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Course Plan

✓ introduction to mathematical analysis of voting methods, voting paradoxes;

▶ probabilistic voting methods (time permitting);

✓ quantitative analysis of voting methods (e.g., Condorcet efficiency);

✓ learning voting rules (PAC-learning, MLPs, other approaches);

▶ using modern deep learning techniques to generate synthetic election data;

⇒ strategic voting, learning to successfully manipulate voting rules based on
limited information about how the other voters will vote using neural
networks (multi-layer perceptrons);

⇒ RLHF (reinforcement learning with human feedback) and social choice;

▶ using large-language models to improve group decision-making; and

▶ liquid democracy (time permitting).

2



Learning to Manipulate under Limited Information

We use machine learning to gauge how resistant a preferential voting method is
to manipulation under limited information about how other voters will vote.

Wesley Holliday, Alexander Kristoffersen, Eric Pacuit. Learning to Manipulate under Limited
Information. arxiv.org/abs/2401.16412, 1st Workshop on Social Choice and Learning Algorithms
(SCaLA 2024).
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How to manipulate
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Profitable manipulations

Given a profile of utilities for each voters, we can define the profile of rankings
submitted by each voter, where alternative a is ranked above alternative b when
the utility of a is greater than the utility of b:

Voters a b c d
v1 0.1 0.65 0.9 0.08
v2 0.7 0.9 1.0 0.8
v3 0.01 0.03 0.5 0.02
v4 0.1 0.5 0 0.9
v5 0.1 0.2 0.05 1.0

U

v1 v2 v3 v4 v5
c c c d d
b b b b b
a d d a a
d a a c c

P
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Profitable manipulations

A ranking R is a profitable manipulation for voter i in preference profile P
generated from a utility profile U for voting method F provided that

using even-chance tiebreaking
Expected utility for voter i of the winners according to the voting method F ,

EUi (Fℓ ( R ,P−i )) > EUi (Fℓ ( P ))

The profile where all voters
except i submit their “true”
ranking and i submits R .

The profile where all voters
submit their “true” ranking.
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Profitable manipulations

A ranking R is a profitable manipulation for voter i in preference profile P
generated from a utility profile U for voting method F provided that

using even-chance tiebreaking if needed
Expected utility for voter i of the winners according to the voting method F ,

EUi (Fℓ ( R ,P−i )) > EUi (Fℓ ( P ))

The profile where all voters
except i submit their “true”
ranking and i submits R .

The profile where all voters
submit their “true” ranking.
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Profitable manipulations

The profitability of voter i ’s submitting ranking R given utility profile U that
induces preference profile P is given by

EUi (Fℓ(R ,P−i ))− EUi (Fℓ(P))

max({Ui (x) | x ∈ X})− min({Ui (x) | x ∈ X}) ,

adopting the normalization of Relative Utilitarianism (Dhillon and Mertons 1999).

5



Limited information
U
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Ideal Voter

Choose an R that maximizes profitability

6



Limited information
U

v1 v2 v3 v4 v5
c c c d d
b b b b b
a d d a a
d a a c c

F (P)
Winners

v1 v2 v3 v4 v5
? c c d d
? b b b b
? d d a a
? a a c c

F (R ,P−1)
Winners

a b c d
0 0 3 2

v1 v2 v3 v4 v5
c b c a b
d a d c d
a c b d a
b d a b c

,

v1 v2 v3 v4 v5
c c b b a
d d a a c
a b d b b
b a c c d

, · · ·

Plurality Scores

6



Limited information
U

v1 v2 v3 v4 v5
c c c d d
b b b b b
a d d a a
d a a c c

F (P)
Winners

v1 v2 v3 v4 v5
? c c d d
? b b b b
? d d a a
? a a c c

F (R ,P−1)
Winners

a b c d
0 0 3 2

v1 v2 v3 v4 v5
c d c c d
b a b b a
a b d a b
d c a d c

,

v1 v2 v3 v4 v5
c c c d d
b a d a a
a b b b b
d d a c c

, · · ·

Plurality Scores

6



Limited information
U

v1 v2 v3 v4 v5
c c c d d
b b b b b
a d d a a
d a a c c

F (P)
Winners

v1 v2 v3 v4 v5
? c c d d
? b b b b
? d d a a
? a a c c

F (R ,P−1)
Winners

c > d > (a b)

v1 v2 v3 v4 v5
c d c c d
b a b b a
a b d a b
d c a d c

,

v1 v2 v3 v4 v5
c c c d d
b a d a a
a b b b b
d d a c c

, · · ·

Plurality Ranking

6



Limited information
U
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Limited information
U
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Limited information
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Limited information
U
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Learning to manipulate under limited information

▶ We trained ≈ 100,000 multi-layered perceptrons (MLP) of 26 sizes to
manipulate against 8 different voting methods, under 6 types of limited
information, in profiles with 5-21 voters and 3-6 alternatives.

