Social Choice Theory and Machine Learning Lecture 1

Eric Pacuit, University of Maryland

August 5, 2024

https://pacuit.org/esslli2024/
social-choice-machine-learning/

Who considers themselves primarily a computer scientist?

- Who considers themselves primarily a computer scientist?
- Who considers themselves primarily a logician?

- Who considers themselves primarily a computer scientist?
- Who considers themselves primarily a logician?
- Who considers themselves primarily a philosopher?

- Who considers themselves primarily a computer scientist?
- Who considers themselves primarily a logician?
- Who considers themselves primarily a philosopher?
- Who considers themselves primarily a linguist?

- Who considers themselves primarily a computer scientist?
- Who considers themselves primarily a logician?
- Who considers themselves primarily a philosopher?
- Who considers themselves primarily a linguist?
- What areas of research did I miss?

- Who considers themselves primarily a computer scientist?
- Who considers themselves primarily a logician?
- Who considers themselves primarily a philosopher?
- Who considers themselves primarily a linguist?
- What areas of research did I miss?
- ▶ Who is familiar with social choice theory?
 - Arrow's Theorem?
 - May's Theorem?
 - Condorcet consistent voting methods?

Preferences

Stuart Russell (2019) proposes three principles "to guide AI researchers and developers in thinking about how to create beneficial AI systems" (p. 172):

- 1. The machine's only objective is to maximize the realization of human preferences.
- 2. The machine is initially uncertain about what those preferences are.
- 3. The ultimate source of information about human preferences is human behavior.

Stuart Russell (2019). *Human Compatible: Artificial Intelligence and the Problem of Control.* Viking Publishers.

Preferences

Stuart Russell (2019) proposes three principles "to guide AI researchers and developers in thinking about how to create beneficial AI systems" (p. 172):

- 1. The machine's only objective is to maximize the realization of human preferences.
- 2. The machine is initially uncertain about what those preferences are.
- 3. The ultimate source of information about human preferences is human behavior.

social choice theory addresses what it might meant to "maximize the realization of human preferences"?

Stuart Russell (2019). *Human Compatible: Artificial Intelligence and the Problem of Control.* Viking Publishers.

Social Choice for AI Ethics and Safety

https://sites.google.com/view/sc4ai/workshops/sc4ai24e

organized by

Vince Conitzer

Jobst Heitzig

Wes Holliday

Conference on AI, Ethics, and Society

AAAI / ACM conference on ARTIFICIAL INTELLIGENCE, ETHICS, AND SOCIETY

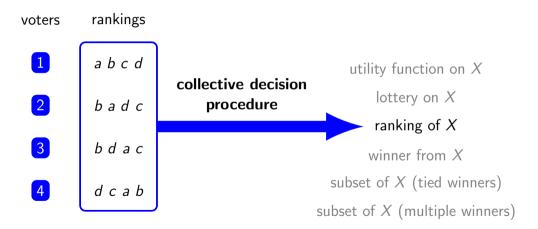
https://www.aies-conference.com/

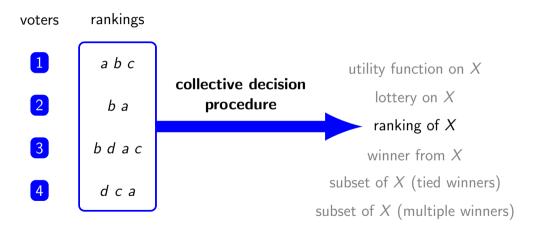
Course Plan

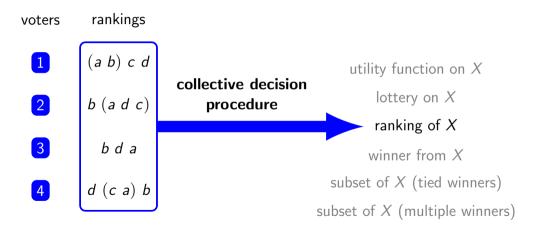
- introduction to mathematical analysis of voting methods, voting paradoxes;
- probabilistic voting methods;
- quantitative analysis of voting methods (e.g., Condorcet efficiency);
- learning voting rules (PAC-learning, MLPs, other approaches);
- using modern deep learning techniques to generate synthetic election data;
- strategic voting, learning to successfully manipulate voting rules based on limited information about how the other voters will vote using neural networks (multi-layer perceptrons);
- RLHF (reinforcement learning with human feedback) and social choice;
- using large-language models to improve group decision-making; and
- liquid democracy (time permitting).

