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Plan for Today

▶ Completeness

▶ Incompleteness

▶ Simulating non-normal modal logics
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Logical consequence

Suppose that Γ is a set of formulas and F is a set of frames. We write
M,w |= Γ iff M,w |= α for all α ∈ Γ.

Γ |=F φ iff for all frames F ∈ F, for all models M based on F and all states w
in M, M,w |= Γ implies M,w |= φ.
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Soundness and Completeness

▶ A logic L is sound with respect to F, provided ⊢L φ implies |=F φ.

▶ A logic L is weakly complete with respect to a class of frames F, if |=F φ
implies ⊢L φ.

▶ A logic L is strongly complete with respect to a class of frames F, if for
each set of formulas Γ, Γ |=F φ implies Γ ⊢L φ.
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A set of formulas Γ is called a maximally consistent set provided Γ is a
consistent set of formulas and for all formulas φ ∈ L, either φ ∈ Γ or ¬φ ∈ Γ.

Let ML be the set of L-maximally consistent sets of formulas.

The L-proof set of φ ∈ L is |φ|L = {Γ | φ ∈ Γ}.
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Canonical model
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Let L be a logic and φ,ψ ∈ L. Then

1. |φ ∧ ψ|L = |φ|L ∩ |ψ|L
2. |¬φ|L = ML − |φ|L
3. |φ ∨ ψ|L = |φ|L ∪ |ψ|L
4. |φ|L ⊆ |ψ|L iff ⊢L φ → ψ

5. |φ|L = |ψ|L iff ⊢L φ ↔ ψ

6. For any maximally L-consistent set Γ, if φ ∈ Γ and φ → ψ ∈ Γ, then ψ ∈ Γ
7. For any maximally L-consistent set Γ, If ⊢L φ, then φ ∈ Γ

7



Lindenbaum’s Lemma. For any consistent set of formulas Γ, there exists a
maximally consistent set Γ′ such that Γ ⊆ Γ′.
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Canonical Model

Definition
A neighborhood model M = ⟨W ,N ,V ⟩ is canonical for L provided

▶ W = {Γ | Γ is a maximally L-consistent set }

= ML

▶ for all φ ∈ L and Γ ∈ W , |φ|L ∈ N(Γ) iff 2φ ∈ Γ
▶ for all p ∈ At, V (p) = |p|L
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Examples of Canonical Models

Mmin
L = ⟨ML,N

min
L ,VL⟩, where for each Γ ∈ ML,

Nmin
L (Γ) = {|φ|L | 2φ ∈ Γ}.

Let PL = {|φ|L | φ ∈ L} be the set of all proof sets.

Mmax
L = ⟨ML,N

max
L ,VL⟩, where for each Γ ∈ ML,

Nmax
L (Γ) = Nmin

L (Γ) ∪ {X | X ⊆ ML,X ̸∈ PL}
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The canonical model works...

Lemma
For any logic L containing the rule RE , if NL : ML → ℘(℘(ML)) is a function
such that for each Γ ∈ ML, |φ|L ∈ NL(Γ) iff 2φ ∈ Γ. Then if |φ|L ∈ NL(Γ) and
|φ|L = |ψ|L, then 2ψ ∈ Γ.

Lemma (Truth Lemma)
For any consistent classical modal logic L and any consistent formula φ, if M is
canonical for L,

[[φ]]M = |φ|L
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The Proofs

Theorem
The logic E is sound and strongly complete with respect to the class of all
neighborhood frames.

Lemma
If C ∈ L, then ⟨ML,N

min
L ⟩ is closed under finite intersections.

Theorem
The logic EC is sound and strongly complete with respect to the class of
neighborhood frames that are closed under intersections.
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The Proofs

Fact: ⟨MEM,Nmin
EM ⟩ is not closed under supersets.

Lemma
Suppose that M = sup(Mmin

EM). Then M is canonical for EM.

Theorem
The logic EM is sound and strongly complete with respect to the class of
supplemented frames.
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The Proofs

Theorem
The logic K is sound and strongly complete with respect to the class of filters.

Theorem
The logic K is sound and strongly complete with respect to the class of
augmented frames.
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What about the logic EK?

