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p0 pt(·)= p0(· | E )=⇒
Learn that E



Conditional Probability

The probability of E given F , dented p(E |F ), is defined to be

p(E |F ) = p(E ∩ F )

p(F )
.

provided P(F ) > 0.



Setting pt(·) = p0(· | E ) is demonstrably the correct thing to do just in case, for
all propositions H ∈ Σ, both:

1. Certainty: pt(E ) = 1

2. Rigidity: pt(H | E ) = p0(H | E )
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Observation by candlelight

An agent inspects a piece of cloth by candlelight, and gets the impression that it
is green (G ), although he concedes that it might be blue (B) or even (but very
improbably) violet (V ).

p0(G ) = p0(B) = 0.3, p0(V ) = 0.4

⇓

pt(G ) = 0.7, pt(B) = 0.25, pt(V ) = .05

Is there a proposition E such that pt(·) = p0(· | E )?
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Jeffrey Conditionalization

When an observation bears directly on the probabilities over a partition {Ei},
changing them from p(Ei) to q(Ei), the new probability for any proposition H
should be

q(H) =
∑
i

p(H | Ei)q(Ei)

Fact: If q is obtained from p by Jeffrey Conditioning on the partition {E ,E}
with q(E ) = 1, then q(·) = p(· | E ).
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a0.25

c0.25

b 0.25

d 0.25

F1 F2

E1

E2

The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(a) = p({a} | E1) ∗ p∗(E1) + p({a} | E2) ∗ p∗(E2) = 0.25 ∗ 0.5 + 0 = 0.4
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The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(b) = p0({b} | E1) ∗ p(E1) + p0({b} | E2) ∗ p(E2) = 0 + 0.5 ∗ 0.8 = 0.4
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c0.25

b 0.4

d 0.25
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The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(c) = p0({c} | E1) ∗ p(E1) + p0({c} | E2) ∗ p(E2) = 0 + 0.5 ∗ 0.2 = 0.1
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The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(d) = p0({d} | E1) ∗ p(E1) + p0({d} | E2) ∗ p(E2) = 0 + 0.5 ∗ 0.2 = 0.1



P. Diaconis and S. Zabell. Updating Subjective Probability. Journal of the American Statistical
Association, Vol. 77, No. 380., pp. 822-830 (1982).



Fact. Jeffrey conditioning is not commutative.

Commutativity on Experiences Any rule for updating degrees of belief on
experiences should be such that the result of updating credences on one
experience and then another should be the same as the result of updating on the
same two experiences in reverse order.



J. Weisberg. Commutativity or Holism? A Dilemma for Conditionalizers. British Journal of the
Philosophy of Science, 60(4), pp. 793-812, 2009.

M. Lange. Is Jeffrey Conditionalization Defective in Virtue of Being NonCommutative? Remarks
on the Sameness of Sensory Experience. Synthese 123: 393-403, 2000.

C. Wagner. Probability kinematics and commutativity. Philosophy of Science 69, 266-278, 2002.



p0

E
p0(E ) > 0

p(·) = p0(· | E )

(M) p0(A | pf ) = pf (A)



p0

(E1 : q1, . . . ,Ek : qk)
{Ei} is a partition,

∑
i qi = 1

p(·) =
∑

i qi ∗ p0(· | Ei)

(M) p0(A | pf ) = pf (A)



p0

E1 E2 Ei· · · · · · EkEk−1

{Ei} is a partition

p0(· | Ei)p0(· | E1) p0(· | E2) p0(· | Ek−1) p0(· | Ek)

· · · · · ·

(M) p0(A | pf ) = pf (A)



p0

E1 E2 Ei· · · · · · EkEk−1

{Ei} is a partition

pip1 p2 pk−1 pk

· · · · · ·

(M) p0(A | pf ) = pf (A)



Suppose that you are in a learning situation even more amorphous than the kind
which motivates Jeffrey’s idea. There is no nontrivial partition that you expect
with probability one to be sufficient for your belief change....Perhaps you are in a
novel situation where you expect the unexpected observational input....You are
going to just think about some subject matter and update as a result of your
thoughts...I will consider the learning situation a kind of black box and attempt
no analysis of its internal structure.
asdd (Skyrms, pg. 96, 97)



p0

pfp1 p2 · · · pn−1pn· · ·

(M) p0(A | pf ) = pf (A)



p0

pfp1 p2 · · · pn−1pn· · ·

(Reflection/Martingale Property) p0(A | pf ) = pf (A)



Reflection Principle

Suppose that your anticipated future degree of belief for A is given by a random
variable X . So, for instance, X = r and r < X < s can be assigned probabilities.

