\mathcal{M}', w' \models \varphi$.

- We write $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ if there is a monotonic bisimulation Z such that wZw'.
- We write $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ iff for all φ in the language with the modality $\langle], \mathcal{M}, w \models \varphi$ iff $\mathcal{M}', w' \models \varphi$.
- ▶ **Lemma** If $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$.
- **Lemma** On finite models, if $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$.

- We write $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ if there is a monotonic bisimulation Z such that wZw'.
- We write $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ iff for all φ in the language with the modality $\langle], \mathcal{M}, w \models \varphi$ iff $\mathcal{M}', w' \models \varphi$.
- **Lemma** If $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$.
- **Lemma** On finite models, if $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$.

M. Pauly. Bisimulation for Non-normal Modal Logic. Manuscript, 1999.

H. Hansen. Monotonic Modal Logic. Masters Thesis, ILLC, 2003.

H. Hansen, C. Kupke, EP. *Neighbourhood Structures: Bisimilarity and Basic Model Theory*. Logical Methods in Computer Science, 5(2:2), pp. 1 - 38, 2009.

Locally Core-Finite Models

Suppose that \mathcal{F} is a monotonic collection of subsets of W. The **non-monotonic core**, denoted \mathcal{F}^{nc} , is a subset of \mathcal{F} defined as follows:

$$\mathcal{F}^{nc} = \{X \mid X \in \mathcal{F} \text{ and for all } X' \subseteq W, \text{ if } X' \subseteq X, \text{ then } X' \notin \mathcal{F}\}.$$

A monotonic collection of sets \mathcal{F} is **core-complete** provided for all $X \in \mathcal{F}$, there exists a $Y \in \mathcal{F}^{nc}$ such that $Y \subseteq X$.

Locally Core-Finite Models

Suppose that \mathcal{F} is a monotonic collection of subsets of W. The **non-monotonic core**, denoted \mathcal{F}^{nc} , is a subset of \mathcal{F} defined as follows:

$$\mathcal{F}^{nc} = \{X \mid X \in \mathcal{F} \text{ and for all } X' \subseteq W, ext{ if } X' \subseteq X, ext{ then } X' \notin \mathcal{F} \}.$$

A monotonic collection of sets \mathcal{F} is **core-complete** provided for all $X \in \mathcal{F}$, there exists a $Y \in \mathcal{F}^{nc}$ such that $Y \subseteq X$.

Question: Is every monotonic collection core-complete?

Locally Core-Finite Models

A neighborhood model $\mathcal{M} = \langle W, N, V \rangle$ is **locally core-finite** provided that \mathcal{M} is core-complete and for each $w \in W$, $N^{nc}(w)$ is finite, and for all $X \in N^{nc}(w)$, X is finite.

Proposition. Suppose that $\mathcal{M} = \langle W, N, V \rangle$ and $\mathcal{M}' = \langle W', N', V' \rangle$ are monotonic, locally core-finite models. Then, for all $w \in W$, $w' \in W'$, $\mathcal{M}, w \equiv_{\mathcal{L}} \mathcal{M}', w'$ iff $\mathcal{M}, w \nleftrightarrow \mathcal{M}', w'$.

Do monotonic bisimulations work when we drop monotonicity? No!

Bounded Morphisms

If $\mathcal{M}_1 = \langle W_1, N_1, V_1 \rangle$ and $\mathcal{M}_2 = \langle W_2, N_2, V_2 \rangle$ are two neighborhood models, and $f : W_1 \to W_2$ is a function, then f is a **(frame) bounded morphism** if

for all $X \subseteq W_2$, we have $f^{-1}[X] \in N_1(w)$ iff $X \in N_2(f(w))$;

and for all $p \in At$, and all $w \in W_1$: $w \in V_1(p)$ iff $f(s) \in V_2(p)$.

Bounded Morphisms

If $\mathcal{M}_1 = \langle W_1, N_1, V_1 \rangle$ and $\mathcal{M}_2 = \langle W_2, N_2, V_2 \rangle$ are two neighborhood models, and $f : W_1 \to W_2$ is a function, then f is a **(frame) bounded morphism** if

for all
$$X \subseteq W_2$$
, we have $f^{-1}[X] \in N_1(w)$ iff $X \in N_2(f(w))$;

and for all $p \in At$, and all $w \in W_1$: $w \in V_1(p)$ iff $f(s) \in V_2(p)$.

Lemma Let $\mathcal{M}_1 = \langle W_1, N_1, V_1 \rangle$ and $\mathcal{M}_2 = \langle W_2, N_2, V_2 \rangle$ be two neighborhood models and $f : \mathcal{M}_1 \to \mathcal{M}_2$ a bounded morphism. For each modal formula $\varphi \in \mathcal{L}$ and state $w \in W_1$, \mathcal{M}_1 , $w \models \varphi$ iff \mathcal{M}_2 , $f(w) \models \varphi$.