2(φ → ψ) → (2φ → 2ψ)

X ∈ N(w) and X ∪ Y ∈ N(w) then Y ∈ N(w).

Frederik van de Putte and Paul McNamara (2022). Neighbourhood Canonicity for EK, ECK,
and Relatives. The Review of Symbolic Logic, 15(3), pp. 607-623.
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M,w |= 2(ψ1, . . . ,ψk ; φ) iff there is an X ∈ N(w) such that

▶ for all x ∈ X , M, x |= φ and

▶ for all i ∈ {1, . . . , k} there is a xi ∈ X such that M, xi |= ψi

Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist, and Junhua Yu (2017). Instantial
Neighbourhood Logic. The Review of Symbolic Logic 10(1), pp. 116 - 144.
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Axiomatization
R-Mon 2(γ1, . . . ,γj ;ψ) → 2(γ1, . . . ,γj ;ψ ∨ χ)

L-Mon 2(γ1, . . . ,γj , φ;ψ) → 2(γ1, . . . ,γj , φ ∨ χ;ψ)

Inst 2(γ1, . . . ,γj , φ;ψ) → 2(γ1, . . . ,γj , φ ∧ ψ;ψ)

Norm ¬2(⊥;ψ)

Case 2(γ1, . . . ,γj ;ψ) → 2(γ1, . . . ,γj , δ;ψ) ∨2(γ1, . . . ,γj ;ψ ∧ ¬δ)

Weak 2(γ1, . . . ,γj , φ, δ1, . . . , δn;ψ) → 2(γ1, . . . ,γj , δ1, . . . , δn, φ;ψ)

Dupl 2(γ1, . . . ,γj , φ, δ1, . . . , δn, φ;ψ) → 2(γ1, . . . ,γj , δ1, . . . , δn, φ;ψ),
provided φ ∈ {γ1, . . . ,γj , δ1, . . . , δn}

MP From α → β and α infer β

RE From α ↔ β and φ infer φ[α/β], where φ[α/β] is the result of possibly
replacing some occurrences of α with β.
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Theorem (Soundness and Weak Completeness)
For any formula φ, ⊢ φ if, and only if, |= φ.

Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist, and Junhua Yu (2017). Instantial
Neighbourhood Logic. The Review of Symbolic Logic 10(1), pp. 116 - 144.
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Incompleteness
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φ is globally true in a Kripke model M, written M |= φ, if M,w |= φ for all
w ∈ M

φ is valid in a Kripke frame F , written F |= φ, if M |= φ for all M based on F

φ is valid over a class F of frames if for all F ∈ F, F |= φ
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For a class F of frames, let Log(F) = {φ | F |= φ for all F ∈ F}

A logic L is Kripke complete if there is a class F of Kripke frames for which
L = Log(F). Otherwise, it is Kripke incomplete

Let Fr(L) = {F | F |= φ for all φ ∈ L}

For Kripke complete logics L, L = Log(Fr(L))

For a Kripke incomplete logic L, L ⊊ Log(Fr(L))
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Theorem (Thomason 1972; Fine 1975, Thomason 1974). There are Kripke
incomplete logics.
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Lattice

A lattice is an algebra A = (A,∧,∨) where A is a set (called the carrier set or
the domain) and ∧ and ∨ are binary operators (i.e., functions mapping pairs of
elements from A to elements of A) satisfying the following equations: for all
x , y , z ∈ A:

(1a) x ∨ x = x (1b) x ∧ x = x
(2a) x ∨ y = y ∨ x (2b) x ∧ y = y ∧ x
(3a) x ∨ (y ∨ z) = (x ∨ y) ∨ z (2b) x ∧ (y ∧ z) = (x ∧ y) ∧ z
(4a) x ∨ (x ∧ y) = x (4b) x ∧ (x ∨ y) = x
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Boolean Algebra
A = (A,∧,∨) is a distributive lattice if A is a lattice and the following
equations are satisfied: for all x , y , z ∈ A

(5a) x ∧ (x ∨ y) = (y ∧ z) ∨ (x ∧ z) (5b) x ∨ (x ∧ y) = (y ∨ z) ∧ (x ∨ z)