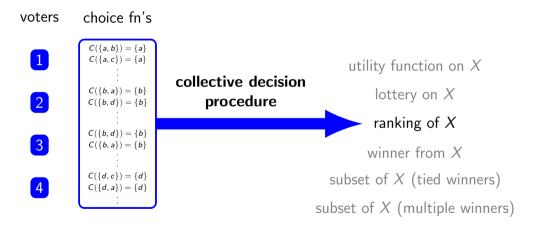
Plan for today (and probably tomorrow)

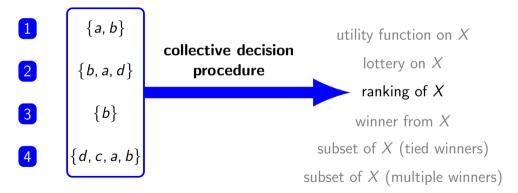
- A brief introduction to social choice theory
- A survey of voting methods
- Splitting cycles and breaking ties
- (time permitting) Probabilistic voting methods
- Preferential Voting Tools

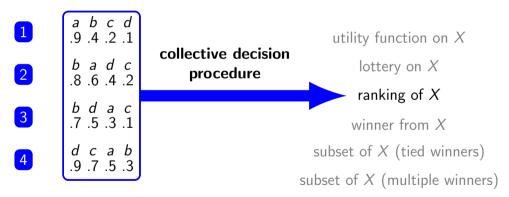

Background

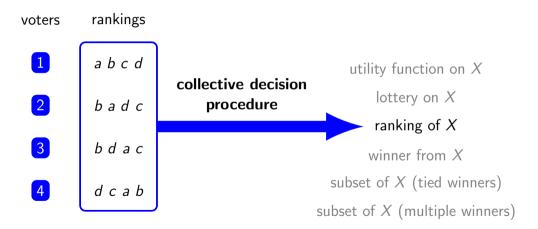

HANDBOOK of COMPUTATIONAL SOCIAL CHOICE


EDITED BY Felix Brandt • Vincent Conitzer • Ulle Endriss Jérôme Lang • Ariel D. Procaccia


Let's review the basic setup of social choice.




Let X be a set of *alternatives*.


voters approval sets

Let X be a set of *alternatives*.

voters \mathbb{R} -valued fn's

Let X be a set of *alternatives*.

rankings voters 1 abcd utility function on Xcollective decision lottery on X2 badc procedure ranking of Xevaluated by: 3 bdac winner from Xaxioms satisfied subset of X (tied winners) 4 dcab subset of X (multiple winners)

Let X be a set of *alternatives*.

rankings voters 1 abcd utility function on Xcollective decision lottery on X2 badc procedure ranking of Xevaluated by: 3 bdac winner from Xaxioms satisfied subset of X (tied winners) manipulability 4 dcab subset of X (multiple winners)

Let X be a set of *alternatives*.

rankings voters 1 abcd utility function on Xcollective decision lottery on X2 badc procedure ranking of Xevaluated by: 3 bdac winner from Xaxioms satisfied subset of X (tied winners) manipulability dcab 4 complexity subset of X (multiple winners)

Let X be a set of *alternatives*.

rankings voters abcd utility function on Xcollective decision lottery on X2 badc procedure ranking of X3 bdac evaluated by: winner from Xaxioms satisfied subset of X (tied winners) manipulability dcab complexity subset of X (multiple winners) social utility efficiency

Let X be a set of *alternatives*.

rankings voters abcd utility function on Xcollective decision lottery on X2 badc procedure ranking of X3 bdac evaluated by: winner from Xaxioms satisfied subset of X (tied winners) manipulability dcab 4 complexity subset of X (multiple winners) social utility efficiency

> a group of agents, called voters, must choose an alternative from a set X;

- \blacktriangleright a group of agents, called voters, must choose an alternative from a set X;
- each voter selects a *ballot* that expresses their preference about the alternatives;

- \blacktriangleright a group of agents, called voters, must choose an alternative from a set X;
- each voter selects a *ballot* that expresses their preference about the alternatives;
- how should we pick an alternative from X based on the submitted ballots?

