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Abstract. Results in social choice theory such as the Arrow and Gibbard-
Satterthwaite theorems constrain the existence of rational collective deci-
sion making procedures in groups of agents. The Gibbard-Satterthwaite
theorem says that no voting procedure is strategy-proof. That is, there
will always be situations in which it is in a voter’s interest to misrepresent
its true preferences i.e., vote strategically. We present some properties of
strategic voting and then examine — via a bimodal logic utilizing epis-
temic and strategizing modalities — the knowledge-theoretic properties
of voting situations and note that unless the voter knows that it should
vote strategically, and how, i.e., knows what the other voters’ preferences
are and which alternate preference P’ it should use, the voter will not
strategize. Our results suggest that opinion polls in election situations
effectively serve as the first n — 1 stages in an n stage election.

1 Introduction

A comprehensive theory of multi-agent interactions must pay attention to results
in social choice theory such as the Arrow and Gibbard-Satterthwaite theorems
[1,7,17]. These impossibility results constrain the existence of rational collec-
tive decision making procedures. Work on formalisms for belief merging already
reflects the attention paid to social choice theory [9,6,12,11,13]. In this study
we turn our attention to another aspect of social aggregation scenarios: the
role played by the states of knowledge of the agents. The study of strategic in-
teractions in game theory reflects the importance of states of knowledge of the
players. In this paper, we bring these three issues—states of knowledge, strategic
interaction and social aggregation operations—together.



The Gibbard-Satterthwaite theorem is best explained as follows*. Let S be a
social choice function whose domain is an n-tuple of preferences P; ... P, where
{1,...,n} are the voters, M is the set of choices or candidates and each P; is a
linear order over M. S takes P; ... P, as input and produces some element of M
- the winner. Then the theorem says that there must be situations where it ‘prof-
its’ a voter to vote strategically. Specifically, if P denotes the actual preference
ordering of voter i, Y denotes the profile consisting of the preference orderings
of all the other voters then the theorem says that there must exist P,Y, P’ such
that S(P',Y) >p S(P,Y). Here >p indicates: better according to P. Thus in
the situation where the voter’s actual ordering is P and all the orderings of the
other voters (together) are Y then voter 4 is better off saying its ordering is P’
rather than what it actually is, namely P. In particular, if the vote consists of
voting for the highest element of the preference ordering, it should vote for the
highest element of P’ rather than of P.

Of course, the agent might be forced to express a different preference. For
example, if an agent, whose preferences are B > C' > A, is only presented C, A
as choices, then the agent will pick C'. This ‘vote’ differs from the agent’s true
preference, but should not be understood as ‘strategizing’ in the true sense.

A real-life example of strategizing was noticed in the 2000 US elections when
some supporters of Ralph Nader voted for their second preference, Gore,® in a
vain attempt to prevent the election of George W. Bush. In that case, Nader
voters decided that (voting for the maximal element of) a Gore-Nader-Bush
expression of their preferences would be closer to their desired ordering of Nader-
Gore-Bush than the Bush-Gore-Nader ordering that would result if they voted
for their actual top choice. Similar examples of strategizing have occurred in
other electoral systems over the years ([4] may be consulted for further details
on the application of game-theoretic concepts to voting scenarios). The Gibbard-
Satterthwaite theorem points out that situations like the one pointed out above
must arise.

What interests us in this paper are the knowledge-theoretic properties of the
situation described above. We note that unless the voter with preference P knows
that it should vote strategically, and how, i.e., knows that the other voters’
preference is Y and that it should vote according to P’ # P, the theorem is not
‘effective’. That is, the theorem only applies in those situations where a certain
level of knowledge exists amongst voters. Voters completely or partially ignorant
about other voters’ preferences would have little incentive to change their actual
preference at election time. In the 2000 US elections, many Nader voters changed
their votes because opinion polls had made it clear that Nader stood no chance
of winning, and that Gore would lose as a result of their votes going to Nader.

4 Later we use a different formal framework; we have chosen to use this more trans-
parent formalism during the introduction for ease of exposition.