A (distributive) lattice A is bounded if there are 0 ∈ A and 1 ∈ A such that: for
all x ∈ A,

(6a) x ∨ 1 = 1 (6b) x ∧ 1 = x
(7a) x ∨ 0 = x (7b) x ∧ 0 = 0

The structure A = (A,∧,∨,−) is Boolean algebra if (A,∧,∨) is a bounded
distributive lattice, − is a unary operator on A satisfying the following equations:
for all x ∈ A,

(8a) x ∨−x = 1 (8b) x ∧−x = 0
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Examples of Boolean Algebras

▶ 2 = ({0, 1},∧,∨,−) where 0 ≤ 1 is a Boolean algebra, −0 = 1 and
−1 = 0.

▶ For a set W ̸= ∅, (℘(W ),∩,∪,∅,W ) is a Boolean algebra. This is often
denoted as 2W

▶ Suppose that S ⊆ ℘(W ) is closed under ∩, ∪ and ·. Then (S ,∩,∪,∅,W )
is a Boolean algebra. It is a subalgebra of 2W .

▶ Let S = {X ⊆ N | X is finite or N \ X is finite}. Then
(S ,∪,∩,−,∅,N) is a Boolean algebra.
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Examples of Boolean Algebras

▶ Let At be a countable set of propositional variables, and Form(At) the
propositional formulas generated from At, ∧, ∨ and ¬. Then,
(Form(At),∧,∨,¬) is a Boolean algebra (called a term algebra)
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Examples of Boolean Algebras

▶ Lindenbaum-Tarski algebra: Let At be a countable set of propositional
variables, and F = Form(At) the propositional formulas generated from At,
∧, ∨ and ¬.
Suppose that ⊢ is derivability is some axiomatization of propositional logic.
For φ,ψ ∈ Form(At), write φ ≡ ψ when ⊢ φ ↔ ψ.

Then ≡ is an equivalence relation and a congruence on
(Form(φ),∧,∨,¬).
The Lindenbaum-Tarski algebra is the quotient space, denoted F/≡, is
({[φ] | φ ∈ Form(At),∧,∨,¬) where [φ] ∨ [ψ] = [φ ∨ ψ],
[φ] ∧ [ψ] = [φ ∧ ψ], and ¬[φ] = [¬φ].

It is not hard to see that F/≡ is a Boolean algebra.
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Boolean Algebra with Operators

A BAO is a Boolean algebra together with one more more unary
operators f such that f (x ∨ y) = f (x) ∨ f (y) and for the bottom element of
the algebra 0, f (0) = 0.

We often denote the operator f by ‘3’. So, a BAO is a tuple
⟨A,∧,∨,¬, 0, 1,3⟩ where A is a set and all the axioms 1a-8a, 1b-8b are all
satisfied and 3(x ∨ y) = 3x ∨3y and 30 = 0.

Theorem. Every normal modal logic is sound and complete with respect to a
BAO: The Lindenbaum-Tarski algebra of the logic
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General Frames

General frames/models: ⟨W ,R ,A⟩ where ⟨W ,R⟩ is a frame, and A ⊆ ℘(W ) is
a BAO: Boolean algebra closed under the operator R−1 : ℘(W ) → ℘(W ):
where for all X , R−1(X ) = {w | there is a v ∈ X with w R v}.

A general model is a structure ⟨W ,R ,A,V ⟩, where ⟨W ,R ,A⟩ is a general
frame and for all p ∈ At, V (p) ∈ A.

Theorem. Every consistent modal logic is sound and complete with respect to
some class of general frames.
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A Kripke frame F = ⟨W ,R⟩ is associated with its dual
F+ = ⟨℘(W ),∩,∪,−,R−1⟩.
Let A = (A,∧,∨,−,⊥,⊤,3) be a BAO.

C: For all X ⊆ A,
∨
X exists and is an element of A

A: Any non-bottom element is above an atom, i.e., minimal non-bottom
element (if a ̸= ⊥, then there is a b ̸= ⊥ such that a > b and for all c if
b > c , then c = ⊥)

V : For all X ⊆ A, if
∨
X exists, then

3
∨

X =
∨
{3x | x ∈ X}

For every Kripke frame F , F+ is a CAV-BAO
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Taking any Kripke frame/CAV-BAO, converting it into its dual
CAV-BAO/Kripke frame, and then going back produces an output isomorphic to
the original input. Therefore, Kripke completeness is just CAV-completeness.