- \blacktriangleright a group of agents, called voters, must choose an alternative from a set X;
- each voter selects a *ballot* that expresses their preference about the alternatives;
- how should we pick an alternative from X based on the submitted ballots?
- allowing for a tie, we're actually picking a subset of X, and some further (e.g., random) mechanism will choose a final alternative from the subset.

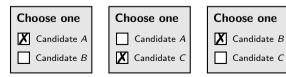
Types of Ballots

Rankings

MAYOR 市長	1 1st Choice 第一道律	2 2nd Choice 第二更相	3 3rd Choice 第三週常	4th Choice	5 5th Choice 第王連律	6th Choice 第六语词
ELLEN LEE ZHOU / 学慶興 Behavioral Health Clinician 行為健康施保治療師	•'		,	•		
LONDON N. BREED / 倫教 · 布里鄉 Mayor of San Francisco 三鄉市市長	'	3	•,	•		•
JOEL VENTRESCA / 萧爾 - 范崔斯卡 Ratired Airport Analyst 退休機場分析師		1	8	•	•'	•
WILMA PANG / 彭博慧 Ratirad Music Professor 退休音樂教授		,	•	•'	•	•
ROBERT L. JORDAN, JR. / 小篇伯特 · L · 雅丹 Preacher 得我士	'	2	3	•		•'
PAUL YBARRA ROBERTSON / 保羅 · 伊巴拉 · 羅伯森 Small Business Owner 小企業業主	'	•'	,	•	•	•
	1	2	,	•	,	•

Types of Ballots

Rankings


MAYOR 市長	1 1st Choice 第一選擇	2 2nd Choice 第二要律	3rd Choice 第三週律	4th Choice 第四語病	5th Choice 第五遺律	6th Choice 第六组织
ELLEN LEE ZHOU / 家愛農 Behavioral Health Clinician 行為健康施保治療師	•'	. 2	•		•	
LONDON N. BREED / 倫教 · 布里鄉 Mayor of San Francisco 三鄉市市長	,	3	•,	•		
JOEL VENTRESCA / 喬爾 · 范崔斯卡 Retired Airport Analyst 组体機場分析師		1	•	•	•'	
WILMA PANG / 彭博種 Ratirad Music Professor 退休音樂教授		,	•	•'	•	
ROBERT L. JORDAN, JR. / 小羅伯特 · L · 雅丹 Preacher 得我士	'	1	3	•		•
PAUL YBARRA ROBERTSON / 保護 · 伊巴拉 · 羅伯森 Small Business Owner 小企業業主	'	•'	,	•	•	
	,	2	,	•	,	•

Types of Ballots

Rankings

			翻译制		i de la	
MAYOR 市長	1 1st Choice 第一選算	2 2nd Choice 第二更評	3 3rd Choice 第三週港	4th Choice 第四語詞	5th Choice 第王遺律	6th Choice 新六语词
ELLEN LEE ZHOU / 家愛農 Behavioral Health Clinician 行為健康施保治療師	•'	. 2	,			
LONDON N. BREED / 倫教 · 布里鄉 Mayor of San Frencisco 三鄉市市長	,	3	•,		,	
JOEL VENTRESCA / 驚寶 - 范崔斯卡 Retired Airport Analyst 退休機場分析師		,	. *	•	•'	
WILMA PANG / 影傳種 Ratirad Music Professor 退休音樂教授		,	•	•,	•	
ROBERT L. JORDAN, JR. / 小羅伯特 · L · 鶯丹 Preacher 穆邦士	'	,	3	•	'	•
PAUL YBARRA ROBERTSON / 保護 · 伊巴拉 · 羅伯森 Small Business Owner 小企業業主	'	•'	,	•	•	
	1	2		•	,	•