Reflection Principle: p0(A | X = r) = r

p0(A) =
∑

r p0(A | X = r)p0(X = r)
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A basic result about probabilities.

For any finite partition {Ei} of the state space and any event H ,

p(H) =
∑
i

p(Ei)p(H | Ei)



H

p(H) = p(H ∩ E1) + · · ·+ p(H ∩ E6)

= p(E1)
p(E1)

p(H ∩ E1) + · · ·+ p(E6)
p(E6)

p(H ∩ E6)

=
∑

i p(Ei)P(H | Ei)
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Update by Conditioning Satisfies Reflection

Let P be a partition of the set of state.

p0(A | P) is a random variable assigning to each state w , p0(A | E ) where E is
the unique element of P containing w .

Suppose that p0(A | Ek) ̸= p0(A | Ej) for any Ek ,Ej ∈ P. Then,
p0(A | p0(A | P) = r) = p0(A | E ) where E ∈ P is the unique element with
p0(A | E ) = r . So, p0(A | p0(A | P) = r) = r .

Suppose that E1, . . . ,Em are the elements of P such that p0(A | Ei) = r for all
1 ≤ i ≤ m. Then, p0(A | E1 ∪ · · · ∪ Em) = r . Note that
p0(A | p0(A | P) = r) = p0(A | E1 ∪ · · · ∪ Em) = r .
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It was suggested by Skyrms (1990) that this principle provides a plausible way to
distinguish learning situations from situations where one expects probabilities to
change for other reasons, such as getting drunk, having a brain lesion or having a
dangerously low blood sugar level.

Huttegger develops an account in which the reflection principle is a necessary
condition for a black-box probability update to count as a genuine learning
experience.

Simon Huttegger. Learning Experiences and the Value of Knowledge. Philosophical Studies,
2013.
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The Value of Knowledge

Why is it better to make a “more informed” decision?
Suppose that you can either choose know, or perform a costless experiment and
make the decision later. What should you do?

I. J. Good. On the principle of total evidence. British Journal for the Philosophy of Science, 17,
pgs. 319 - 321, 1967.

“Never decide today what you might postpone until tomorrow in order to learn
something new”



Choose between n acts A1, . . . ,An (with states Ki) or perform a cost-free
experiment with possible results {ek}, then decide.

EU(A) =
∑
i

p(Ki)U(A & Ki)

Then,
U(Choose now) = max

j

∑
i

p(Ki)U(Aj & Ki)

= max
j

∑
k

∑
i

p(Ki)p(ek | Ki)U(Aj & Ki)



Choose between n acts A1, . . . ,An (with states Ki) or perform a cost-free
experiment with possible results {ek}, then decide.

EU(A) =
∑
i

p(Ki)U(A & Ki)

Then,
U(Choose now) = max

j

∑
i

p(Ki)U(Aj & Ki)

= max
j

∑
k

∑
i

p(Ki)p(ek | Ki)U(Aj & Ki)



Choose between n acts A1, . . . ,An (with states Ki) or perform a cost-free
experiment with possible results {ek}, then decide.

EU(A) =
∑
i

p(Ki)U(A & Ki)

Then,
U(Choose now) = max

j

∑
i

p(Ki)U(Aj & Ki)

= max
j

∑
k

∑
i

p(Ki)p(ek | Ki)U(Aj & Ki)



Choose between n acts A1, . . . ,An (with states Ki) or perform a cost-free
experiment with possible results {ek}, then decide.