Definition

Two points w_1 from \mathcal{M}_1 and w_2 from \mathcal{M}_2 are **behaviorally equivalent** provided there is a neighborhood frame \mathcal{F} and bounded morphisms $f : \mathcal{F}_1 \to \mathcal{F}$ and $g : \mathcal{F}_2 \to \mathcal{F}$ such that $f(w_1) = g(w_2)$.

Proposition. Suppose that $\mathcal{M} = \langle W, N, V \rangle$ and $\mathcal{M}' = \langle W', N', V' \rangle$ are two neighborhood models. If states $w \in W$ and $w' \in W'$ are behaviorally equivalent, then for all $\varphi \in \mathcal{L}$, $\mathcal{M}, w \models \varphi$ iff $\mathcal{M}', w' \models \varphi$.
Theorem

Over the class **N** (of neighborhood models), the following are equivalent:

- $\alpha(x)$ is equivalent to the translation of a modal formula
- $\triangleright \alpha(x)$ is invariant under behavioural equivalence.

H. Hansen, C. Kupke and EP. *Neighbourhood Structures: Bisimilarity and Basic Model Theory*. Logical Methods in Computer Science, 5(2:2), pgs. 1 - 38, 2009.

The language \mathcal{L}_2 is built from the following grammar:

$$x = y \mid u = v \mid \mathsf{P}_i x \mid x \mathsf{N} u \mid u \mathsf{E} x \mid \neg \varphi \mid \varphi \land \psi \mid \exists x \varphi \mid \exists u \varphi$$

$$\mathfrak{M} = \langle D, \{P_i \mid i \in \omega\}, N, E \rangle \text{ where}$$

$$D = D^{s} \cup D^{n} \text{ (and } D^{s} \cap D^{n} = \emptyset),$$

$$P_i \subseteq D^{s},$$

$$N \subseteq D^{s} \times D^{n} \text{ and}$$

$$E \subseteq D^{n} \times D^{s}.$$

Definition

Let $\mathcal{M} = \langle S, N, V \rangle$ be a neighbourhood model. The *first-order translation* of \mathcal{M} is the structure $\mathcal{M}^{\circ} = \langle D, \{P_i \mid i \in \omega\}, R_N, R_{\ni} \rangle$ where

►
$$D^{s} = S$$
, $D^{n} = \bigcup_{s \in S} N(s)$

For each
$$i \in \omega$$
, $P_i = V(p_i)$

$$\blacktriangleright \ R_N = \{(s, U) \mid s \in D^s, U \in N(s)\}$$

$$\blacktriangleright \ R_{\ni} = \{(U, s) \mid s \in D^{\mathsf{s}}, s \in U\}$$

Definition

The standard translation of the basic modal language are functions $st_x : \mathcal{L} \to \mathcal{L}_2$ defined as follows as follows: $st_x(p_i) = P_i x$, st_x commutes with boolean connectives and

$$st_{x}(\Box \varphi) = \exists u(x \mathsf{R}_{N} u \land (\forall y(u \mathsf{R}_{\ni} y \leftrightarrow st_{y}(\varphi))))$$

Definition

The standard translation of the basic modal language are functions $st_x : \mathcal{L} \to \mathcal{L}_2$ defined as follows as follows: $st_x(p_i) = P_i x$, st_x commutes with boolean connectives and

$$st_{x}(\Box \varphi) = \exists u(x \mathsf{R}_{N} u \land (\forall y(u \mathsf{R}_{\ni} y \leftrightarrow st_{y}(\varphi))))$$

Lemma

Let \mathcal{M} be a neighbourhood structure and $\varphi \in \mathcal{L}$. For each $s \in S$, $\mathcal{M}, s \models \varphi$ iff $\mathcal{M}^{\circ} \models st_{x}(\varphi)[s]$.

 $\mathbf{N} = \{\mathfrak{M} \mid \mathfrak{M} \cong \mathcal{M}^{\circ} \text{ for some neighbourhood model } \mathcal{M}\}$

(A1)
$$\exists x(x = x)$$

(A2) $\forall u \exists x(x R_N u)$
(A3) $\forall u, v(\neg(u = v) \rightarrow \exists x((u R_{\ni} x \land \neg v R_{\ni} x) \lor (\neg u R_{\ni} x \land v R_{\ni} x)))$

Theorem

Suppose \mathfrak{M} is an \mathcal{L}_2 -structure. Then there is a neighbourhood structure \mathfrak{M}_\circ such that $\mathfrak{M} \cong (\mathfrak{M}_\circ)^\circ$.

Theorem

Over the class **N** (of neighborhood models), the following are equivalent:

- $\triangleright \alpha(x)$ is equivalent to the translation of a modal formula
- $\triangleright \alpha(x)$ is invariant under behavioural equivalence.

H. Hansen, C. Kupke and EP (2009). *Neighbourhood Structures: Bisimilarity and Basic Model Theory*. Logical Methods in Computer Science, 5(2:2), pp. 1 - 38.