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Plan

Day 1 Introduction to belief revision, AGM, possible worlds models,
Bayesian models (time permitted)

Day 2 Bayesian models (continued), Justifying Bayesian models
(Dutch books, Accuracy-based arguments), Updating
probabilities

Day 3 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Iterated belief revision, Context shifts,
Becoming aware

Day 4 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Iterated belief revision, Context shifts,
Becoming aware (continued)

Day 5 Interactive epistemology (Agreement Theorems, Belief
Revision in Games)
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Recap

I Epistemic states: AGM, Plausibility Models, Bayesian Model
(and the many variations)

I “Finding out that ϕ”

• Learn that ϕ
• Suppose that ϕ
• Accept ϕ
• ...

I How did you find out that ϕ?

• Directly observed ϕ
• Indirectly observed ϕ
• Told ‘ϕ’ (by an epistemic peer, by an expert, by a trusted

individual)
• ...
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p0

E
p0(E ) > 0

p(·) = p0(· | E )

(M) p0(A | pf ) = pf (A)
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p0

(E1 : q1, . . . ,Ek : qk)
{Ei} is a partition,

∑
i qi = 1

p(·) =
∑

i qi ∗ p0(· | Ei )

(M) p0(A | pf ) = pf (A)
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p0(·,>)

E

p(·) = p0(·,E )

(M) p0(A | pf ) = pf (A)
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p0

C: set of constraints

p satisfies C
p minimizes I (p, p0) =

∑
i p1(xi ) log p1(xi )

p0(xi )

(M) pf (A)

Eric Pacuit 5



p0

E1 E2 Ei· · · · · · EkEk−1

{Ei} is a partition

p0(· | Ei )p0(· | E1) p0(· | E2) p0(· | Ek−1) p0(· | Ek)

· · · · · ·

(M) p0(A | pf ) = pf (A)
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p0

pfp1 p2 · · · pn−1pn· · ·

(Martingale Property) p0(A | pf ) = pf (A)
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K

ϕ

ϕ consistent

K ′ = K ∗ ϕ

(M) p0(A | pf ) = pf (A)
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M

ϕ

ϕ consistent

K ′ = K ∗ ϕ

(M) p0(A | pf ) = pf (A)

Eric Pacuit 5



M

!ϕ ↑ ϕ ⇑ ϕ

M!ϕ M↑ϕ M⇑ϕ · · ·

(M) p0(A | pf ) = pf (A)
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K0 Kt = K0 ∗ ϕ=⇒

Learn that ϕ

Suppose that ϕ

p0 pt = ???=⇒
Learning experience
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Bridge Principles

Probability 1: Bel(A) iff P(A) = 1

The Lockean Thesis: Bel(A) iff P(A) > r

Decision-theoretic accounts: Bel(A) iff∑
w∈W P({w}) · u(bel A,w) has such-and-such property

The Nihilistic proposal: “...no explication of belief is possible
within the confines of the probability model.”
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Two important distinctions.
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1. If Shakespeare had not written Hamlet, it would never have
been written.

2. If Shakespeare didn’t write Hamlet, someone else did.

1. is a causal counterfactual, and 2. is an expression of a belief
revision policy.
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1. General Smith is a shrewd judge of character—he knows
(better than I) who is brave and who is not.

2. The general sends only brave men into battle.

3. Private Jones is cowardly.

I believe that (1) Jones would run away if he were sent into battle
and (2) if Jones is sent into battle, then he won’t run away.

Eric Pacuit 10



1. Ann cheats — she has seen her opponent’s cards.

2. Ann has a losing hand, since I have seen both her hand and
her opponent’s.

3. Ann is rational.

So, I conclude that she will not bet. But how should I revise my
beliefs if I learn that Ann did bet?

It may be perfectly reasonable for me to be disposed to give up 2.

I believe that (1) I Ann were to bet, she would lose (since she has
a losing hand) and (2) If I were to learn that she did bet, I would
conclude she will win.
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Updating vs. Revising
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Revision vs. Update

Suppose ϕ is some incoming information that should be
incorporated into the agents beliefs (represented by a theory T ).

An important distinction:

I If ϕ describes facts about the current state of affairs

I If ϕ describes facts that have possible become true only after
the original beliefs were formed.

Revising by ¬p (K ∗ ¬p) vs. Updating by ¬p (K � ¬p)

H. Katsuno and A. O. Mendelzon. Propositional knowledge base revision and
minimal change. Artificial Intelligence, 52, pp. 263 - 294 (1991).
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The logic of updating differs from that of revision. This can be
seen from the following example:

To begin with, the agent knows that there is either a book on the
table (p) or a magazine on the table (q), but not both.

I Case 1: The agent is told that there is a book on the table.
She concludes that there is no magazine on the table. This is
revision.

I Case 2: The agent is told that after the first information was
given, a book has been put on the table. In this case she
should not conclude that there is no magazine on the table.
This is updating.
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J. Lang. Belief Update Revisited. Proceedings of IJCAI-07.

N. Friedman and J. Halpern. Modeling Belief in Dynamics Systems Part II:
Revision and Update. Journal of Artificial Intelligence Research, 10, pp. 117 -
167 (1999).

A. Herzig. Belief Change Operations: A shorty history of nearly everything, told
in dynamic logic of propositional assignments. AAAI, 2014.
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KM Postulates

KM 1: K � ϕ = Cn(K � ϕ)

KM 2: ϕ ∈ K � ϕ

KM 3: If ϕ ∈ K then K � ϕ = K

KM 4: K � ϕ is inconsistent iff ϕ is inconsistent

KM 5: If ϕ and ψ are logically equivalent then K � ϕ = K � ψ

KM 6: K � (ϕ ∧ ψ) ⊆ Cn(K � ϕ ∪ {ψ})

KM 7: If ψ ∈ K � ϕ and ϕ ∈ K � ψ then K � ϕ = K � ψ

KM 8: If K is complete then K � (ϕ ∧ ψ) ⊆ K � ϕ ∩ K � ψ

KM 9: K �ϕ =
⋂

M∈Comp(K) M �ϕ, where Comp(K ) is the class of
all complete theories containing K .
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Updating and Revising

K � ϕ =
⋂

M∈Comp(K)

M ∗ ϕ

H. Katsuno and A. O. Mendelzon. On the difference between updating a knowl-
edge base and revising it. Belief Revision, P. Gärdenfors (ed.), pp 182 - 203
(1992).
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In the literature on belief change the distinction between static and
dynamic environment has become important....

it seems right to say
that belief change due to new information in an unchanging
environment has come to be called belief revision (the static case,
in the sense that the “world” remains unchanged), while it is fairly
generally accepted to use the term belief update for belief change
that is due to reported changes in the environment itself (the
dynamic case, in the sense that the “world” changes; compare our
analysis in the last subsection). It has been held for some time that
these cases support different logics (...) The established tradition
notwithstanding, it would be interesting to see a really convincing
argument for tying AGM revision to static environments.

