Computational Game Theory in Julia

Eric Pacuit, University of Maryland

Lecture 2

ESSLLI 2023

Plan

- Finding Nash equilibria in GameTheory.jl
- Agent based modeling in Julia: Agents.jl

- A game in normal form is a tuple $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ where:
 - ► *N* is a finite set of players.
 - ▶ For each $i \in N$, S_i is a (finite) set of actions, or strategies, for player *i*.
 - For each $i \in N$, $u_i : \prod_{i \in N} S_i \to \mathbb{R}$

Notation

Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form.

- For s ∈ Π_{i∈N}S_i, s_i is the *i*th component of s and s_{-i} = (s₁,..., s_{i-1}, s_{i+1},...s_n) is the tuple of all strategies except s_i
- For i ∈ N, let S = Π_{i∈N}S_i be the set of strategy profiles, also called the outcomes of G.
- For $i \in N$, let $S_{-i} = \prod_{j \in N, j \neq i} S_j$.

Notation

Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form.

- For s ∈ Π_{i∈N}S_i, s_i is the *i*th component of s and s_{-i} = (s₁,..., s_{i-1}, s_{i+1},...s_n) is the tuple of all strategies except s_i
- For i ∈ N, let S = Π_{i∈N}S_i be the set of strategy profiles, also called the outcomes of G.
- For $i \in N$, let $S_{-i} = \prod_{j \in N, j \neq i} S_j$.
- For a set X, let $\Delta(X)$ be the set of probability measures on X.
- $m \in \Delta(S_i)$ is called a **mixed strategy** for player *i*.
- A mixed strategy profile is an element of $\prod_{i \in N} \Delta(S_i)$.

Expected Utility, Best Response

Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form.

For $a \in S_i$ and $p \in \Delta(S_{-i})$ the expected utility of a with respect to p is

$$EU_i(a, p) = \sum_{t \in S_{-i}} p(t)u_i(a, t)$$

Expected Utility, Best Response

Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form.

For $a \in S_i$ and $p \in \Delta(S_{-i})$ the expected utility of a with respect to p is

$$EU_i(a,p) = \sum_{t \in S_{-i}} p(t)u_i(a,t)$$

For $X \subseteq \Delta(S_{-i})$, the **best response set for player** *i*, $BR_i : X \to \wp(S_i)$, is defined as follows: for $p \in X$,

$$BR_i(p) = \{a \mid a \in S_i \text{ and } \forall a' \in S_i : EU_i(a, p) \ge EU_i(a', p)\}$$

Identify S_{-i} with the set $\{p \mid p \in \Delta(S_{-i}), p(s) = 1 \text{ for some } s \in S_{-i}\},\$

A strategy profile $s \in \prod_{i \in N} S_i$ is a (pure strategy) Nash equilibrium provided that for all $i \in N$, $s_i \in BR_i(s_{-i})$

Mixed Extension

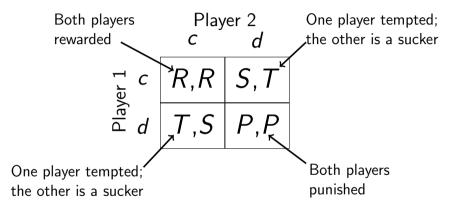
Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form.

The **mixed extension of** *G* is the tuple $\langle N, (\Delta(S_i))_{i \in N}, (U_i)_{i \in N} \rangle$, where for $m \in \prod_{i \in N} \Delta(S_i)$

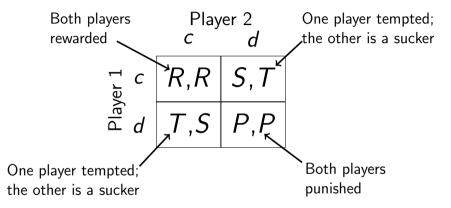
$$U_i(m) = \sum_{s \in S} u_i(s) \prod_{i \in N} m_i(s_i)$$

A mixed strategy Nash equilibrium in G is a tuple $m \in \prod_{i \in N} \Delta(S_i)$ that is a Nash equilibrium in the mixed extension of G.

Symmetric Games

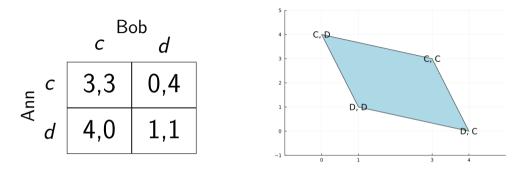


Symmetric Games



Symmetric games are classified in terms of the relationship between R (reward), T (temptation), S (sucker) and P (punishment):

Prisoner's Dilemma

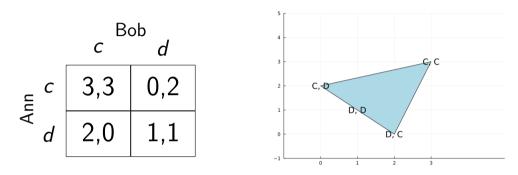


If T > R > P > S, then the game is a Prisoner's Dilemma.

d strictly dominates c

- (c, c) Pareto dominates (d, d)
- (d, d) is the unique Nash equilibrium

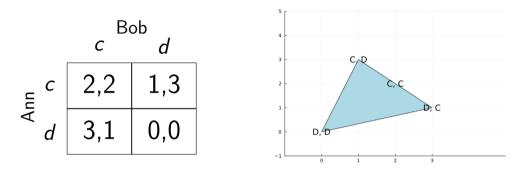
Stag Hunt



If R > T and P > S, then the game is called Stag Hunt.

- d is a less "risky" option than c
- (c, c) Pareto dominates (d, d)
- (c, c) and (d, d) are both Nash equilibria

Chicken



If T > R and S > P, then the game is called Chicken (or Hawk-Dove). c is a less "risky" option than d (c, c) Pareto dominates (d, d)(c, d) and (d, c) are both Nash equilibria

Games on a Grid

Fix a set of n agents and a game G.

Put each agent at a point on a grid and randomly assign a strategy C or D to each agent.

During each stage of the simulation:

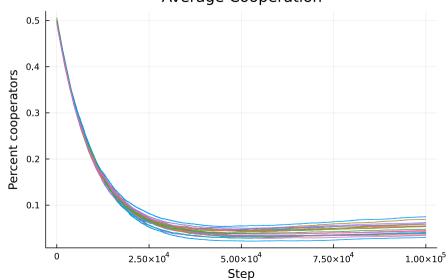
- 1. Randomly select an agent a
- 2. Each of a's neighbors plays G against their neighbors and records the total payout.
- 3. Agent *a* imitates the strategy of the player with the maximum total payout.

Modifications

- Add a mutation rate: randomly mutate the chosen strategy.
- Choose 8 random players rather than interacting only with your neighbors.
- Different update rules: choose the agent imitate based on the proportion of average payouts of the neighbors.
- Mix agents with different update rules.
- Use networks rather than a grid.

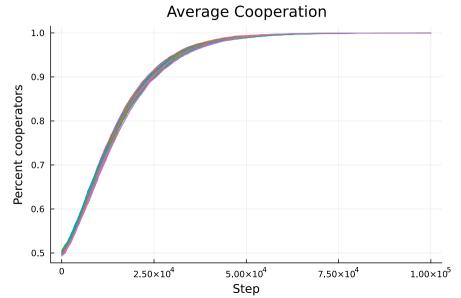
Grid size: 100×100 Mutation rate: 0.0 Update type: Imitator Number of steps: 100,000Number of simulations: 20

Prisoner's Dilemma



Average Cooperation

Stag Hunt



Chicken