▶ These networks act as function approximators for profitable manipulation
policies for a given voting method and type of limited information.

▶ We evaluate the manipulation resistance of a voting method by the size and
complexity of the network required to learn a profitable manipulation policy,
as well as the average profitability of learned policies.
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Setup
1. Generate Utility Profiles: We generate utility profiles for the voters for

training, validation, and evaluation according to some probability model:

▶ Random Utility Model: for each voter, the utility of each alternative is
drawn independently from the uniform distribution on the [0, 1] interval.

▶ 2D Spatial Model: each alternative and each voter is independently placed
in R2 according to the multivariate normal distribution with no correlation
between the two dimensions; then the utility of a alternative for a voter is
the square of the Euclidean distance between the alternative and the voter

▶ Mallows Model: generate a linear profile with the Mallows model
(ϕ = 0.8); then for each ranking generate a random utility that represents
the ranking

2. Labeling: For a given training profile and voting method, compute the
optimal rankings that the manipulator could possibly submit.
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Setup

3. Training:
▶ The input to an MLP is (1) the manipulator’s own utility function plus

(2) some limited information about the profile.

▶ Applying a softmax to the output yields a probability distribution π over all
rankings that the manipulator could submit, which we reduce to the
probability of choosing an optimal ranking or not.

▶ We compute the final loss as the mean-squared error between the reduced
distribution and the distribution assigning probability 1 to choosing an
optimal-labeled ranking and 0 to choosing a non-optimal-labeled ranking.

4. Evaluation: When evaluating the MLP, we take the most probable ranking
R according to π to be submitted, and we compute the profitability of R .
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Demonstration

10



Results: Random Utility Model, 6 alternatives
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Results: 2D Spatial Model, 6 alternatives
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Results: Mallows Model, 6 alternatives
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Results: Random Utility Model, 6 alternatives
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Results: 2D Spatial Model, 6 alternatives
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Results: Mallows Model, 6 alternatives
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Results: Random Utility Model, 3-6 alternatives
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Results: 2D Spatial Model, 3-6 alternatives
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Results: Mallows Model, 3-6 alternatives
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Results: Random Utility Model, 3-6 alternatives
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Results: 2D Spatial Model, 3-6 alternatives
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Results: Mallows Model, 3-6 alternatives
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Conclusion

It is possible for MLPs to learn to manipulate preferential voting methods on the
basis of limited information, though the profitability of doing so varies
significantly between different voting methods and types of information.

Roughly three types of methods:

▶ Highly manipulable even under limited info: e.g., Borda;

▶ Significantly manipulable under full info but not under limited: e.g.,
Instant Runoff (though somewhat manipulable with sincere winners info);

▶ Highly resistant to manipulation, especially under limited info:
e.g., Minimax.
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Conclusion

Additional research questions:

▶ What about manipulation by a coalition of voters?

▶ What if all voters simultaneously strategize?

▶ What is the social cost or benefit of the learned manipulations?

Cf. K. Dowding and M. van Hees (2008), “In Praise of Manipulation,” British
Journal of Political Science, 38(1), pp. 1-15.
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Conclusion
Based on considerations of manipulability, William H. Riker’s (1988) wrote:

I conclude that the meaning of social choices is quite obscure. They may
consist of the amalgamation of the true tastes of the majority. . . or they
may consist simply of the tastes of some people (whether a majority or
not) who are skillful or lucky manipulators. If we assume social choices are
often the latter, they may consist of what the manipulators truly want,
or they may be an accidental amalgamation of what the manipulators
(perhaps unintentionally) happened to produce. Furthermore, since we
can by observation know only expressed values (never true values), we
can never be sure, for any particular choice, which of these possible
interpretations are correct. (p. 167)