Hannes Leitgeb and Krister Segerberg. Dynamic doxastic logic: why, how, and
where to?. Synthese, 155, pp. 167 - 190 (2007).
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T. Shear, J. Weisberg and B. Fitelson. Two Approaches to Belief Revision.
manuscript, 2016.
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u(B(X ),w) =

{
r if X is true at w

−w if X is false at w

1 ≥ w >

(
1 +
√

5

2

)
· r > 0
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EEU(B(X ), p) :=
∑
w∈W

p(w)u(B(X ),w)

EEU(B, p) :=
∑
X∈B

EEU(B(X ),w)

Eric Pacuit 21



Theorem (Dorst). An agent’s belief set B maximizes EEU from
the point of view of her credence function p if and only if, for every
X ∈ B

p(X ) >
w

r + w

Eric Pacuit 22



B > E = {X | p(X | E ) >
w

r + w
}
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(P2) If an agent initially believes X (i.e., if X ∈ B), then updating
B on X should not change B. [More formally, X ∈ B implies that
B ′ = B ? X = B

Eric Pacuit 24



AGM Postulates

Closure B ∗ E = Cn(B ∗ E )

Success E ∈ B ∗ E
Inclusion B ∗ E ⊆ Cn(B ∪ {E})
Vacuity If E is consistent with B, then B ∗ E ⊇ Cn(B ∪ {E})
Consistency If E is not self-contradictory, then B ∗ E is consistent

Extensionality If X ≡ Y ∈ Cn(∅), then B ∗ X = B ∗ Y
Superexpansion B ∗ (X ∧ Y ) ⊆ Cn((B ∗ X ) ∪ {Y })
Subexpansion If Y is consistent with Cn(B ∗ X ), then
B ∗ (X ∧ Y ) ⊇ Cn((B ∗ X ) ∪ {Y })
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Claim. (P2) follows from the AGM postulates Closure, Inclusion
and Vacuity.

1. X ∈ B. Assumption

2. B 6` ¬X . B is consistent

3. B ∗ X = Cn(B ∪ {X}). (2), Vacuity, Inclusion

4. Cn(B ∪ {X}) = Cn(B). (1)

5. B ∗ X = Cn(B) = B Closure

Eric Pacuit 26
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Theorem. (Gärdenfors) Suppose r = 0, w = 1, B is synchronically
coherent in the EUT sense, and that for all propositions X and Y
that our agent might learn, p(X | Y ) > 0. Then > satisfies all
eight of the AGM postulates above.

Eric Pacuit 27



EUT revision satisfies:

I Success.

I Inclusion.

I Extensionality.

I Superexpansion.

Eric Pacuit 28



Proposition. Non-Extremal EUT Revision violates Vacuity —
even if it is restricted to deductively cogent agents.

Eric Pacuit 29



TWO APPROACHES TO BELIEF REVISION 15

probability assignments depicted in Table 1 over the Boolean algebra A generated

by a propositional language containing two atomic sentences: E and X.

p b(p) b(p | E) p 2 B? p 2 Cn(B [ {E})? p 2 B ˜ E?

E ^ X

2
/10 2

/3 No Yes No ¨

E ^ ¬X

1
/10 1

/3 No No No

¬E ^ X

4
/10 0 No No No

¬E ^ ¬X

3
/10 0 No No No

E

3
/10 1 No Yes Yes

X

6
/10 2

/3 No Yes No ¨

E ⌘ X

5
/10 2

/3 No Yes No ¨

E 6⌘ X

5
/10 1

/3 No No No

¬E

7
/10 0 No No No

¬X

4
/10 1

/3 No No No

E _ X

7
/10 1 No Yes Yes

E _ ¬X

6
/10 1 No Yes Yes

¬E _ X

9
/10 2

/3 Yes Yes No ¨

¬E _ ¬X

8
/10 1

/3 No No No

Table 1. Counterexample to Vacuity for EUT Revision

It will be instructive to present an intuitive urn case that represents the agent’s

epistemic situation. Suppose we have an urn containing four types of objects:

black squares, red squares, black circles, and red circles. We are going to sample

an object from the urn at random. And, we assume the following interpretations

of the two atomic sentences E and X:

E := ‘The object sampled from the urn is red’, and

X := ‘The object sampled from the urn is a circle’.

The urn contains ten (10) objects, distributed in the following way: four (4) black

circles, three (3) black squares, one (1) red square and two (2) red circles (see Fig-

ure 2 for a graphical representation of the urn). We will assume our agent has

credences in propositions about the shapes and colors of the objects in the urn

which are calibrated to this distribution. In this case, our (EUT) agent’s prior belief

set will be the following singleton.23

B = {¬E _ X}

Upon learning that the sampled object was red (i.e. upon learning E), the agent

23We omit reference to the contradictory proposition ? and the tautological proposition >, since all
coherent EUT agents will always have the same attitudes toward those two propositions.

16 TED SHEAR, JONATHAN WEISBERG, AND BRANDEN FITELSON

(a) Prior distribution (b) Posterior (given E)

Figure 2. Visualization of counterexample to Vacuity for EUT Revision

loses her prior belief that the next ball drawn will either be non-red or a circle

since her credence in ¬E _ X has now dropped below the threshold from 0.9 to
2
/3. Having learned E and lost belief in ¬E _ X, the only other new beliefs that

she acquires are the logical consequences of the learned proposition (because they

now are assigned maximal credence). That is, after learning E, the agent’s posterior

belief set is:

B0 = B ˜ E = {E, E _ X, E _ ¬X}.

