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Pa = x0.2, 0.8y and Pb = x0.4, 0.6y

EU(U) = 0.4 ¨ 2+ 0.6 ¨ 0 = 0.8
EU(D) = 0.4 ¨ 0+ 0.6 ¨ 1 = 0.6
EU(L) = 0.2 ¨ 1+ 0.8 ¨ 0 = 0.2
EU(R) = 0.2 ¨ 0+ 0.8 ¨ 2 = 1.6
SQA = 0.2 ¨ EU(U) + 0.8 ¨ EU(D) = 0.2 ¨ 0.8+ 0.8 ¨ 0.6 = 0.64
SQB = 0.4 ¨ EU(L) + 0.6 ¨ EU(R) = 0.4 ¨ 0.2+ 0.6 ¨ 1.6 = 1.04



BoS - Nash Dynamics



Bayes dynamics

The Bayes dynamics, also called Darwin dynamics, transforms Ii P ∆(Si ) into
a new probability I 1

i P ∆(Si ) as follows. For each s P Si :

I 1
i (s) = Ii (s) +

1

k
Ii (s)

EUi (s) ´ SQi

SQi
.

where k ą 0 is the “index of caution”.



BoS - Bayes



Deliberational Dynamics

“There is nothing in the nature of deliberational dynamics that requires that
deliberators be simpleminded, but the illustrations I have chosen...are relatively
unsophisticated. These players follow their noses in the direction of the current
apparent good, with no real memory of where they have been, no capability of
recognizing patterns, and no sense of where they are going.” (Skyrms, pg. 152)



Backward and forward induction reasoning

Backward induction reasoning: player’s ignore past behavior and reason only
about their opponents’ future moves.

Forward induction reasoning: player’s rationalize past behavior and use it as a
basis to form beliefs about their opponents’ future moves.
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A. Perea. Backward Induction versus Forward Induction Reasoning. Games, 1, pgs. 168 - 188,
2010.
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A. Knoks and EP. Deliberating between Backward and Forward Induction Reasoning: First Steps.
Proceedings of Theoretical Aspects of Rationality and Knowledge (TARK 2015).

A. Knoks and EP. Deliberational dynamics in context. Proceedings of LOFT (LOFT 2018).
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Forward induction reasoning
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Nash deliberators Bayes deliberators



Note that both Bayes and Nash deliberators converge on (IU , L) and (O,R).

If Bob is a backward induction reasoner, then he ignores Ann’s initial move as he
deliberates between L and R .

On the other hand, if Bob is a forward induction reasoner, then, during
deliberation, he should assign probability 0 to Ann choosing I then D (since it is
strictly dominated by choosing O). This belief about Ann’s choice does not
change during deliberation.
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Ann may be uncertain about whether Bob is a forward induction reasoner or a
backward induction reasoner (and Bob may assume this about Ann).

Ann’s belief at time t + 1 that Bob will play strategy s is:

Pt+1
a (s) = wa,t I

t
b,BI (s) + (1 ´ wa,t)I

t
b,FI (s)

where I tb,BI is Bob’s inclinations as a backward induction reasoner at step t, I tb,FI
is Bob’s inclinations as a backward induction reasoner at step t, and wa,t is the
weight Ann assigns to Bob being a backward induction reasoner at step t.
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By varying the weights, we can represent players that are not fully backward
induction reasoners or fully forward induction reasoners.

1. The weights wa,t are Ann’s prior beliefs about whether Bob is a backward
induction reasoner or a forward induction reasoner.

2. The weights wa,t are defined by the context of the target game.

3. The weights wa,t depend both on the context of the game and the
probability that the players are prone to trembling-hand mistakes.
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Coordination - Nash deliberators



Imprecise Priors

It is assumed that the players precise states of indecision are common knowledge
at the onset of deliberation.

Imprecise Prior: Each players prior is a convex set of probability measures over
her actions space.

Restrict attention to games with two players where each players has two
strategies.



A precise state of indecision for the row player is

Prow (t) = xp1row (t), . . . , pnrow (t)y

where pjrow (t) is the probability that row assigns to her strategy j at time t.

An imprecise state of indecision has p1row = [lp, up] and p2row = [1 ´ up, 1 ´ lp].
For example, if p1row = [0.6, 0.7], then p2row = [0.3, 0.4].

Row (Col) has an expected utility for each probability measure in Col’s (Row’s)
interval. Row (Col) need only compute expected utilities with respect to the
endpoints of column’s interval.
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EUrow (U , 0) = [0.1, 0.4]
EUrow (D, 0) = [0.6, 0.9]



col

ro
w

U L R

U 0,0 1,1 U

D 1,1 0,0 U

pUrow (0) = [0.6, 0.8] and pLcol (0) = [0.6, 0.9]

EUrow (U , 0) = [0.1, 0.4]
EUrow (D, 0) = [0.6, 0.9]



col

ro
w

U L R

U 0,0 1,1 U

D 1,1 0,0 U

pUrow (0) = [0.6, 0.8] and pLcol (0) = [0.6, 0.9]

EUrow (U , 0) = [0.1, 0.4]
EUrow (D, 0) = [0.6, 0.9]

How should you calculate Prow (1) and Pcol (1)?