$\mathsf{Grades}/\mathsf{Scores}$

Approval Voting Ballot

Vote for ALL the candidates you approve of:				
Elizabeth Education	V			
Jim Jobs	V			
Helen Healthcare	V			
Peter Pollution				
Tina Taxes				

Governor Candidates	Score <i>each</i> candidate by filling a number (0 is worst; 9 is best)
1: Candidate A	$\rightarrow 0(1)(2)(3)(4)(5)(6)(7)(8)(9)$
2: Candidate B	$\rightarrow 0123456789$
3: Candidate C	$\rightarrow 0123456789$

Voting Methods

Many rules have been proposed to choose the winners. See the entry https://plato.stanford.edu/entries/voting-methods/ for an overview.

Stanford Encyclopedia of Philosophy						
🖉 Browse 🛛 🚯 Abo	Browse () About Support SEP Search SEP					
Entry Contents Bibliography	Voting Methods					
Academic Tools	First published Wed Aug 3, 2011; substantive revision Mon Jun 24, 2019					
Friends PDF Preview	A fundamental problem faced by any gro	A fundamental problem faced by any group of people is how to arrive at a good group decision				

Rankings

Let X be a set of candidates and V a set of voters.

A strict linear order *P* on *X* is a relation $P \subseteq X \times X$ satisfying the following conditions for all *x*, *y*, *z* \in *X*:

asymmetry: if x P y then not y P x; transitivity: if x P y and y P z, then x P z; weak completeness: if $x \neq y$, then x P y or y P x.

Let $\mathcal{L}(X)$ be the set of all strict linear orders on X.

Rankings

Let X be a set of candidates and V a set of voters.

A strict linear order *P* on *X* is a relation $P \subseteq X \times X$ satisfying the following conditions for all *x*, *y*, *z* \in *X*:

asymmetry: if x P y then not y P x; transitivity: if x P y and y P z, then x P z; weak completeness: if $x \neq y$, then x P y or y P x.

Let $\mathcal{L}(X)$ be the set of all strict linear orders on X.

We also consider **strict weak orders** on X (denoted $\mathcal{O}(X)$, where voters can submit ties), and may allow voters to submit *truncated* preferences (only rank some of the candidates).

Variable candidate/voter profiles

Fix infinite sets \mathcal{V} and \mathcal{X} of *voters* and *candidates*, respectively.

Variable candidate/voter profiles

Fix infinite sets $\mathcal V$ and $\mathcal X$ of voters and candidates, respectively.

A **profile** (of linear orders) is a function $\mathbf{P} : V(\mathbf{P}) \to \mathcal{L}(X(\mathbf{P}))$ for some nonempty finite $V(\mathbf{P}) \subseteq \mathcal{V}$ and nonempty finite $X(\mathbf{P}) \subseteq \mathcal{X}$.

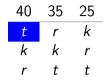
We call $V(\mathbf{P})$ and $X(\mathbf{P})$ the sets of voters in \mathbf{P} and candidates in \mathbf{P} , respectively.

Variable candidate/voter profiles

Fix infinite sets $\mathcal V$ and $\mathcal X$ of voters and candidates, respectively.

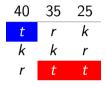
A **profile** (of linear orders) is a function $\mathbf{P} : V(\mathbf{P}) \to \mathcal{L}(X(\mathbf{P}))$ for some nonempty finite $V(\mathbf{P}) \subseteq \mathcal{V}$ and nonempty finite $X(\mathbf{P}) \subseteq \mathcal{X}$.

We call $V(\mathbf{P})$ and $X(\mathbf{P})$ the sets of voters in \mathbf{P} and candidates in \mathbf{P} , respectively.

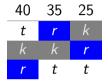

We call $\mathbf{P}(i)$ voter *i*'s ranking, and we write ' $x\mathbf{P}_i y$ ' for $(x, y) \in \mathbf{P}(i)$. As usual, we take $x\mathbf{P}_i y$ to mean that voter *i* strictly prefers candidate *x* to candidate *y*.

Anonymous profiles

40	35	25
t	r	k
k	k	r
r	t	t


40	35	25
t	r	k
k	k	r
r	t	t

Who should win?