Note, we have the following four crucial facts in this example (which can all be

verified by inspection of Table 1).

• Both the prior belief set B and the posterior belief set B ˜ E are deductively

cogent. That is, the agent in question is deductively cogent at all times.

• E is consistent with B.

• Since E � X 2 B, it follows (by modus ponens for �) that X 2 Cn(B [ {E}).

• But, X � B ˜ E.

Therefore, this is a counterexample to Vacuity for EUT revision — even for some

deductively cogent agents. ⇤

E :=‘The object sampled from the urn is red’

X := ‘The object sampled from the urn is a circle’.
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>

E ∨ X E ∨ ¬X ¬E ∨ X ¬E ∨ ¬X

X E E ↔ X E ↔ ¬X ¬X ¬E

E ∧ X ¬E ∧ X E ∧ ¬X ¬E ∧ ¬X

⊥
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10
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1>

7
10E ∨ X 6

10E ∨ ¬X 9
10¬E ∨ X 8

10¬E ∨ ¬X

6
10X

3
10E

5
10E ↔ X 5

10E ↔ ¬X 4
10¬X 7

10¬E

E ∧ X 2
10 ¬E ∧ X 4

10 E ∧ ¬X 1
10 ¬E ∧ ¬X 3

10

0⊥
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1>

7
10E ∨ X 6

10E ∨ ¬X 9
10¬E ∨ X 8

10¬E ∨ ¬X

6
10X

3
10E

5
10E ↔ X 5

10E ↔ ¬X 4
10¬X 7

10¬E

2
10E ∧ X 4

10¬E ∧ X 1
10E ∧ ¬X 3

10¬E ∧ ¬X

0⊥ t = 0.85 = 0.17
0.17+0.03
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1>

7
10E ∨ X 6

10E ∨ ¬X 9
10¬E ∨ X 8

10¬E ∨ ¬X

6
10X

3
10E := > 5
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1>

7
10> ∨ X 6

10> ∨ ¬X 9
10¬> ∨ X 8

10¬> ∨ ¬X

6
10X

3
10E := > 5

10> ↔ X 5
10> ↔ ¬X 4

10¬X 7
10¬>

2
10> ∧ X 4
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10> ∧ ¬X 3

10¬> ∧ ¬X

0⊥
t = 0.85 = 0.17

0.17+0.03

E is (assigned) true
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E ∨ X E ∨ ¬X E >

¬E ∨ X E ↔ X E ∧ X X ¬E ∨ ¬XE ∧ ¬XE ↔ ¬X¬X

⊥¬E¬E ∧ ¬X ¬E ∧ X

E is (assigned) true
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E ∨ X E ∨ ¬X E >

¬E ∨ X E ↔ X E ∧ X X ¬E ∨ ¬XE ∧ ¬XE ↔ ¬X¬X

⊥¬E¬E ∧ ¬X ¬E ∧ X

E is (assigned) true
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1 E

2
3 X 1

3 ¬X

0 ¬E
t = 0.85 = 0.17

0.17+0.03

E is (assigned) true
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1 E ,E ∨ X ,E ∨ ¬X ,>

2
3 X 1

3 ¬X

0 ¬E
t = 0.85 = 0.17

0.17+0.03

E is (assigned) true
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Vacuity If E is consistent with B, then B ∗ E ⊇ Cn(B ∪ {E})

B = Cn({¬E ∨ X})

B 6` ¬E , B ∗ E = Cn(B ∪ {E}) = Cn({E ∧ X}) So, X ∈ B ∗ E .

B > E = Cn({E ,E ∨ X ,E ∨ ¬X}), so X 6∈ B > E .
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1>

7
10E ∨ X 6

10E ∨ ¬X 9
10¬E ∨ X 8

10¬E ∨ ¬X

6
10X

85
100E

5
10E ↔ X 5

10E ↔ ¬X 4
10¬X 7

10¬E

2
10E ∧ X 4

10¬E ∧ X 1
10E ∧ ¬X 3

10¬E ∧ ¬X

0⊥
t = 0.85 = 0.17

0.17+0.03

Suppose that E
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Non-Extremal EUT revision is more conservative than AGM
revision (when the two approaches interestingly) diverge:

Theorem EUT violates Vacuity (wrt B, E ) if and only if E is
consistent with B and B > E ⊂ B ∗ E

In other words, when EUT and AGM (interestingly) diverge, AGM
will be more demanding on an agents beliefs (insofar as they are
maintained via revision). Since AGM will require agents to
maintain beliefs in the face of counter-evidence (such as in our
counter-example to Vacuity), it may be seen as an epistemically
risk-seeking policy for belief revision. On the other hand, EUT will
recommend that agents suspend belief in many cases and so it may
be seen as epistemically risk-averse.
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Proposition. If an EUT/Lockean agent is deductively cogent (at
all times), then they can only violate Vacuity (via learning some E
that they do not already believe) if their Lockean threshold is on
the half-open interval [ϕ− 1, 1).
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Leitgeb & Segerberg: Belief Update vs. Belief Revsions

...given new evidence, we find that in the case of belief revision the
agent tries to change his beliefs in a manner such that the worlds
that he subsequently believes to be in comprise the subjectively
most plausible deviation from the worlds he originally believed to
inhabit.

However, when confronted with the same evidence in belief
update, the agent tries to change his beliefs in a way such that the
worlds that he subsequently believes to be in are as objectively
similar as possible to the worlds he originally believed to be the
most plausible candidates for being the actual world.
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Leitgeb & Segerberg: Belief Update vs. Belief Revsions

It is tempting to relate these different views on belief change to
the traditional distinction of indicative and subjective conditionals.
Using the stock example: everyone considers the indicative ‘If
Oswald did not kill Kennedy somebody else did’ as acceptable, but
many regard the subjunctive ‘If Oswald had not killed Kennedy
somebody else would have’ as false.
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Note that in this setting the difference between supposing and
updating is mathematically clearcut. In a typical Bayesian
updating situation one is uncertain about the chances, and so ones
subjective probability distribution on the outcome space is a
mixture of the possible chance distributions. Updating is an
operation which typically takes one from one point in the interior
of the convex closure of the chance distributions to another;
supposing moves from one chance distribution to another.