The fact that a normal modal logic is not the logic of any class of Kripke frames
means that it is not the logic of any class of CAV-BAO.
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Let A = (A,∧,∨,−,⊥,⊤, f ) be a BAO and let θ : At → A, then define
θ̂(p) = θ(p), θ̂(¬φ) = −θ̂(φ); θ̂(φ ∨ ψ) = θ̂(φ) ∨ θ̂(ψ); and θ̂(3φ) = f θ̂(φ)

The BAO A validates a modal formula φ iff for all maps θ, θ̂(φ) = ⊤

Σ |=X φ iff for every A ∈ X , if A validates σ for every σ ∈ X , then A validates
φ.

Let X be a class of BAOs and L a normal modal logic in a language with modal
operators. We say that L is X -complete if for all formulas φ, we have φ ∈ L iff
L |=X φ. Otherwise L is X -incomplete.
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(vB) 23⊤ → 2(2(2p → p) → p)

Let vB be the smallest normal modal logic containing vB .

Theorem (van Benthem, 1979)
The logic vB is incomplete.
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Lemma
Any Kripke frame that validates vB also validates 23⊤ → 2⊥.
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Definition (van Benthem Frame)
Let VB = ⟨W ,R ,W⟩ where:
1. W = N ∪ {∞,∞ + 1};
2. R = {(∞ + 1,∞), (∞,∞)} ∪ {(∞, n) | n ∈ N} ∪ {(m, n) | m, n ∈

N,m > n};
3. W = {X ⊆ W | X is finite and ∞ ̸∈ X } ∪ {X ⊆ W |

X is cofinite and ∞ ∈ X }

Lemma
23⊤ → 2(2(2p → p) → p) is valid over VB while 23⊤ → 2⊥ is not.
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Given that the properties C, A, and V are independent of each other, will
arbitrary combinations of these three lead to distinct notions of completeness,
each more general than Kripke completeness but less general than algebraic
completeness? Or is the propositional modal language too coarse to care about
differences between all or at least some of these semantics?

W. Holliday and T. Litak. Complete Additivity and Modal Incompleteness. The Review of
Symbolic Logic, 2020.
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Incompleteness?

Are all modal logics complete with respect to some class of neighborhood
frames?

No

37



Incompleteness?

Are all modal logics complete with respect to some class of neighborhood
frames? No
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Incompleteness
Martin Gerson. The Inadequacy of Neighbourhood Semantics for Modal Logic. Journal of
Symbolic Logic (1975).

There are two logics L and L′ that are incomplete with respect to neighborhood
semantics.
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Incompleteness
Martin Gerson. The Inadequacy of Neighbourhood Semantics for Modal Logic. Journal of
Symbolic Logic (1975).

There are two logics L and L′ that are incomplete with respect to neighborhood
semantics.

(there are formulas φ and φ′ that are valid in the class of frames for L and L′

respectively, but φ and φ′ are not deducible in the respective logics).
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Incompleteness
Martin Gerson. The Inadequacy of Neighbourhood Semantics for Modal Logic. Journal of
Symbolic Logic (1975).

There are two logics L and L′ that are incomplete with respect to neighborhood
semantics.

L is between T and S4

L′ is above S4 (adapts Fine’s incomplete logic)

38



Comparing Relational and Neighborhood Semantics

Fact: If a (normal) modal logic is complete with respect to some class of
relational frames then it is complete with respect to some class of neighborhood
frames.

What about the converse?

Are there normal modal logics that are incomplete with respect to relational
semantics, but complete with respect to neighborhood semantics?
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Comparing Relational and Neighborhood Semantics

Fact: If a (normal) modal logic is complete with respect to some class of
relational frames then it is complete with respect to some class of neighborhood
frames.

What about the converse?

Are there normal modal logics that are incomplete with respect to relational
semantics, but complete with respect to neighborhood semantics? Yes!