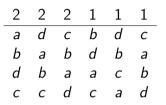

Who should win?

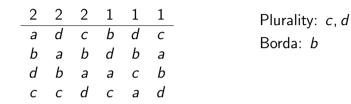
 \blacktriangleright t has the most first place votes (40)

Who should win?

 \blacktriangleright t has the most first place votes (40), but also the most last place votes (40).

Who should win?


- \blacktriangleright t has the most first place votes (40), but also the most last place votes (40).
- \blacktriangleright r beats t if k is dropped from the election (60 to 40).


Who should win?

- \blacktriangleright t has the most first place votes (40), but also the most last place votes (40).
- \blacktriangleright r beats t if k is dropped from the election (60 to 40).
- \blacktriangleright k beats both t (60 to 40) and r (65 to 35) head-to-head.

Scoring Rules and Iterative Methods

Scoring Rules and Iterative Methods

Scoring Rules: Assign *scores* to candidates based on the rankings of the voters. The alternatives with the greatest score are the winners.

Scoring Rules and Iterative Methods

2	2	2	1	1	1
а	d	С	b	d	С
Ь	а	b	d	b	а
d	Ь	а	а	С	b
с	С	d	С	а	d

Scoring Rules: Assign *scores* to candidates based on the rankings of the voters. The alternatives with the greatest score are the winners.

Iterative Methods: Iteratively remove "poorly performing" candidates until there is a candidate with a majority of first-place votes.

Positional scoring rules

A scoring vector is a vector $\langle s_1, \ldots, s_n \rangle$ of numbers such that for each $m \in \{1, \ldots, n-1\}$, $s_m \ge s_{m+1}$.

Given a profile **P** with $|X(\mathbf{P})| = n$, $x \in X(\mathbf{P})$, a scoring vector \vec{s} of length n, and $i \in V(\mathbf{P})$, define $score_{\vec{s}}(x, \mathbf{P}_i) = s_r$ where $r = Rank(x, \mathbf{P}_i)$.

Let $score_{\vec{s}}(x, \mathbf{P}) = \sum_{i \in V(\mathbf{P})} score_{\vec{s}}(x, \mathbf{P}_i)$. A voting method F is a **positional** scoring rule if there is a map S assigning to each natural number n a scoring vector of length n such that for any profile \mathbf{P} with $|X(\mathbf{P})| = n$,

$$F(\mathbf{P}) = \operatorname{argmax}_{x \in X(\mathbf{P})} \operatorname{score}_{\mathcal{S}(n)}(x, \mathbf{P}).$$

Examples

Plurality:	$S(n) = \langle n - 1, n - 2, \dots, 1, 0 \rangle$ $S(n) = \langle 1, 0, \dots, 0 \rangle$ $S(n) = \langle 1, 1, \dots, 1, 0 \rangle$				
	1	3	2	4	
	а	b	b	С	-
	С	а	С	а	
	Ь	С	а	Ь	

Borda winnercPlurality winnerbAnti-Plurality winnera

Plurality vs. Borda

1	1
а	С
b	b
С	а

Plurality winners: *a*, *c* Borda winners: *a*, *b*, *c*

Iterative Method: Instant Runoff Voting

- If some alternative is ranked first by an absolute majority of voters, then it is declared the winner.
- Otherwise, the alternative ranked first be the fewest voters (the plurality loser) is eliminated.
- Votes for eliminated alternatives get transferred: delete the removed alternatives from the ballots and "shift" the rankings (e.g., if 1st place alternative is removed, then your 2nd place alternative becomes 1st).

Also known as Ranked-Choice, STV, Hare

Iterative Method: Instant Runoff Voting

- If some alternative is ranked first by an absolute majority of voters, then it is declared the winner.
- Otherwise, the alternative ranked first be the fewest voters (the plurality loser) is eliminated.
- Votes for eliminated alternatives get transferred: delete the removed alternatives from the ballots and "shift" the rankings (e.g., if 1st place alternative is removed, then your 2nd place alternative becomes 1st).