B. Skyrms. Updating, Supposing and MAXENT. Theory and Decision, 22, pp.
225 - 246, 1987.

Eric Pacuit 38



Such normative virtues suggest a psychological question. One way
of formulating (1) is that supposing an event B should have the
same impact on the credibility of an event A as learning B. Is this
true for typical assessments of chance? For example, is the judged
probability of a Democratic victory in 2012 supposing that Hilary
Clinton is the vice presidential candidate the same as the judged
probability of a Democratic victory in 2012 after learning that
Clinton, as a matter of fact, is the vice presidential candidate?

Jiaying Zhao, Vincenzo Crupi, Katya Tentori, Branden Fitelson, and Daniel Os-
herson. Updating: Learning versus supposing. Cognition 124 (2012) 373378.
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Beliefs that obey the Lockean thesis can be undermined by new
evidence that is consistent with the agents current beliefs.

Eric Pacuit 40



For each i = 1, 2, 3, let li be the proposition Ticket i won’t win
(and wi is the proposition that “ticket i will win”). And let us set
our threshold for Lockean belief at r = 0.6.
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(1) >

(2/3) l3 (2/3) l2 (2/3) l1

(1/3) w1 (1/3) w2 (1/3) w3

(0) ⊥
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(1) >

(2/3) l3 (2/3) l2 (2/3) l1

(1/3) w1 (1/3) w2 (1/3) w3

(0) ⊥
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(1) >

(2/3) l3 (2/3) l2 (1) l1

(0) w1 (1/3) w2 (1/3) w3

(0) ⊥
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(1) >

(1/2) l3 (1/2) l2 (1) l1

(0) w1 (1/2) w2 (1/2) w3

(0) ⊥
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(1) l1 ≡ >

(1/2) w2 ≡ l3 (1/2) w3 ≡ l2

(0) w1 ≡ ⊥
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Resiliency, Robust Belief, Stable Belief

B. Skyrms. Resiliency, propensities, and causal necessity. Journal of Philosophy,
74:11, pgs. 704 - 713, 1977.

A. Baltag and S. Smets. Probabilistic Belief Revision. Synthese, 2008.

H. Leitgeb. Reducing belief simpliciter to degrees of belief. Annals of Pure and
Applied Logic, 16:4, pgs. 1338 - 1380, 2013.

R. Stalnaker. Belief revision in games: forward and backward induction. Math-
ematical Social Sciences, 36, pgs. 31 - 56, 1998.
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Probability

Let W be a set of states and A a σ-algebra: A ⊆ ℘(W ) such that

I W , ∅ ∈ A

I if X ∈ A then W − X ∈ A

I if X ,Y ∈ A then X ∪ Y ∈ A

I if X0,X1, . . . ∈ A then
⋃

i∈N Xi ∈ A.
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Probability

P : A→ [0, 1] satisfying the usual constraints

I P(W ) = 1

I (finite additivity) If X1,X2 ∈ A are pairwise disjoint, then
P(X1 ∪ X2) = P(X1) + P(X2)

P(Y |X ) = P(Y∩X )
P(X ) whenever P(X ) > 0. So, P(Y |W ) is P(Y ).

I P is countably additive (σ-additive): if X1,X2, . . . ,Xn, . . . are
pairwise disjoint members of A, then
P(
⋃

n∈N Xn) =
∑

n∈N P(Xn)
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P-stabilityr

Definition. Let P be a probability measure on A over W , let
0 ≤ t < 1. For all X ∈ A:

X is P-stablet if and only if for all Y ∈ A with Y ∩ X 6= ∅ and
P(Y ) > 0: P(X |Y ) > t.

I Trivially, the empty set of P-stablet .

I If P(X ) = 1, then X is P-stablet .

I There are P-stablet sets with 0 < P(X ) < 1.
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I Assuming countable additivity and t ≥ 1
2 , The class of

P-stablet propositions X in A with P(X ) < 1 is well-ordered
with respect to the subset relation.

I If there is a non-empty P-stabler X ∈ A with P(X ) < 1, then
there is also a least such X .
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w ∈ SB(H) iff for all E ∈ A(W ) with H ∩ E 6= ∅ and P(E ) 6= 0:
P(H | E ) ≥ t

The threshold t is determined contextually
(the “cautiousness level”)

The evidence “relevant” to H

The states may be contextually determined (by a partition on
a set W of “maximally specific worlds”)
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w ∈ SB(H) iff for all E ∈ AH(WΠ) with H ∩ E 6= ∅ and P(E ) 6= 0:
P(H | E ) ≥ tC

1. The threshold t is determined contextually
(the “cautiousness level”)

2. The evidence “relevant” to H

3. The states may be contextually determined (by a partition Π
on a set W of “maximally specific worlds”)
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H. Leitgeb. The Stability Theory of Belief. The Philosophical Review 123/2,
131171, 2014.

H. Leitgeb. The Humean Thesis on Belief. Proceedings of the Aristotelian
Society of Philosophy 89(1), 143185, 2015.

R. Pettigrew. Pluralism about belief states. Proceedings of the Aristotelian
Society 89(1):187-204, 2015.
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(1) >

(0.7) K (0.3) L

(0) ⊥
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(1) >

(0.7) K (0.3) L

(0) ⊥

(0.35) F (0.35) C
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(1) >

(0.7) K (0.3) L

(0) ⊥
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(1) >

(0.7) K (0.65) F ∨ L (0.65) C ∨ L

(0.35) F (0.35) C (0.3) L

(0) ⊥
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(1) >

(0.54) K (1) F ∨ L (0.46) C ∨ L

(0.54) F (0) C (0.46) L

(0) ⊥
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Thus, while robust belief is stable under acquisition of new
(doxastically possible) evidence and Lockean belief is not, robust
belief is not stable under fine-graining of possibilities while
Lockean belief is.
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Leitgeb’s Solution to the Lottery Paradox
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In a context in which the agent is interested in whether ticket i will
be drawn; for example, for i = 1: Let Π be the corresponding
partition:

{{w1}, {w2, . . . ,w1,000,000}}

The resulting probability measure PΠ is given so that P is given by
P so that:

PΠ({{w1}}) =
1

1, 000, 000
PΠ({{w2, . . . ,w1,000,000}}) =

999, 999

1, 000, 000
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There are two PΠ-stable sets, and one of the two possible choices
for the strongest believed proposition BΠ

W = {{w2, . . . ,w1,000,000}}.