Can we mitigate these worries to some extent by the use of more
manipulation-resistant preferential voting methods?
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Wesley Holliday, Alexander Kristoffersen, Eric Pacuit. Learning to Manipulate under Limited
Information. arxiv.org/abs/2401.16412, 1st Workshop on Social Choice and Learning Algorithms
(SCaLA 2024).

https://github.com/epacuit/ltm

26

https://arxiv.org/abs/2401.16412
https://github.com/epacuit/ltm


Models of voters behavior: IC (Impartial culture), IAC (Impartial anonymous
culture), IANC (Impartial anonymous and neutral culture), Mallows models,
Spatial models, Structured Preferences (e.g., Single Peaked models)

▶ https://comsoc-community.github.io/prefsampling/

▶ https://pref-voting.readthedocs.io/en/latest/generate_

spatial_profiles.html

▶ http://preflib.org

N. Boehmer, P. Faliszewski, L. Janeczko, A. Kaczmarczyk, G. Lisowski, G. Pierczyński, S. Rey,
D. Stolicki, S. Szufa, and T. Was (2024). Guide to Numerical Experiments on Elections in
Computational Social Choice. arXiv preprint arXiv:2402.11765.
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Probability of Condorcet Cycles

Is there empirical evidence that Condorcet cycles have shown up in real elections?

W. Riker. Liberalism against Populism. Waveland Press, 1982.

G. Mackie. Democracy Defended. Cambridge University Press, 2003.
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Against the IC model
“...changing the distribution in any fashion (whether we call it ‘realistic’ or not)
away from an impartial culture over linear orders will automatically have the effect
of reducing the probability of majority cycles in infinite samples...” (pg., 28, 29)

This means that assuming an impartial culture is a worst case analysis.

M. Regenwetter, B. Gromfan, A. Marley, and I. Tsetlin. Behavioral Social Choice. Cambridge
University Press, 2006.

See, also,

W. Gehrlein. Condorcet’s Paradox. Springer, 2006.

F. Plassmann and T. N. Tideman. How frequently do different voting rules encounter voting
paradoxes in three-candidate elections?. Social Choice and Welfare, 42, pp. 31 - 75, 2014.
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S. Szufa, P. Faliszewski, P. Skowron, A. Slinko, and N. Talmod (2020). Drawing a Map of
Elections in the Space of Statistical Cultures. AAMAS 2020, May 9 - 13, Auckland, New
Zealand.

30



Using ML Techniques to Generate Election Data

Jui Chien Lin, Farhad Mohsin, Sahith Bhamidipati, and Lirong Xia (2023). Generating Election
Data Using Deep Generative Models. AI4SG workshop at AAAI-23.
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Social Choice Should Guide AI Alignment in Dealing with

Diverse Human Feedback

Vincent Conitzer, Rachel Freedman, Jobst Heitzig, Wesley H. Holliday, Bob M. Jacobs, Nathan
Lambert, Milan Mossé, Eric Pacuit, Stuart Russell, Hailey Schoelkopf, Emanuel Tewolde, and
William S. Zwicker (2024). Social Choice Should Guide AI Alignment in Dealing with Diverse
Human Feedback. Proceedings of ICML.
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Many collective decision procedures

4 4 9 4 2
A A B C C
B C C A B
C B A B A

Borda Count: CBA
Instant Runoff: ABC
Ranked Pairs: BCA

Figure: Individual rankings on the left (4 voters say ABC , 4 say ACB, etc.) lead to
different aggregations on the right, depending on the aggregation rule.
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Reinforcement learning from human feedback (RLHF)
From Open AI (https://openai.com/index/instruction-following/):

https://openai.com/research/instruction-following

“To train InstructGPT 
models, our core 
technique 
is reinforcement 
learning from human 
feedback (RLHF), a 
method we helped 
pioneer in our earlier 
alignment research. 
This technique uses 
human preferences as 
a reward signal to 
fine-tune our models, 
which is important as 
the safety and 
alignment problems 
we are aiming to 
solve are complex and 
subjective, and aren’t 
fully captured by 
simple automatic 
metrics.”
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Constitutional AI and RLAIF

Bai et al., Constitutional AI: Harmlessness from AI Feedback. 
https://arxiv.org/abs/2212.08073
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Questions raised in the paper

▶ How should we think about what the space of alternatives is?

▶ What type(s) of feedback should humans give?

▶ Who gets to give feedback, and how is it weighed?
▶ How is a representative pool of stakeholders selected to give feedback?