1. pUrow = 0.6, pLcol = 0.6: SQrow = 0.30, Covrow (U) = 0, Covrow (D) = 0.30.
pUrow (1) =

0.6+0
1+0.3 = 0.4615

2. pUrow = 0.6, pLcol = 0.9: SQrow = 0.40, Covrow (U) = 0, Covrow (D) = 0.20.
pUrow (1) =

0.6+0
1+0.4 = 0.4286

3. pUrow = 0.8, pLcol = 0.6: SQrow = 0.32, Covrow (U) = 0, Covrow (D) = 0.28.
pUrow (1) =

0.8+0
1+0.32 = 0.6061

4. pUrow = 0.8, pLcol = 0.9: SQrow = 0.20, Covrow (U) = 0, Covrow (D) = 0.7.
pUrow (1) =

0.8+0
1+0.7 = 0.4706

pUrow = [0.4286, 0.6061]



§ The area of a rectangle of indecision need not be preserved by deliberational
dynamics

§ For example, players may start out with imprecise prior probabilities and
deliberation results in point probabilities (E.g., Figure 3.4, 3.5 on pgs. 68,
69)

§ The pure mixed strategy in the game of Chicken is not stable for precise
probabilities. Starting from [0.51, 0.49], [0.51, 0.49], the orbit explodes to a
state of mutual total bewilderment.

§ In matching pennies, the mixed strategy is strongly stable. However, starting
from [0.51, 0.49], [0.51, 0.49], the imprecision explodes to cover the whole
space (see Figure 3.8, pg. 72)

§ When analyzed in terms of precise priors, the pure coordination game and
Chicken were both seen to be situations in which coordination could arise
spontaneously. This is not true when starting with imprecise probabilities.
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1. How can convention without communication be sustained? (Lewis)

2. How can convention without communication be generated?



Ann and Bob each have predeliberational probabilities. They can be anything at
all. These probabilities are made common knowledge at the start of deliberation.

You—the philosopher—have some probability distribution over the space of Ann
and Bob’s initial probabilities. Then you should believe with probability one that
the deliberators will converge to one of the pure Nash equilibria.

Precedent and other forms of initial salience may influence the deliberators’ initial
probabilities, and thus may play a role in determining which equilibrium is
selected.
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Correlation

Players can improve their expected value by correlating their choices on an
“outside signal”.

With more than 2 players...

A player may believe that (some of) the other players strategy choices are
independent or correlated.

Two players can agree or disagree on the probabilities that the assign to a
third player’s choice of strategy.
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§ Three Nash equilibria:
§ (u, l): the payoff is (2, 1)
§ (d , r): the payoff is (1, 2)
§ Mixed Nash Equilibrium: ([ 23 : u, 13 : d ], [ 13 : l , 23 : r ]): the payoff is ( 23 ,
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§ Mixed Strategies: Each player conducts a private, independent lottery to
choose their strategy.

Conduct a public lottery: flip a fair coin and follow the strategy
(H ñ (u, l), T ñ (d , r)). The expected payoff is (1.5, 1.5).
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Two extremes:

1. Completely private, independent lotteries

2. A single, completely public lottery

What about: a public lottery, but reveal only partial information about the
outcome to each of the players?
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§ Three Nash equilibria:
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§ ([ 23 : c, 13 : d ], [ 23 : c , 13 : d ]): the payoff is (42
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After conducting the lottery, an outside observer provides Ann with a
recommendation to play the first component of the profile that was chosen,
and Bob the second component.

The expected payoff is 1
3(6, 6) +

1
3(2, 7) +

1
3(7, 2) = (5, 5)
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Correlated Equilibrium

Let G = xN , (Si )iPN , (ui )iPNy be a game.

A correlated strategy n-tuple in G is a function from a finite probability space Γ
into S = S1 ˆ ¨ ¨ ¨ ˆ Sn. That is, f is a random variable whose values are n-tupels
of actions.

Chance (according to the probability space Γ) chooses an element γ P Γ, then
each player is recommended to take action fi (γ).

Correlated Equilibrium: A correlated equilibrium in G is a correlated strategy
n-tuple f such that

EUi (f ) ě EUi (gi , f´i )



Imagine an outside observer, who does not know what the players’ initial
probabilities for the possible actions will be, but rather has his own probability
measure over the possible initial states of indecision of the system.

With respect to this probability, the players are at a correlated equilibrium.