If BΠ
W is chosen as such, our perfectly rational agent believes of

ticket i = 1 that it will not be drawn, (and of course P1 -P3 are
satisfied).

For example, this might be a context in which a single ticket
holder—the person holding ticket 1—would be inclined to say of
his or her ticket: “I believe it wont win.”
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In a context in which the agent is interested in which ticket will be
drawn: Let Π′ be the corresponding partition that consists of all
singleton subsets of W . The probability measure PΠ is the uniform
probability on W .

The only P-stable set—and hence the only choice for the strongest
believed proposition BΠ′

W —is W itself: our perfectly rational agent
believes that some ticket will be drawn, but he or she does not
believe of any ticket that it will not win

For example, this might be a context in which a salesperson of
tickets in a lottery would be inclined to say of each ticket: “It
might win” (that is, it is not the case that I believe that it won’t
win).
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In either of the two contexts from before, the theory avoids the
absurd conclusion of the Lottery Paradox; in each context, it
preserves the closure of belief under conjunction; and in each
context, it preserves the Lockean thesis for some threshold
(r = 999,999

1,000,000 in the first case, r = 1 in the second case)-all of this
follows from P-stability and the theorem.
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In the first Π-context, the intuition is preserved that, in some sense,
one believes of ticket i that it will lose since it is so likely to lose.

In the second Π′-context, the intuition is preserved that, in a
different sense, one should not believe of any ticket that it will lose
since the situation is symmetric with respect to tickets, as
expressed by the uniform probability measure, and of course some
ticket must win.
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Finally, by disregarding or mixing the contexts, it becomes
apparent why one might have regarded all of the premises of the
Lottery Paradox as true.

But according to the present theory, contexts should not be
disregarded or mixed: partitions Π and Π′ differ from each other,
and different partitions may lead to different beliefs, as observed in
the last section and as exemplified in the Lottery Paradox.
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Accordingly, the thresholds in the Lockean thesis may have to be
chosen differently in different contexts, and once again, this is
what happens in the Lottery Paradox—which makes good sense: in
the second Π′-context, by uniformity, the agents degrees of belief
do not give him or her much of a hint of what to believe. That is
why the agent ought to be supercautious about her beliefs in that
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F. Dietrich, C. List and R. Bradley. Belief revision generalized: A joint charac-
terization of Bayes’s and Jeffrey’s rules. manuscript.
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Characterization Result

Responsiveness: The agent’s revised belief state respects the
constraint given by the input.

Conservativeness: For all belief-input pairs (p, I ), if I is “silent”
on the probability of a (relevant) event A given another B, this
conditional probability is preserved.

Eric Pacuit 60



A decision-theoretic example

Ann, an employer, must decide whether to hire Bob, a job
candidate. There is no time for a job interview, since a quick
decision is needed. Ann is uncertain about whether Bob is
competent or not; both possibilities have prior probability 1

2 . It
would help Ann to know whether Bob has previous work
experience, since this is positively correlated with competence, but
gathering this information takes time.
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Now suppose Ann follows her rational strategy. She writes to Bob
to ask whether he has work experience. At this point, however,
something surprising happens. Bob’s answer reveals right from the
beginning that his written English is poor. Ann notices this even
before figuring out what Bob says about his work experience. In
response to this unforeseen learnt input, Ann lowers her probability
that Bob is competent from 1

2 to 1
8 .
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As she reads the rest of Bob’s letter, Ann eventually learns that he
has previous work experience, which prompts a Bayesian belief
revision...
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1. In her first decision (between h, h, and g), Ann is falsely
taken to foresee the possibilities of learning G or learning
G ...This artificially complicates her expected-utility
maximization exercise...

2. The additional conditionalization on G misrepresents Ann’s
beliefs, since the absence of linguistic errors in Bob’s letter
goes unnoticed.

3. Although it is true that the unforeseen news that Bob’s
written English is poor implies that Ann cannot uphold her
original conceptualization of the decision problem, it does not
follow that Ann re-conceptualizes her decision problem in line
with the above model.
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Iterated revision
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Current dynamic logics of belief revision and information update
focus on two key aspects of informative actions:

1. The agents’ observational powers.

2. The type of change triggered by the event. Agents may differ
in precisely how they incorporate new information into their
epistemic states. These differences are based, in part, on the
agents’ perception of the source of the information. For
example, an agent may consider a particular source of
information infallible (not allowing for the possibility that the
source is mistaken) or merely trustworthy (accepting the
information as reliable, though allowing for the possibility of a
mistake).
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Informative Actions

A

B

C

D

E

A

Public Announcement: Information from an infallible source
(!ϕ): A ≺i B

Conservative Upgrade: Information from a trusted source
(↑ϕ): A ≺i C ≺i D ≺i B ∪ E

Radical Upgrade: Information from a strongly trusted source
(⇑ϕ): A ≺i B ≺i C ≺i D ≺i E
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What happens as beliefs change over time (iterated belief
revision)?
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M0 M1 M2 Mf· · ·!ϕ1 !ϕ2 !ϕ3 !ϕn

fixed-pointinitial
model

Oi (S)
Pj(S

′)
· · ·

Oj(T )
Pj(T

′)
· · ·

Oi (S)
Pj(S

′)
· · ·

nothing
new

Where do the ϕk come from? from the players practical
reasoning/rational requirements
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M0 M1 M2 Mf· · ·τ(ϕ1) τ(ϕ2) τ(ϕ3) τ(ϕn)

fixed-pointinitial
model
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· · ·
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Dynamic Characterization of Informational Attitudes

!ϕ1, !ϕ2, !ϕ3, . . . , !ϕn

always reaches a fixed-point

⇑p ⇑¬p ⇑p · · ·
Contradictory beliefs leads to oscillations

↑ϕ, ↑ϕ, . . .
Simple beliefs may never stabilize

⇑ϕ,⇑ϕ, . . .
Simple beliefs stabilize, but conditional beliefs do not

A. Baltag and S. Smets. Group Belief Dynamics under Iterated Revision: Fixed
Points and Cycles of Joint Upgrades. TARK, 2009.
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Suppose that you are in the forest and happen to a see
strange-looking animal.