EU(A) =
∑
i

p(Ki)U(A & Ki)

Then,
U(Choose now) = max

j

∑
i

p(Ki)U(Aj & Ki)

= max
j

∑
i

∑
k

p(ek)p(Ki | ek)U(Aj & Ki)



Bayes Theorem. p(Ki |ej) = p(ej |Ki)
p(Ki )
p(ej )
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The value of an informed decision conditional on e:

max
j

∑
i

p(Ki | e)U(Aj & Ki)

U(Learn, Choose ) =
∑

k p(ek)maxj
∑

i p(Ki | ek)U(Aj & Ki)
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∑

k p(ek)maxj
∑

i(
p(ek | Ki )p(Ki )

p(ek )
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∑
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∑

i p(ek | Ki)p(Ki)U(Aj & Ki)
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∑

k

∑
i p(Ki)p(ek | Ki)U(Aj & Ki) and∑

k maxj
∑

i p(ek | Ki)p(Ki)U(Aj & Ki)∑
k maxj g(k , j) is greater than or equal to maxj

∑
k g(k , j), so the second is

greater than or equal to the first.
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max
j

∑
i

p(Ki | e)U(Aj & Ki)

U(Learn, Choose ) =
∑

k p(ek)maxj
∑

i p(Ki | ek)U(Aj & Ki)

=
∑

k p(ek)maxj
∑

i(
p(ek | Ki )p(Ki )

p(ek )
)U(Aj & Ki)

=
∑

k maxj
∑

i p(ek | Ki)p(Ki)U(Aj & Ki)

Compare maxj
∑

k

∑
i p(Ki)p(ek | Ki)U(Aj & Ki) and∑

k maxj
∑

i p(ek | Ki)p(Ki)U(Aj & Ki)∑
k maxj g(k , j) is greater than or equal to maxj

∑
k g(k , j), so the second is

greater than or equal to the first.



(M) implies value of knowledge

Suppose that (M) holds.

Then (assuming that each p(pf ) is positive) your value for choosing an act now is

max
j

∑
i

p(Ki)u(Aj&Ki) = max
j

∑
i

∑
f

p(Ki | pf )p(pf )u(Aj&Ki)

= max
j

∑
f

∑
i

pf (Ki)p(pf )u(Aj&Ki)

The value of choosing after the learning experience is:∑
f

p(pf )max
j

∑
i

pf (Ki)u(Aj&Ki)

The latter term cannot be less than the former term on general mathematical
grounds.
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▶ The experiment is assumed to be essentially costless;

▶ You know that you are an expected utility maximizer and that you will be
one after learning the true member of the partition.

▶ In the classical theorem you know that you will update by conditioning; in
Skyrms’ extension, you know that you will honor the martingale principle.

▶ By working within Savage’s decision theory, the states and acts are
probabilistically independent (choosing an act does not give any information
about the state).



▶ The states, acts and utilities are the same before and after the learning
experience.

▶ Having the learning experience does not by itself alter your probabilities for
states of the world (although the outcomes of the experience usually do);
the learning experience and the states of the world are probabilistically
independent.



...the martingale principle should not be applied to belief changes in
epistemologically defective situations. In situations of memory loss, of being
brainwashed or being under the influence of drugs, (M) should obviously not
hold. If you believe that in an hour you will think you can fly because you’re
about to consume some funny looking pills, then you should not already now
have that belief.

So, the martingale principle is claimed to apply if you learn something in the
black-box, but not if you learn nothing or other things happen besides learning.



A genuine learning situation is partially characterized in the following way:

Postulate. If a belief change from p to {pf } constitutes a genuine learning
situation, then∑

f

p(pf )max
j

∑
i

pf (Ki)u(Aj&Ki) ≥ max
∑
i

p(Ki)u(Aj&Ki)

for all utility values u(Aj&Ki) with strict inequality unless the same act
maximizes expected utility irrespective of which of the pf occurs.



If a belief change leads you to foreseeably make worse choices than you could
already make now in some decision situations, then it cannot be a pure learning
experience. Perhaps you are bolder after having taken those funny looking pills,
for example. From your current perspective, this might help you in some decision
problems, but it will be harmful in others.
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Tools for Formal Epistemology:
Doxastic Logic, Probability, and Default Logic

– ESSLLI 2023 –
Lecture 3.2 – Beginning Default Logic

Aleks Knoks, University of Luxembourg
Eric Pacuit, University of Maryland

1 Unpacking the course title

• What is epistemology? What is formal epistemology?

• Toolbox

• How formal does formal epistemology need to be?

• The remainder of the course (cf. ESSLLI33):

– default logic (Wed / Thu)
– some applications in epistemology (Thu / Fri)

2 Default logic and defeasible (a.k.a. nonmonotonic) logics

• Monotonic consequence relation: if X follows from Γ, then X

follows from Γ ∪∆.

Of course, classical logic is monotonic.