Also known as Ranked-Choice, STV, Hare

How should you deal with ties? (e.g., multiple alternatives are plurality losers)

Tiebreaking I

- Non-neutral tiebreaking: Fix a linear ordering of the candidates
- ▶ Remove all: Remove all candidates tied for the smallest plurality score
- Parallel universe tiebreaking: A candidate a wins if a wins according to some linear ordering of the candidates

S. Obraztsova, E. Elkind and N. Hazon. *Ties Matter: Complexity of Voting Manipulation Revisited*. Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.

J. Wang, S. Sikdar, T. Shepherd, Z. Zhao, C. Jiang and L. Xia. *Practical Algorithms for Multi-Stage Voting Rules with Parallel Universes Tiebreaking*. Proceedings of AAAI, 2019.

Tiebreaking I

Remove all: Remove all candidates tied for the smallest plurality score

Parallel universe tiebreaking: A candidate a wins if a wins according to some linear ordering of the candidates

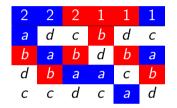
1	3	2	1	1
С	С	b	а	а
а	b	а	С	b
b	а	С	b	С

Instant Runoff: $\{c\}$ Instant Runoff PUT: $\{a, c\}$

Iterative Methods

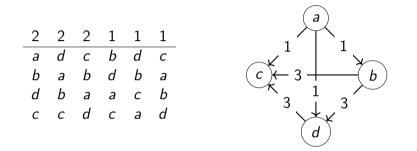
Variants:

- Plurality with runoff: remove all candidates except top two plurality score;
- Coombs: remove candidates with most last place votes;
- Baldwin: remove candidate with smallest Borda score;
- Strict Nanson: remove candidates with below average Borda score

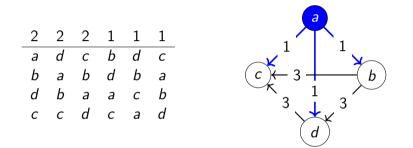

Example

1	1	1	1	1	
С	b	а	b	d	
а	d	b	С	а	
d	а	С	d	b	
Ь	С	d	а	С	

Instant Runoff Voting $\{b\}$ Coombs $\{d\}$ Baldwin $\{a, b, d\}$ Strict Nanson $\{a\}$


2	2	2	1	1	1
а	d	С	b	d	С
b	а	b	d	b	а
d	b	а	а	С	Ь
С	С	d	С	а	d

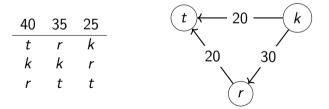
The **margin** of x over y is the number of voters that rank x strictly above y minus the number of voters that rank y strictly above x.



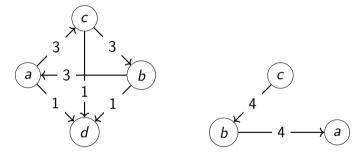
The **margin** of x over y is the number of voters that rank x strictly above y minus the number of voters that rank y strictly above x.

The **margin** of x over y is the number of voters that rank x strictly above y minus the number of voters that rank y strictly above x.

The **Condorcet winner** is an alternative that is majority preferred to each of the other alternatives.

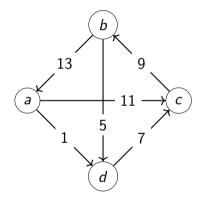

Let **P** be a profile and $a, b \in X(\mathbf{P})$. Then the margin of a over b is:

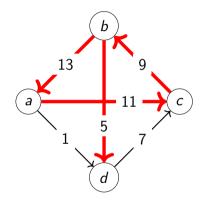
$$Margin_{\mathbf{P}}(a, b) = |\{i \in V(\mathbf{P}) \mid a\mathbf{P}_ib\}| - |\{i \in V(\mathbf{P}) \mid b\mathbf{P}_ia\}|.$$

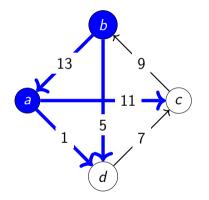

We say that a is majority preferred to b in **P** when $Margin_{\mathbf{P}}(a, b) > 0$.