“This correlated equilibrium is a general result of the players’ common knowledge
and Bayesian dynamic deliberations.” (Skyrms, pg. 60)

The same result may be obtained without the outside observer if prior to
deliberation the players themselves share the role of the outside observer.
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Peter Vanderschraaf and Brian Skyrms. Learning to take turns. Erkenntnis 59, pp. 311-348,
2003.



Impure Coordination
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(S1, S2) and (S2, S1), and ([S1 : 0.5, S2 : 0.5], [S1 : 0.5, S2 : 0.5])
are the Nash equilibria



Fictitious Play (Brown, 1951)

Fictitious Play: A process by which players who repeatedly play a fixed game, the
base game, update their beliefs about each other according to what they actually
observe (so their beliefs are the frequencies of observed actions).

The players are myopically Bayesian rational in that at each play in the sequence,
each follows a strategy that maximizes her expected payoff in the base game
given her current beliefs.

In traditional fictitious play, players enter into the sequence with initial beliefs
regarding the strategies the others will follow, and as the sequence progresses
they modify their beliefs recursively as a function of the frequency of strategies
they follow.

There are large interesting classes of games for which fictitious play converges to
Nash equilibrium and there are other interesting classes of games for which it
does not converge at all.
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does not converge at all.



Fictitious Play (Brown, 1951)

Fictitious Play: A process by which players who repeatedly play a fixed game, the
base game, update their beliefs about each other according to what they actually
observe (so their beliefs are the frequencies of observed actions).

The players are myopically Bayesian rational in that at each play in the sequence,
each follows a strategy that maximizes her expected payoff in the base game
given her current beliefs.

In traditional fictitious play, players enter into the sequence with initial beliefs
regarding the strategies the others will follow, and as the sequence progresses
they modify their beliefs recursively as a function of the frequency of strategies
they follow.

There are large interesting classes of games for which fictitious play converges to
Nash equilibrium and there are other interesting classes of games for which it
does not converge at all.



Fictitious Play in the Impure Coordination Game

Traditional fictitious play applied to the Impure Coordination game converges to
one of three distributions: the distributions that define the strict equilibria
(S1, S2) and (S2, S1), and the and the mixed equilibrium where each player
follows S1 and S2 with probability 0.5 each.





But if the players’ parameters are such that fictitious play converges to the mixed
Nash equilibrium, then their actual sequence of plays oscillates between (S1, S1)
and (S2, S2), so they miscoordinate on every play!



If rational agents start following a pattern of miscoordination, would they not
notice this and try to break out of this pattern?

Indeed, if a pair of agents like Jan and Jill are paired together to play the Impure
Coordination game repeatedly, one might expect them to settle into a pattern
where they coordinate, not one where they miscoordinate.

Specifically, one might expect them to take turns between the strict equilibria
(S1, S2) and (S2, S1).
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If rational agents start following a pattern of miscoordination, would they not
notice this and try to break out of this pattern?

Indeed, if a pair of agents like Jan and Jill are paired together to play the Impure
Coordination game repeatedly, one might expect them to settle into a pattern
where they coordinate, not one where they miscoordinate.
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Move from the traditional fictitious play model, where players recursively modify
probabilities that their opponents follow given strategies, to a Markov chain
model, where players recursively modify the probabilities that they make a
transition from one state of the game to another. Then we could base our
prediction of the next play on the current state and players’ transition
probabilities.



Consider a Markov chain with M possible states.

XT+1
ij is the probability that there is a transition for state i to state j at time

T + 1.

This is determined as follows:

XT+1
ij =

nij + θij

Ti +
řM

k=1 θik

§ θij ą 0 is the prior weight of a transition from i to j

§ nij is the observed number of transitions from i to j

§ Ti is the total number of transitions from i .



Impure Coordination
Bob

A
nn

U S1 S2

S1 1, 1 2, 3 U

S2 3, 2 0, 0 U

sij denotes strategy profile (Si , Sj ) for i , j P t1, 2u.

sTij means (Si , Sj ) is played in round T .

s˚j is the strategies that range holding j fixed—e.g., s˚2 = t(S1, S2), (S2, S2)u.
Similarly for sj˚.

µT
i (¨) is Player i ’s subjective probability at time T
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µT
i (¨) is Player i ’s subjective probability at time T



Impure Coordination
Bob
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U S1 S2

S1 1, 1 2, 3 U

S2 3, 2 0, 0 U

sij denotes strategy profile (Si , Sj ) for i , j P t1, 2u.

sTij means (Si , Sj ) is played in round T .

s˚j is the strategies that range holding j fixed—e.g., s˚2 = t(S1, S2), (S2, S2)u.
Similarly for sj˚.