• Defeasible (or nonmonotonic) logics are, roughly, formal systems

with a consequence relations that are not monotonic, often intended

to capture our commonsense reasoning.

For some Γ, ∆, X: Γ |∼ X , but Γ ∪∆ 6 |∼ X .

• Default logic is one kind of defeasible logic.
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3 Why default logic (and not some other system)?

• An early historically important system

• Good balance between accessibility and expressive power

• Appears to be particularly good for modeling reasoning

(more) explicitly

4 Default theories

4.1 Notation

• Propositions: A, B, C, . . . , >

• Connectives: ∧, ∨, ¬, ⊃

• Classical consequence: `

• Logical closure: Th(E) = {A : E ` A}

4.2 Standard example

• Tweety is a bird

Therefore, Tweety is able to fly

Why? Well, bird typically can fly!

• Tweety is a bird

Tweety is a penguin

Therefore, Tweety is not able to fly

Why? Well, penguins typically can’t fly!

4.3 Default rules

• Rules of the form X → Y

Example: B(t)→ F (t)

Instance of: B(x)→ F (x) (“Birds fly”)

Given our language, simply B → F

4.4 Premise and conclusion

• Where δ = X → Y , let

Premise(δ) = X

Conclusion(δ) = Y

• Where S is a set of defaults, let

Conclusion(S) = {Conclusion(δ) : δ ∈ S}.

2



4.5 Priority ordering on defaults

• δ < δ′ says that δ′ is stronger than δ

< is a strict partial order, or an irreflexive and transitive

relation

• Priorities can have various sources:

Specificity

Reliability

Authority

Relative confidence

. . .

(In general, this is going to depend on the

application)

4.6 Default theories

• A default theory is a tuple 〈W,D, <〉 where:

W is a set of propositional formulas

D is a set of default rules

and < is an ordering on D

4.7 Example (Tweety Triangle)

• ∆1 = 〈W,D, <〉 where

W = {P, P ⊃ B}
D = {δ1, δ2}

– δ1 = B → F

– δ2 = P → ¬F

δ1 < δ2

(P = Tweety is a penguin, B = Tweety is a bird,

F = Tweety can fly)

4.8 Inference graphs

>

P

B

F

δ1 < δ2

δ1

δ2

1
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5 From default theories to extensions

5.1 Core question (of default logic)

• What can one conclude from a default theory?

Alternatively: What is the extension of a given default

theory 〈W,D, <〉?
• extension = a belief set an ideal reasoner might arrive at,

based on the information contained in 〈W,D, <〉

5.2 Reiter vs. Horty

• Reiter defines extensions directly (and many others do too):

|∼
E

∆ = 〈W ,D〉

1

• Horty (2012) takes a roundabout way

• A scenario based on 〈W,D, <〉 is any subset S of

the defaults D
• A proper scenario is the (intuitively) “right” subset of D
• An extension E based on 〈W,D, <〉, then, turns into

E = Th(W ∪ Conclusion(S)), where S is proper.

? S

E
Th(W ∪ (Conlusion(S))

∆ = 〈W ,D, <〉

1

4



5.3 Example (Tweety)

• ∆1 = 〈W,D, <〉 where

W = {P, P ⊃ B}
D = {δ1, δ2}

– δ1 = B → F

– δ2 = P → ¬F

δ1 < δ2

• You’re given ∆1.. What are the scenarios based on it?

• which of these is the proper one?

• what is the extension?

5.4 Next step

• Specify how to select proper scenarios..

6 Binding defaults

6.1 Intuition

• Binding defaults are, intuitively, the good or correct ones to

base the conclusions on in the context. Proper scenarios will

contain all and only such defaults.

• The concept will emerge as a combination of three

preliminary notions: (i) triggering, (ii) conflict, and (iii) defeat.

6.2 Triggered defaults

• Triggered〈W,D,<〉(S) = {δ ∈ D :W ∪ Conclusion(S) ` Premise(δ)}

6.3 Example (Tweety)

>

P

B

F

δ1 < δ2

δ1

δ2

1

• ∆′
1 = 〈W,D, <〉 where

W = {B,P ⊃ B}
D = {δ1, δ2}
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– δ1 = B → F

– δ2 = P → ¬F

δ1 < δ2

• Here Triggered∆1(∅) = {δ1}

. . .
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