The margin graph of P, $\mathcal{M}(\mathbf{P})$, is the weighted directed graph whose set of nodes is $X(\mathbf{P})$ with an edge from *a* to *b* weighted by Margin(a, b) when Margin(a, b) > 0. We write

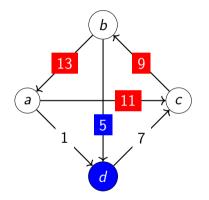
$$a \stackrel{lpha}{
ightarrow}_{\mathbf{P}} b$$
 if $lpha = Margin_{\mathbf{P}}(a, b) > 0$.

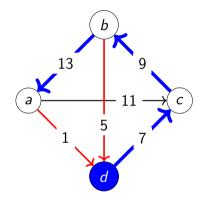


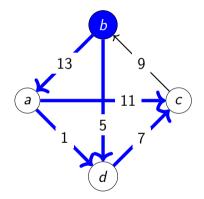

A margin graph is a weighted directed graph ${\mathcal M}$ where all the weights have the same parity.


Theorem (Debord, 1987)

If \mathcal{M} is a margin graph with all the weights having the same parity and if there is no edge between any two candidates, then all the weights are even, then there is a profile **P** of linear orders such that \mathcal{M} is the margin graph of **P**.

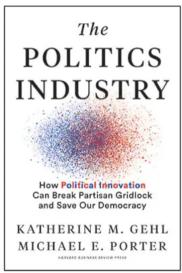



Every candidate loses to at least one other candidate


Copeland: $\{a, b\}$

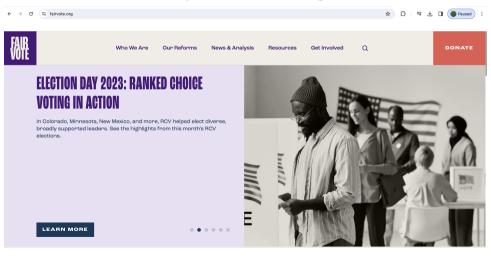
Copeland: $\{a, b\}$ Minimax: $\{d\}$

Copeland:	$\{a,b\}$
Minimax:	{d}
Beat Path:	{d}



Copeland: $\{a, b\}$

 $\begin{array}{ll} \mbox{Minimax:} & \{d\} \\ \mbox{Beat Path:} & \{d\} \\ \mbox{Ranked Pairs:} & \{b\} \end{array}$


Since different voting methods may select different alternatives for the same input, we need a way to discriminate between different voting methods.

Choosing how to choose

Choosing how to choose

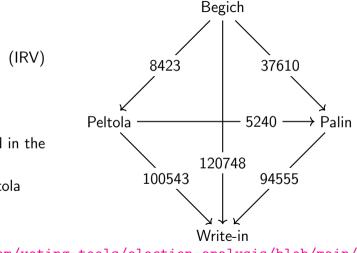
https://FairVote.org

Choosing how to choose

https://electionscience.org/

Instant Runoff Voting (aka Ranked Choice Voting) winner: Peltola.

Instant Runoff Voting (aka Ranked Choice Voting) winner: Peltola.

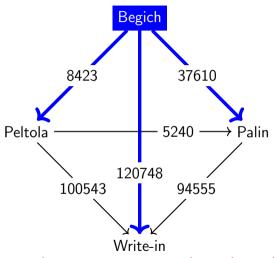

- Three main candidates: Begich, Palin, and Peltola
- Begich is removed in the first round
- Palin loses to Peltola

Round 1

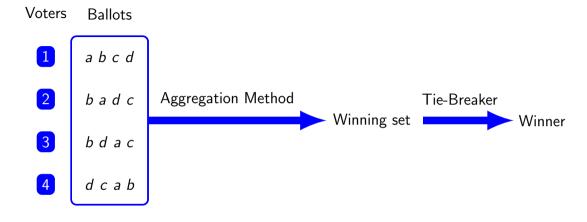
Candidate	Votes	Percentage
Begich, Nick	53,810	28.53%
Palin, Sarah	58,973	31.27%
Peltola, Mary S.	75,799	40.19%
Continuing Ballots Total	188,582	
Blanks	3,412	
Exhausted	0	
Overvotes	295	
Remainder Points	0	
Non Transferable Total	3,707	