39



Comparing Relational and Neighborhood Semantics

Neighborhood completeness does not imply Kripke completeness

▶ extension of K

D. Gabbay. A normal logic that is complete for neighborhood frames but not for Kripke frames.
Theoria (1975).

▶ extension of T

M. Gerson. A Neighbourhood frame for T with no equivalent relational frame. Zeitschr. J.
Math. Logik und Grundlagen (1976).

▶ extension of S4

M. Gerson. An Extension of S4 Complete for the Neighbourhood Semantics but Incomplete for
the Relational Semantics. Studia Logica (1975).
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W. Holliday and T. Litak. Complete Additivity and Modal Incompleteness. The Review of
Symbolic Logic, 2020.

L. Chagrova. On the Degree of Neighborhood Incompleteness of Normal Modal Logics. AiML
1 (1998).

V. Shehtman. On Strong Neighbourhood Completeness of Modal and Intermediate Propositional
Logics (Part I). AiML 1 (1998).

T. Litak. Modal Incompleteness Revisited. Studia Logica (2004).
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W. Holliday and Y. Ding. Another Problem in Possible World Semantics. Proceedings of AiML,
2020.
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Kaplan’s Paradox

(A) ∀p3∀q(Qq ↔ 2(p ↔ q))

For what sentential operators Q does (A) hold? As Kaplan writes:

“Perhaps, for every proposition, it is possible that it and only it is Queried [That
is, it is asked whether it is the case that p....]. Or Perhaps not. It shouldn’t really
matter. There may be no operator expressible in English which satisfies (A). Still,
logic shouldn’t rule it out.” (p. 43)

D. Kaplan (1995). A problem in possible world semantics. in: W. Sinnott-Armstrong, D.
Raffman and N. Asher, editors, Modality, morality, and belief: essays in honor of Ruth Barcan
Marcus, Cambridge University Press, Cambridge, pp. 41 - 52.
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Two weaknesses as a problem for possible world semantics.

1. As (A) involves quantification over propositions in the object language,
Kaplan’s paradox does not pose a direct problem for possible world
semantics for modal languages without propositional quantifiers.

2. Even if we want propositional quantification, on careful inspection (A) does
not in fact target the world part of possible world semantics.
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Basic modal language: φ := p | ¬φ | (φ ∧ ψ) | 2φ | Qφ
where p ∈ At

Frame: M = ⟨W ,N2,NQ⟩ where W ̸= ∅, N2 : W → ℘(℘(W )) and
NQ : W → ℘(℘(W ))

Model: M = ⟨W ,N2,NQ ,V ⟩ where ⟨W ,N2,NQ⟩ is a frame and
V : At → ℘(W )

Truth:

▶ M,w |= 2φ iff [[φ]]M ∈ N2(w)

▶ M,w |= Qφ iff [[φ]]M ∈ NQ(w)
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A logic L is congruential if it contains all propositional tautologies, is closed
under modus ponens, closed under uniforms substitution and closed under the
congruence rule: if φ ↔ ψ ∈ L, then Oφ ↔ Oψ ∈ L (for each operator O).
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(Split) p → (3(p ∧Qp) ∧3(p ∧ ¬Qp))

Let S be the smallest congruential modal logic containing Split and 2⊤.

Theorem (Holliday and Ding, 2020)

▶ There is no neighborhood frame that validates S;

▶ If a BAO validates S, then it is atomless;

▶ The logic S is complete for a class of neighborhood possibility frames.
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Proof

Suppose F = ⟨W ,N2,NQ⟩ validates S. Define a model M = ⟨W ,N2,NQ ,V ⟩,
such that for some w ∈ W , V (p) = {w}.

Since F validates Split, M,w |= 3(p ∧Qp) ∧3(p ∧ ¬Qp).
[[¬(p ∧Qp)]]M ̸∈ N2(w) and [[¬(p ∧ ¬Qp)]]M ̸∈ N2(w)

Since V (p) is a singleton, [[p ∧Qp]]M = ∅ or [[p ∧ ¬Qp]]M = ∅

[[¬(p ∧Qp)]]M = W or [[¬(p ∧ ¬Qp)]]M = W . This implies W ̸∈ N2(w),
contradicting the validity of 2⊤.
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(Split) p → (3(p ∧Qp) ∧3(p ∧ ¬Qp))

Let S be the smallest congruential modal logic containing Split and 2⊤.