µT
i (¨) is Player i ’s subjective probability at time T



Transition Probabilities

αij ,kl = µT+1
1 (sT+1

kl | sTij )

βij ,kl = µT+1
2 (sT+1

kl | sTij )



Expected Utilities

ET+1
1 (u1(s1˚) | sTij ) = u1(s11)(α

T+1
ij ,11 + αT+1

ij ,21 ) + u1(s12)(α
T+1
ij ,12 + αT+1

ij ,22 )

ET+1
1 (u1(s2˚) | sTij ) = u1(s21)(α

T+1
ij ,11 + αT+1

ij ,21 ) + u1(s22)(α
T+1
ij ,12 + αT+1

ij ,22 )

ET+1
2 (u2(s˚1) | sTij ) = u2(s11)(βT+1

ij ,11 + βT+1
ij ,12 ) + u2(s21)(βT+1

ij ,21 + βT+1
ij ,22 )

ET+1
2 (u2(s˚2) | sTij ) = u2(s12)(βT+1

ij ,11 + βT+1
ij ,12 ) + u2(s22)(βT+1

ij ,21 + βT+1
ij ,22 )



ET+1
1 (u1(s1˚) | sTij ) = u1(s11)(α

T+1
ij ,11 + αT+1

ij ,21 ) + u1(s12)(α
T+1
ij ,12 + αT+1

ij ,22 )

Player 1’s expected utility for playing S1 given that the previous state of play of
(S1, S2).



ET+1
1 (u1(s1˚) | sTij ) = u1(s11) (α

T+1
ij ,11 + αT+1

ij ,21 ) + u1(s12) (α
T+1
ij ,12 + αT+1

ij ,22 )

Player 1’s utility for the outcome (S1, S2) and player 1’s utility for the outcome
(S1, S2).



ET+1
1 (u1(s1˚) | sTij ) = u1(s11) (α

T+1
ij ,11 + αT+1

ij ,21 ) + u1(s12)(α
T+1
ij ,12 + αT+1

ij ,22 )

The probability of transitioning from a state (Si , Sj ) to a state where player 2
plays S1.



ET+1
1 (u1(s1˚) | sTij ) = u1(s11)(α

T+1
ij ,11 + αT+1

ij ,21 ) + u1(s12) (α
T+1
ij ,12 + αT+1

ij ,22 )

The probability of transitioning from a state (Si , Sj ) to a state where player 2
plays S2.



Expected Utilities

ET+1
1 (u1(s1˚) | sTij ) = u1(s11)(α

T+1
ij ,11 + αT+1

ij ,21 ) + u1(s12)(α
T+1
ij ,12 + αT+1

ij ,22 )

ET+1
1 (u1(s2˚) | sTij ) = u1(s21)(α

T+1
ij ,11 + αT+1

ij ,21 ) + u1(s22)(α
T+1
ij ,12 + αT+1

ij ,22 )

ET+1
2 (u2(s˚1) | sTij ) = u2(s11)(βT+1

ij ,11 + βT+1
ij ,12 ) + u2(s21)(βT+1

ij ,21 + βT+1
ij ,22 )

ET+1
2 (u2(s˚2) | sTij ) = u2(s12)(βT+1

ij ,11 + βT+1
ij ,12 ) + u2(s22)(βT+1

ij ,21 + βT+1
ij ,22 )
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A
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S1 1, 1 2, 3 U

S2 3, 2 0, 0 U

αT+1
12,21 = αT+1

21,12 = 1 βT+1
12,21 = βT+1

21,12 = 1
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ET+1
2 (u1(s˚1) | sT12) = 1(0+ 0) + 2(1+ 0) = 2

ET+1
2 (u1(s˚2) | sT12) = 3(0+ 0) + 0(1+ 0) = 0
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Alternating equilibrium
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Markov Fictitious Play

µT+1
1 (sT+1

kl | ST
ij ) = αT+1

ij ,kl =
nTij ,kl + λ1α0

ij ,kl

nTij + λ1

where λ1α0
ij ,kl is the prior weight for the initial beliefs.



Simulation

At the start of a run, the initial transitions transition probabilities are sampled
randomly from the uniform probability distribution over [0, 1]

λ1 and λ2 are 10 ˚ |x | where x is sampled from a normal distribution with mean
0 and variance 1.

Each simulation for a game consisted of 10, 000 independent runs of 500 rounds
each.

We record the percentage of convergence to alternative equilibrium,
non-alternating equilibrium or other.
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Thank you!!

https://syl1.gitbook.io/julia-language-a-concise-tutorial/

https://juliadynamics.github.io/Agents.jl/stable/

https://pacuit.org/esslli2023/game-theory-julia/

https://syl1.gitbook.io/julia-language-a-concise-tutorial/
https://juliadynamics.github.io/Agents.jl/stable/
https://pacuit.org/esslli2023/game-theory-julia/