5 Surveys show that had Nader not run, 46% of those who voted for him would have
voted for Gore, 23% for Bush and 31% would have abstained. Hereafter, when we
refer to Nader voters we shall mean those Nader voters who did or would have voted
for Gore.



We develop a logic for reasoning about the knowledge that agents have of
their own preferences and other agents’ preferences, in a setting where a social
aggregation function is defined and kept fixed throughout. We attempt to for-
malize the intuition that agents, knowing an aggregation function, and hence
its outputs for input preferences, will strategize if they know a) enough about
other agents’ preferences and b) that the output of the aggregation function of
a changed preference will provide them with a more favorable result, one that is
closer to their true preference. We will augment the standard epistemic modality
with a modality for strategizing. This choice of a bimodal logic brings with it
a greater transparency in understanding the states that a voter will find itself
in when there are two possible variances in an election: the preferences of the
voters and the states of knowledge that describe these changing preferences.

Our results will suggest that election-year opinion polls are a way to effec-
tively turn a one-shot game, i.e., an election, into a many-round game that may
induce agents to strategize. Opinion polls make voters’ preferences public in an
election year and help voters decide on their strategies on the day of the election.
For the rest of the paper, we will refer to opinion polls also as elections.

The outline of the paper is as follows. In Section 2 we define a formal voting
system and prove some preliminary results about strategic voting. In Section 3 we
demonstrate the dependency of strategizing on the voters’ states of knowledge.
In Section 4 we develop a bimodal logic for reasoning about strategizing in voting
scenarios.

2 A Formal Voting Model

There is a wealth of literature on formal voting theory. This section draws upon
discussions in [4, 5]. The reader is urged to consult these for further details.

Let O = {o01,...,0m} be aset of candidates, 4 = {1,...,n} be a set of agents
or voters. We assume that each voter has a preference over the elements of O,
i.e., a reflexive, transitive and connected relation on O. For simplicity we assume
that each voter’s preference is strict. A voter i’s strict preference relation on O
will be denoted by P;. We represent each P; by a function P; : O — {1,...,m},
where we say that a voter strictly prefers oj to o, iff P;(0;) > P;(or). We will
write P; = (01,...,0,) iff P;(01) > P;(02) > --+ > P;(0,).- Henceforth, for ease
of readability we will use Pref to denote preferences over O. A preference profile
is an element of (Pref)”. Given each agent’s preference an aggregation function
returns the social preference ordering over O.

Definition 1 (Aggregation Function). An aggregation function is a func-
tion from preference profiles to preferences:

Ag : Pref” — Pref

In voting scenarios such as elections, agents are not expected to announce
their actual preference relation, but rather to select a vote that ‘represents’ their
preference. Each voter chooses a vote v, the aggregation function tallies the



votes of each candidate and selects a winner (or winners if electing more than
one candidate). There are two components to any voting procedure. First, the
type of votes that voters can cast. For example, in plurality voting voters can only
vote for a single candidate so votes v are simply singleton subsets of O, whereas
in approval voting voters select a set of candidates so votes v are any subset of
O. Following [5], given a set of O of candidates, let B(O) be the set of feasible
votes, or ballots. The second component of any voting procedure is the way in
which the votes are tallied to produce a winner (or winners if electing more
than one candidate). We assume that the voting aggregation function will select
exactly one winner, so ties are always broken®. Note that elements of the set
B(O)™ represent votes cast by the agents. An element v € B(O)" is called a vote
profile. A tallying function Ag, : B(O)™ — O maps vote profiles to candidates.

Given agent i’s preference P;, let S(v, P;) mean that the vote v is a sincere
vote corresponding to P;. For example, in plurality voting, the only sincere vote
is a vote for the maximally ranked candidate under P;. By contrast, in approval
voting, there could be many sincere votes, i.e., those votes where, if candidate o
is approved, so is any higher ranking o’. Then B(O); = {v|S(v, P;)} is the set of
votes which faithfully represent i’s preference. The voter i is said to strategize if
i selects a vote v that is not in the set B(O);.