You consult your animal guidebook and
find a picture that seems to match the animal you see. The
guidebook says that the animal is a type of bird, so that is what
you conclude: The animal before you is a bird. After looking more
closely, you also notice that the animal is also red. So, you also
update your beliefs with that fact. Now, suppose that an expert
(whom you trust) happens to walk by and tells you that the animal
is, in fact, not a bird.
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b, r

M2

↑r
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Note that in the last model, M3, the agent does not believe that
the bird is red.

The problem is that there does not seem to be any
justification for why the agent drops her belief that the bird is red.
This seems to result from the accidental fact that the agent
started by updating with the information that the animal is a bird.
In particular, note that the following sequence of updates is not
problematic:
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t0

t1 t2 t3

t4 t5

⇑b ⇑r ⇑(b ∧ r)

⇑r ⇑b
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Lexicographic Revision
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Restrained Revision
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Natural Revision
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Two Postulates of Iterated Revision

I1 If B ∈ Cn({A}) then (K ∗ B) ∗ A = K ∗ A.

I2 If ¬B ∈ Cn({A}) then (K ∗ A) ∗ B = K ∗ B

I Postulate I1 demands if A→ B is a theorem (with respect to
the background theory), then first learning B followed by the
more specific information A is equivalent to directly learning
the more specific information A.

I Postulate I2 demands that first learning A followed by learning
a piece of information B incompatible with A is the same as
simply learning B outright. So, for example, first learning A
and then ¬A should result in the same belief state as directly
learning ¬A.
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I3 If B ∈ K ∗ A then B ∈ (K ∗ B) ∗ A.

I4 If ¬B 6∈ K ∗ A then ¬B 6∈ (K ∗ B) ∗ A.
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I Three switches wired such that a light
is on iff all three switches are up or all
three are down.

Three independent (reliable) observers
report on the switches: Alice says
switch 1 is U, Bob says switch 2 is D
and Carla says switch 3 is U.

I receive the information that the light
is on. What should I believe?

Cautious: UUU, DDD; Bold: UUU
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I Suppose there are two switches: L1 is
the main switch and L2 is a secondary
switch controlled by the first two lights.
(So L1 → L2, but not the converse)

Suppose I receive L1 ∧ L2, this does not
change the story.

Suppose I learn that L2. This is
irrelevant to Carla’s report, but it
means either Ann or Bob is wrong.

Now, after learning L1, the only rational
thing to believe is that all three
switches are up.
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I So, L2 ∈ Cn({L1}) but (potentially)

(K ∗ L2) ∗ L1 6= K ∗ L1.
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Stalnaker’s Counterexample to I2

I Two fair coins are flipped and placed in two boxes and two
independent and reliable observers deliver reports about the
status (heads up or tails up) of the coins in the opaque boxes.

I Alice reports that the coin in box 1 is lying heads up, Bert
reports that the coin in box 2 is lying heads up.

I Two new independent witnesses, whose reliability trumps that
of Alice’s and Bert’s, provide additional reports on the status
of the coins. Carla reports that the coin in box 1 is lying tails
up, and Dora reports that the coin in box 2 is lying tails up.

I Finally, Elmer, a third witness considered the most reliable
overall, reports that the coin in box 1 is lying heads up.
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Hi (Ti ): the coin in box i facing heads (tails) up.

I The first revision results in the belief set K ′ = K ∗ (H1 ∧ H2),
where K is the agents original set of beliefs.

I After receiving the reports, the belief set is K ′ ∗ (T1∧T2) ∗H1.

I Since Elmers report is irrelevant to the status of the coin in
box 2, it seems natural to assume that
H1 ∧ T2 ∈ K ′ ∗ (T1 ∧ T2) ∗ H1.

I The problem: Since (T1 ∧ T2)→ ¬H1 is a theorem (given the
background theory), by I2 it follows that
K ′ ∗ (T1 ∧ T2) ∗ H1 = K ′ ∗ H1.

Yet, since H1 ∧ H2 ∈ K ′ and H1 is consistent with H2, we
must have H1 ∧ H2 ∈ K ′ ∗ H1, which yields a conflict with the
assumption that H1 ∧ T2 ∈ K ′ ∗ (T1 ∧ T2) ∗ H1.
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...[Postulate I2] directs us to take back the totality of
any information that is overturned. Specifically, if we first
receive information α, and then receive information that
conflicts with α, we should return to the belief state we
were previously in, before learning α. But this directive is
too strong. Even if the new information conflicts with
the information just received, it need not necessarily cast
doubt on all of that information.
asdf (Stalnaker, pg. 207–208)
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What Do the Examples Demonstrate?

1. There is no suitable way to formalize the scenario in such a
way that the AGM postulates (possibly including postulates of
iterated belief revision) can be saved;

2. The AGM framework can be made to agree with the scenario
but does not furnish a systematic way to formalize the
relevant meta-information; or

3. There is a suitable and systematic way to make the
meta-information explicit, but this is something that the AGM
framework cannot properly accommodate.

Our interest in this paper is the third response, which is concerned
with the absence of guidelines for applying the theory of belief
revision.
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Heuristic Diagnosis of Stalnaker’s Example
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There are different kinds of independence—conceptual,
causal and epistemic—that interact, and one might be
able to say more about constraints on rational belief
revision if one had a model theory in which
causal-counterfactual and epistemic information could
both be represented. There are familiar problems, both
technical and philosophical, that arise when one tries to
make meta-information explicit, since it is self-locating
(and auto-epistemic) information, and information about
changing states of the world. (pg. 208)
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A Bayesian Model

We accommodate the counterexamples in two steps:

1. We provide a Bayesian model in which presuppositions on
order and dependence of the reports can be made explicit.

2. The qualitative and diachronic character of belief revision can
be replicated by an extension to nonstandard probability
assignments.