▶ What about behavioral aspects / how should human cognitive structures be
taken into account?

▶ What traditional social choice concepts are most relevant for AI alignment?

▶ When should we have multiple AI systems, and how do we avoid conflict
between them?

▶ What are the limitations to dealing with diverging feedback?

▶ and more . . .
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RLCHF using aggregated rankings

37



RLCHF using evaluator features and aggregated ratings
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Relevant concepts from social choice

There are many concepts from social choice theory that are relevant to AI
alignment:

▶ Axioms—but some are more relevant than others

▶ Strategic voting

▶ Anonymity vs. weighted votes

▶ Principles as voters

▶ and more. . .

39



Independence of clones

In social choice problems, sometimes multiple alternatives, say A and B , compare
very similarly against every other alternative X , according to the preferences of
individuals.

Such alternatives are referred to as clones.

▶ According to a strict notion of clones (Tideman 1987), A and B are clones
if, for every individual, if that individual prefers A to some other alternative
X , then they also prefer B to X , and if they instead prefer X to A, then
they also prefer X to B .

▶ According to a more liberal notion (Laffond et al. 1996), A and B are clones
if, whenever a majority of individuals prefer A to some other alternative X ,
then a majority prefers B to X as well, and whenever a majority prefers
some X to A, then a majority prefers X to B as well.
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Example
Suppose a group of people are voting over where to go for dinner, and the only
two alternatives are a Chinese restaurant and an Indian restaurant.

▶ 52% of the voters prefer the Chinese restaurant; 48% prefer Indian.

But then, someone points out that the Chinese restaurant has two floors and
argues that the two floors should be considered separate options. So now the
alternatives are C1, C2, and I . Nobody really cares all that much about the floor,
but suppose that

▶ 26% of the voters prefer C1 ≻ C2 ≻ I , and

▶ 26% of the voters prefer C2 ≻ C1 ≻ I (adding up to the original 52%).

Further suppose that the voting rule used is Plurality, in which the alternative
that appears at the very top of voters’ rankings the most often wins.
Then the Indian restaurant ends up winning now with 48% of the vote.
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Independence of clones

Independence of cones, as an axiom for voting rules, states that introducing a
clone should not affect whether a non-clone (e.g., the Indian restaurant in our
example) is selected or which non-clone is selected.1

This axiom can also be generalized to rules that output a ranking.

1But it may affect which clone, if any, is selected. For instance, a clone-independent rule
could select C1 over C2 in our example, if among the 48% of people who prefer I , a strict
majority of them prefer C1 to C2.
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Fact. Instant Runoff Voting satisfies independence of clones (even when
generalized to allow voters to submit ties).

T. Delemazure and D. Peters (2024). Generalizing Instant Runoff Voting to Allow Indifferences.
In Proceedings of EC ’24.

Fact. Beat Path, Ranked Pairs, and Split Cycle all satisfy Independence of Clones
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Independence of clones, Borda, and RLHF

The Borda count seriously violates independence of clones.

For example:

Fact
Given a preference profile P in which candidate A is not Pareto dominated by any
other candidate, one can add clones of A below A in each voter’s ranking so that
in the resulting profile P′, A is the unique Borda winner.

This is noteworthy in light of the following connection between Borda and RLHF.

Theorem (Siththaranjan et al. 2023)
Given voters’ pairwise preferences on a set X of alternatives, let u be the utility
function on X inferred using MLE with the Bradley-Terry model. Then the
ordinal ranking of X derived from u is exactly the Borda ranking.
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Conclusion
Our position on alignment: methods from social choice should be applied
to address questions such as which humans should provide input, what
type of feedback should be collected, and how it should be aggregated
and used.

There have been several other recent papers at this intersection, including:

▶ “Axioms for AI Alignment from Human Feedback,” Luise Ge, Daniel Halpern, Evi
Micha, Ariel D. Procaccia, Itai Shapira, Yevgeniy Vorobeychik, and Junlin Wu,
arXiv:2405.14758.

▶ “Mapping Social Choice Theory to RLHF,” Jessica Dai and Eve Fleisig,
arXiv:2404.13038

▶ “Distributional Preference Learning: Understanding and Accounting for Hidden
Context in RLHF,” Anand Siththaranjan, Cassidy Laidlaw, and Dylan
Hadfield-Menell, arXiv:2312.08358.