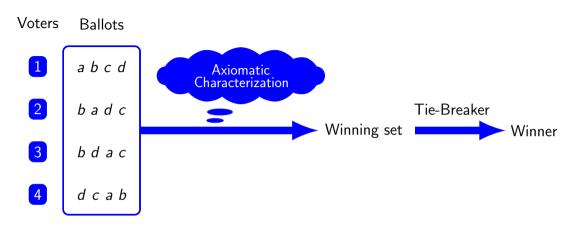
Round 2

Candidate	Votes	Percentage
Begich, Nick	0	0.00%
Palin, Sarah	86,026	48.52%
Peltola, Mary S.	91,266	51.48%
Continuing Ballots Total	177,292	
Blanks	3,412	
Exhausted	11,243	
Overvotes	342	
Remainder Points	0	
Non Transferable Total	14,997	

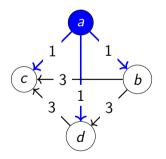

Instant Runoff Voting (IRV) winner: Peltola.

- The write-ins are initially removed
- Begich is removed in the first round
- Palin loses to Peltola

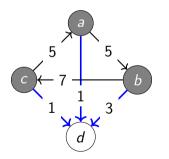

https://github.com/voting-tools/election-analysis/blob/main/ alaska_2022.ipynb


Instant Runoff Voting (IRV) winner: Peltola.

- The write-ins are initially removed
- Begich is removed in the first round
- Palin loses to Peltola

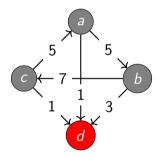

https://github.com/voting-tools/election-analysis/blob/main/ alaska_2022.ipynb

The traditional approach is to identify appealing principles (called axioms) and check which voting methods satisfy these principles.


Condorcet consistency: If a Condorcet winner exists, then it should be the unique winner.

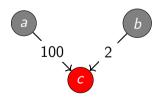
- × Plurality
- X Borda
- ✗ Instant Runoff
- X Coombs

- ✓ Copeland
- ✓ Beat Path
- ✓ Ranked Pairs
- 🗸 Minimax


Smith criterion: Always select an alternative from the the smallest set of alternatives such that every alternative in that set is majority preferred to every alternative outside of that set (this set of alternatives is called the Smith set).

- × Plurality
- 🗡 Borda
- ✗ Instant Runoff
- X Coombs

- \checkmark Copeland
- ✓ Beat Path
- ✓ Ranked Pairs
- 🗡 Minimax


Independence of Smith-Dominated Alternatives: The set of winners does not change after removing alternatives that are not in the Smith set.

- × Plurality
- 🗡 Borda
- ✗ Instant Runoff
- 🗶 Coombs

- \checkmark Copeland
- ✓ Beat Path
- ✓ Ranked Pairs
- 🗡 Minimax

Independence of Smith-Dominated Alternatives: The set of winners does not change after removing alternatives that are not in the Smith set.

- × Plurality
- 🗡 Borda
- ✗ Instant Runoff
- 🗡 Coombs

- \checkmark Copeland
- ✓ Beat Path
- ✓ Ranked Pairs
- 🗡 Minimax

Characterizing Voting Methods

Going beyond checking which axioms are satisfied, one can prove that a voting method is the unique one satisfying a set of axioms.

Characterizing Voting Methods

Going beyond checking which axioms are satisfied, one can prove that a voting method is the unique one satisfying a set of axioms.

- Majority Rule for 2 candidates (May 1952; Asan and Sanver 2002)
- Plurality Rule (Richelson 1978; Ching 1996; Sekiguchi 2012)
- Borda (Young 1974; Nitzan and Rubinstein 1981; Maskin 2023)
- Instant Runoff Voting (Freeman, Brill, and Conitzer 2014)
- Any positional scoring rule (Young 1975)
- Copeland (Henriet 1985)
- Minimax for 3 candidates (Holliday and Pacuit, under submission, 2024)
- Split Cycle (Ding, Holliday, and Pacuit, forthcoming, 2024)