Apart from this we refined the event structure of reports and
states.
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A Bayesian Model

1. The reports are independent, the content of the reports are
very probable, and the content of subsequent reports are even
more probable, thereby canceling out the impact of preceding
reports.

2. The meta-information in the example may be such that earlier
reports are dependent in a weak sense, so that Elmers report
also encourages the agent to change her mind about the coin
in the second box.

3. With some imagination, we can also provide a model in which
the pairs of reports are independent in the strictest sense, and
in which Elmers report is fully responsible for the belief
change regarding both coins.
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Discussion, I

I A proper conceptualization of the event and report structure
is crucial (the event space must be ‘rich enough’): A theory
must be able to accommodate the conceptualization, but
other than that it hardly counts in favor of a theory that the
modeler gets this conceptualization right.
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Discussion, II

I Belief change by conditioning: There seems to be a trade-off
between a rich set of states and event structure, and a rich
theory of ‘doxastic actions’. How should we resolve this
trade-off when analyzing counterexamples to postulates of
belief changes over time?
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meta-information: information about how “trusted” or “reliable”
the sources of the information are.

procedural information: information about the underlying
protocol specifying which events (observations, messages, actions)
are available (or permitted) at any given moment.
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meta-information: information about how “trusted” or “reliable”
the sources of the information are.

This is particularly important when analyzing how an agent’s
beliefs change over an extended period of time. For example,
rather than taking a stream of contradictory incoming evidence
(i.e., the agent receives the information that p, then the
information that q, then the information that ¬p, then the
information that ¬q) at face value (and performing the suggested
belief revisions), a rational agent may consider the stream itself as
evidence that the source is not reliable
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procedural information: information about the underlying
protocol specifying which events (observations, messages, actions)
are available (or permitted) at any given moment.

A protocol describes what the agents “can” or “cannot” do (say,
observe) in a social interactive situation or rational inquiry.
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Irreducibility to Single Revision

R. Booth and J. Chandler. The Irreducibility of Iterated to Single Revision.
Journal of Philosophical Logic, forthcoming.
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Knowledge and Issues

J. van Benthem and S. Minica. Toward a Dynamic Logic of Questions. Journal
of Philosophical Logic, 41(4), pp 633 - 669, 2012.
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M = 〈W , {∼i}i∈A, {≈i}i∈A,V 〉

636 J. van Benthem, Ş. Minică

Fig. 1 Examples of epistemic issue models

2.2 Information and Issues: Language and Semantics

To work with these structures, we need matching modalities in our language.
Here we make a minimal choice of modal and epistemic logic for state spaces
plus two modalities describing the issue structure. First, Kϕ talks about knowl-
edge or semantic information of an agent, its informal reading is ‘ϕ is known’,
and its explanation is as usual: ‘ϕ holds in all epistemically indistinguishable
worlds’. To describe our models a bit further, we add a universal modality Uϕ

saying that ‘ϕ is true in all worlds’. Next, we use Qϕ to say that, locally in a
given world, the current structure of the issue-relation has ϕ true: ‘ϕ holds in all
issue-equivalent worlds’. While convenient, this local notion does not express
the global assertion that the current issue is ϕ, which will be defined later.

Finally, we find a need for a notion that mixes the epistemic and issue
relations, talking (roughly) about what would be the case if the issue were
resolved given what we already know. Technically, we add an intersection
modality Rϕ saying that “ϕ holds in all epistemically indistinguishable and
issue equivalent worlds”. While such modalities are frequent in many settings,
they complicate axiomatization. We will assume the standard device of adding
nominals naming single worlds (cf. [9, 20] for recent instances of this technique
in the DEL setting).1

Definition 2 (Static Language) The language LELQ(P,N) has disjoint count-
able sets P and N of propositions and nominals, respectively, with p ∈ P, i ∈ N.
Its formulas are defined by the following inductive syntax rule:

i | p | ⊥ | ¬ϕ | (ϕ ∧ ψ) | Uϕ | Kϕ | Qϕ | Rϕ

When needed, dual existential modalities Û , K̂, Q̂ and R̂ are defined as usual.
Shortcuts to express disjunction and other boolean connectives are also used

1As one illustration, working with nominals requires a modified valuation function in Definition
1, to a V : P $ N → ℘ (W) mapping every proposition p ∈ P to a set of states V(p) ⊆ W, but every
nominal i ∈ N to a singleton set V(i) = w of a world w ∈ W.
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Fig. 1 Examples of epistemic issue models

2.2 Information and Issues: Language and Semantics

To work with these structures, we need matching modalities in our language.
Here we make a minimal choice of modal and epistemic logic for state spaces
plus two modalities describing the issue structure. First, Kϕ talks about knowl-
edge or semantic information of an agent, its informal reading is ‘ϕ is known’,
and its explanation is as usual: ‘ϕ holds in all epistemically indistinguishable
worlds’. To describe our models a bit further, we add a universal modality Uϕ

saying that ‘ϕ is true in all worlds’. Next, we use Qϕ to say that, locally in a
given world, the current structure of the issue-relation has ϕ true: ‘ϕ holds in all
issue-equivalent worlds’. While convenient, this local notion does not express
the global assertion that the current issue is ϕ, which will be defined later.

Finally, we find a need for a notion that mixes the epistemic and issue
relations, talking (roughly) about what would be the case if the issue were
resolved given what we already know. Technically, we add an intersection
modality Rϕ saying that “ϕ holds in all epistemically indistinguishable and
issue equivalent worlds”. While such modalities are frequent in many settings,
they complicate axiomatization. We will assume the standard device of adding
nominals naming single worlds (cf. [9, 20] for recent instances of this technique
in the DEL setting).1

Definition 2 (Static Language) The language LELQ(P,N) has disjoint count-
able sets P and N of propositions and nominals, respectively, with p ∈ P, i ∈ N.
Its formulas are defined by the following inductive syntax rule:

i | p | ⊥ | ¬ϕ | (ϕ ∧ ψ) | Uϕ | Kϕ | Qϕ | Rϕ

When needed, dual existential modalities Û , K̂, Q̂ and R̂ are defined as usual.
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I M,w |= Kϕ iff for all v , if w ∼ v , then M, v |= ϕ