We encourage researchers in both AI and social choice to join this effort!
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Linear Social Choice

Luise Ge, Daniel Halpern, Evi Micha, Ariel D. Procaccia, Itai Shapira, Yevgeniy Vorobeychik,
and Junlin Wu (2024). Axioms for AI Alignment from Human Feedback. arXiv:2405.14758.
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Linear Social Choice

In social choice theory, axioms are typically defined for rules that map rankings
over candidates to a single winner (social choice functions) or a ranking of the
candidates (social welfare functions).

By contrast, we are interested in rules that assign a reward to each candidate.
This gap is easy to bridge, though: we simply consider a ranking of the
candidates by decreasing reward.
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Linear Social Choice

A much more significant gap is that in classical social choice, all relevant
candidates appear in the input preferences, whereas in our setting (where
candidates correspond, e.g., to prompts and their responses), we are only given
preferences over a relatively small set of candidates identified by their (known)
features, and we need to generalize from this information.

In practice, this entails using a restricted—commonly, parametric—class of
reward models which map candidate features to real-valued rewards, and which
we fit to existing data.
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Linear Social Choice

Specifically, we assume that a linear reward function defined by a parameter
vector determines the reward of each candidate by computing the inner product
of the parameter vector and the feature vector of the candidate...

Each human participant (henceforth referred to as a voter) is associated with a
parameter vector, which is unknown to us and is used to specify ordinal
preferences over the candidates.

Our task is to design linear rank aggregation rules, which aggregate rankings
induced by these individual linear functions into a collective ranking that is also
induced by a linear function
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Linear Social Choice

A ranking method satisfies Pareto Optimality provided that for all candidates a
and b is every voter ranks a above b, then a must be ranked above b.

A ranking method satisfies Pairwise Majority Consistency provided that for all
candidates a and b, a is ranked above b if, and only if, a majority of voters rank
a above b.

Theorem
If a linear rank aggregation rule f optimizes a loss function ℓ that satisfies
infxℓ(x) < ℓ(0) and is either nondecreasing and weakly convex, or strictly
convex (and possibly nonmonotone), then it fails Pairwise Majority Consistency
and Pareto Optimality.
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Generative Social Choice

S. Fish, P. Gölz, David Parkes, Ariel Procaccia, Gili Rusak, Itai Shapira, and Manuel Wüthrich
(2024). Generative social choice. Proceedings of EC 2024.
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Generative Social Choice

In our view, there are two fundamental obstacles to using classical social choice
to answer open-ended questions, both of which can be circumvented by LLMs.

▶ Unforeseen Alternatives. In classical social choice, the set of alternatives is
explicitly specified and static.

▶ By contrast, LLMs have the capability of generating alternatives that were
not initially anticipated but find common ground between participants.

▶ In principle, the possible outcomes of an LLM-augmented democratic
process may span the universe of all relevant outcomes for the problem at
hand, e.g., all possible bills or statements.
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Generative Social Choice
In our view, there are two fundamental obstacles to using classical social choice
to answer open-ended questions, both of which can be circumvented by LLMs.

▶ Extrapolating Preferences. In classical social choice theory, agents specify
their preferences in a rigid format.

▶ This approach clearly does not suffice if a democratic process may produce
alternatives that were not previously anticipated, and therefore not elicited:
to even know which alternatives would be promising to generate, the process
must be able to extrapolate participants’ preferences.

▶ LLMs can address this problem by allowing participants to implicitly specify
their preferences by expressing their opinions, values, or criteria in natural
language.

▶ The LLM can act as a proxy for the participant, predicting their preferences
over any alternative, whether foreseen or newly generated.
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Course Plan

✓ introduction to mathematical analysis of voting methods, voting paradoxes;

▶ probabilistic voting methods (time permitting);

✓ quantitative analysis of voting methods (e.g., Condorcet efficiency);

✓ learning voting rules (PAC-learning, MLPs, other approaches);

✓ using modern deep learning techniques to generate synthetic election data;

✓ strategic voting, learning to successfully manipulate voting rules based on
limited information about how the other voters will vote using neural
networks (multi-layer perceptrons);

✓ RLHF (reinforcement learning with human feedback) and social choice;

✓ using large-language models to improve group decision-making; and

▶ liquid democracy (time permitting).
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Thank you!!

https://pacuit.org/esslli2024/social-choice-machine-learning/

https://pref-voting.readthedocs.io/

https://stablevoting.org
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