Theorem (Holliday and Ding, 2020)

▶ There is no neighborhood frame that validates S;

▶ If a BAO validates S, then it is atomless;

▶ The logic S is complete for a class of neighborhood possibility frames.
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General Neighborhood Frames

A general neighborhood frame is a tuple Fg = ⟨W ,N ,A⟩ where ⟨W ,N⟩ is a
neighborhood frame and A is a collection of subsets of W closed under
intersections, complements, and the mN operator.

A valuation V : At → ℘(W ) is admissible for a general frame if for each p ∈ At,
V (p) ∈ A.

Suppose that Fg = ⟨W ,N ,A⟩ is a general neighborhood frame. A general
modal based on Fg is a tuple Mg = ⟨W ,N ,A,V ⟩ where V is an admissible
valuation.
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General Neighborhood Frames

Lemma
Let Mg = ⟨W ,N ,A,V ⟩ be an general neighborhood model. Then for each
φ ∈ L, [[φ]]Mg ∈ A.

Lemma
Let L be any logic extending E. Then a general canonical frame for L validates L.

Corollary
Any modal logic extending E is strongly complete with respect to some class of
general frames.
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Summary

For any consistent modal logic L:

▶ If L is Kripke complete, then it is neighborhood complete

▶ L is complete with respect to its class of general frames

There are modal logics showing that

▶ neighborhood completeness does not imply Kripke completeness

▶ algebraic completeness does not imply neighborhood completeness
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Summary

For any consistent modal logic L:

▶ If L is Kripke complete, then it is neighborhood complete

▶ L is complete with respect to its class of general frames

There are modal logics showing that

▶ neighborhood completeness does not imply Kripke completeness

▶ algebraic completeness does not imply neighborhood completeness
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We can simulate any non-normal modal logic with a bi-modal normal modal logic.
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Definition
Given a neighborhood model M = ⟨W ,N ,V ⟩, define a Kripke model
M◦ = ⟨V ,RN ,R ̸∋,RN ,Pt,V ⟩ as follows:

▶ V = W ∪ ℘(W )

▶ R∋ = {(u,w) |w ∈ W , u ∈ ℘(W ),w ∈ u}
▶ R ̸∋ = {(u,w) |w ∈ W , u ∈ ℘(W ),w ̸∈ u}
▶ RN = {(w , u) | w ∈ W , u ∈ ℘(W ), u ∈ N(w)}
▶ Pt = W

Let L′ be the language

φ := p | ¬φ | φ ∧ ψ | [∋]φ | [ ̸∋]φ | [N ]φ | Pt

where p ∈ At and Pt is a unary modal operator.
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Define ST : L → L′ as follows

▶ ST (p) = p

▶ ST (¬φ) = ¬ST (φ)

▶ ST (φ ∧ ψ) = ST (φ) ∧ ST (φ)

▶ ST (2φ) = ⟨N⟩([∋]ST (φ) ∧ [ ̸∋]¬ST (φ))

Lemma
For each neighborhood model M = ⟨W ,N ,V ⟩ and each formula φ ∈ L, for any
w ∈ W ,

M,w |= φ iff M◦,w |= ST (φ)
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Define ST : L → L′ as follows
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w v

{w} {v} ∅

M

w v

{w} {v}

{w , v}

∅

RN :
R∋:
R ̸∋:

M◦

M,w |= 2p and M, v |= 2⊥.

▶ M◦,w |= ⟨N⟩([∋]p ∧ [ ̸∋]¬p) and M◦, v ̸|= ⟨N⟩([∋]p ∧ [ ̸∋]¬p)
▶ M◦, v |= ⟨N⟩([∋]⊥∧ [ ̸∋]⊤) and M◦,w ̸|= ⟨N⟩([∋]⊥∧ [ ̸∋]⊤)
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Monotonic Models

Lemma
On Monotonic Models ⟨N⟩([∋]ST (φ) ∧ [ ̸∋]¬ST (φ)) is equivalent to
⟨N⟩([∋]ST (φ))
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