I M,w |= Qϕ iff for all v , if w ≈ v , then M, v |= ϕ

I M,w |= Rϕ iff for all v , if w (∼ ∩ ≈) v , then M, v |= ϕ

Knowledge dynamics, issue dynamics
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Coarsening at Random

P. Grünwald and J. Halpern. Updating Probabilities. Journal of Artificial Intel-
ligence Research, 19, pp. 243 - 278, 2003.
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Three Prisoner’s Problem

Three prisoners A,B and C have been tried for murder and their
verdicts will told to them tomorrow morning. They know only that
one of them will be declared guilty and will be executed while the
others will be set free. The identity of the condemned prisoner is
revealed to the very reliable prison guard, but not to the prisoners
themselves. Prisoner A asks the guard “Please give this letter to
one of my friends — to the one who is to be released. We both
know that at least one of them will be released”.
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Three Prisoner’s Problem

An hour later, A asks the guard “Can you tell me which of my
friends you gave the letter to? It should give me no clue regarding
my own status because, regardless of my fate, each of my friends
had an equal chance of receiving my letter.” The guard told him
that B received his letter.

Prisoner A then concluded that the probability that he will be
released is 1/2 (since the only people without a verdict are A and
C ).
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Three Prisoner’s Problem

But, A thinks to himself:

Before I talked to the guard my chance of being executed
was 1 in 3. Now that he told me B has been released,
only C and I remain, so my chances of being executed
have gone from 33.33% to 50%. What happened? I
made certain not to ask for any information relevant to
my own fate...

Explain what is wrong with A’s reasoning.
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A pair (w , l), where w ∈W is the actual world, and l is the
agent’s local state, which essentially characterizes her information.

W is the “naive space”.

For the purposes of this paper, it is assumed that l has the form
〈o1, . . . , on〉, where oj is the observation that the agent makes at
time j , j = 1, . . . , n.

A pair (w , 〈o1, . . . , on〉) is called a run.
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Consider the three-prisoners puzzle in more detail:

I The naive space is W = {wa,wb,wc}, where wx is the world
where x is not executed.

I We are only interested in runs of length 1, so n = 1. The set
O of observations (what agent can be told) is
{{wa,wb}, {wa,wc}}. Here “{wa,wb}” corresponds to the
observation that either a or b will not be executed (i.e., the
jailer saying “c will be executed”); similarly, {wa,wc}
corresponds to the jailer saying “b will be executed”.

Eric Pacuit 99



The sophisticated space consists of the four runs

(wa, 〈{wa,wb}〉), (wa, 〈{wb,wc}〉), (wb, 〈{wa,wb}〉), (wc , 〈{wa,wc}〉)

Note that there is no run with observation {wb,wc}, since the
jailer will not tell a that he will be executed.

According to the story, the prior PrW in the naive space has
PrW (w) = 1/3 for w ∈W . The full distribution Pr on the runs is
not completely specified by the story. In particular, we are not told
the probability with which the jailer will say b and c if a will not be
executed.
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All runs are of the form r = (w , 〈U〉), where w ∈ U.

Question: After observing U, the agent can compute her posterior
on W by conditioning on U. Roughly speaking, this amounts to
asking whether observing U is the same as discovering that U is
true.
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R = {(w , 〈U〉) | U ∈ O,w ∈ U}

For r = (w , 〈U〉), let XW (r) = w and XO(r) = U

Pr is a probability measure on R.

PrW is the marginal distribution of XW

PrO is the marginal distribution of XO .

Let Pr be a prior on R. Let Pr ′ = Pr(· | XO = U) be the posterior
after observing U.

Main question: under what conditions we have

Pr ′W (V ) = PrW (V | U) for all V ⊆W
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Pr(XW = w | XO = U) = Pr(XW = w | XW ∈ U) for all w ∈ U
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Theorem. Fix a probability Pr on R and a set U ⊆W . The
following are equivalent:

1. If Pr(XO = U) > 0, then Pr(XW = w | XO = U) =
Pr(XW = w | XW ∈ U) for all w ∈ U

2. The event XW = w is independent of the event XO = U given
XW ∈ U for all w ∈ U.

3. Pr(XO = U | XW = w) = Pr(XO = U | XW ∈ U) for all
w ∈ U such that Pr(XW = w) > 0

4. Pr(XO = U | XW = w) = Pr(XO = U | XW = w ′) for all
w ,w ′ ∈ U such that Pr(XW = w) > 0 and Pr(XW = w ′) > 0
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In the three-prisoner’s puzzle, what is a’s prior distribution Pr on
R? We assumed that the marginal distribution PrW on W is
uniform. Apart from this, Pr is unspecified.

Now suppose that a observes {wa,wc} (“the jailer says b”). Naive
conditioning would lead a to adopt the distribution
PrW (· | {wa,wc}). This satisfies PrW (wa | {wa,wc}) = 1/2.

Sophisticated conditioning leads a to adopt the distribution
Pr ′ = Pr(· | XO = {wa,wc})
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By part (4) of the Theorem, naive conditioning is appropriate (i.e.,
Pr ′W = PrW (· | {wa,wc}) only if the jailer is equally likely to say b
in both worlds wa and wc . Since the jailer must say that b will be
executed in world wc , it follows that
Pr(XO = {wa,wc}|XW = wc) = 1.

Thus, conditioning is appropriate only if the jailer’s protocol is such
that he definitely says b in wa, i.e., even if both b and c are
executed.

But if this is the case, when the jailer says c , conditioning PrW on
{wa,wb} is not appropriate, since then a knows that he will be
executed.
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The world cannot be wa, for then the jailer would have said b.
Therefore, no matter what the jailer’s protocol is, conditioning in
the naive space cannot coincide with conditioning in the
sophisticated space for both of his responses.
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Suppose that O = {U1,U2}, and both U1 and U2 are observed
with positive probability. (This is the case for both Monty Hall and
the three-prisoners puzzle.) Then the CAR condition cannot hold
for both U1 and U2 unless Pr(XW ∈ U1 ∩ U2) is either 0 or 1.
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Proposition The CAR condition holds for all distributions Pr on
R if and only if O consists of pairwise disjoint subsets of W .
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