In what follows we assume that when an agent votes, the agent is selecting a
preference in the set Pref instead of an element of B(O). A vote is a preference;
a vote profile is a vector of preferences, denoted by P.”

Assume that the agents’ true preferences are P* = (Pf,...,P¥) and fized
for the remaining discussion. Given a profile P of actual votes, we ask whether
agent ¢ will change its vote if given another chance to express its preference. Let
P_; be the vector of all other agents’ preferences. Then given P_; and i’s true
preference P}, there will be a (nonempty) set X; of those preferences that are i’s
best response to P_;. Suppose that f;(P_;) selects one such best response from
X;.8 Then f(P) = (fi(P—1),..., fn(P_y)). We call f a strategizing function. If
P is a fixed point of f (i.e., f(P) = P), then P is a stable outcome. In other
words, such a fixed point P of f is a Nash equilibrium. We define f™ recursively
by fY(P) = f(P), f* = f(f"1(P)), and say that f is stable at level n if
f™(P)) = fr~Y(P). Tt is clear that if f is stable at level n, then f is stable at
all levels m where m > n. Also, if the initial preference of the P is a fixed point
of f then all levels are stable.

Putting everything together, we can now define a voting model.

Definition 2 (Voting Model). Given a set of agents A, candidates O, a vot-
ing model is a 5-tuple (A, O, {P}}ica,Ag, f),where P} is voter i’s true pref-

(3

6 [2] shows that the Gibbard-Satterthwaite theorem holds when ties are permitted.

" This does not quite work for approval voting where P does not fully determine the
sincere vote v, but we will ignore this issue here, as it does not apply in the case of
plurality elections, whether of one, or of many ‘winners’.

& Note that P; may itself be a member of X; in which case we shall assume that
f(P) =P



erence; Ag is an aggregation function with domain and range as defined above;
[ is a strategizing function.

Note that in our definition above, we use aggregation functions rather than
tallying functions (which pick a winning candidate). This is because we can
view tallying functions as selecting a ‘winner’ from the output of an aggregation
function. So in our model, the result of an election is a ranking of the candidates.
This allows our results to apply not only to conventional plurality voting, but
also to those situations where more than one candidate is to be elected. They
require some modification to apply to approval voting, as the ballot is not then
determined by the preference ordering but also needs a cut-off point between
approved and ‘dis-approved’ candidates.

The following example demonstrates the type of analysis that can be modeled
using a strategizing function.

Ezample 1. Suppose that there are four candidates O = {01, 02,03,04} and five
groups of voters: A, B,C,D and E. Suppose that the sizes of the groups are
given as follows: |A| = 40, |B| = 30, |C| = 15, |D| = 8 and |E| = 7. We assume
that all the agents in each group have the same true preference and that they
all vote the same way. Suppose that the tallying function is plurality vote. We
give the agents’ true preferences and the summary of the four elections in the
table below. The winner in each round is in boldface.

. Size|Group| I [IT|II|IV
PA (01’04’02’03) 40 A 0171|0104 |01
P]’;’ (O 01,03, 0. 4) 30 B 02 |02|02|02
P}, = (03,02,04,01) 15| C |os|oz|02|02
P}, = (04,01, 02,03) 8 | D |o4|04]|01 |04

7 E |o3|o3|01 |01

Py, = (03,01,02,04)

The above table can be justified by assuming that all agents use the following
protocol. If the current winner is o, then agent ¢ will switch its vote to some
candidate o' provided 1) i prefers o' to o, and 2) the current total for o' plus
agent i’s votes for o' is greater than the current total for o. By this protocol
an agent (thinking only one step ahead) will only switch its vote to a candidate
which is currently not the winner.

In round I, everyone reports their top choice and o0y is the winner. C' likes o0y
better than o; and its own total plus B’s votes for 02 exceed the current votes
for o;. Hence by the protocol, C will change its vote to 05. A will not change its
vote in round II since its top choice is the winner. D and E also remain fixed
since they do not have an alternative like o' required by the protocol. In round
ITT, group A changes its vote to o4 since it is preferred to the current winner
(02) and its own votes plus D’s current votes for o4 exceed the current votes
for 02. B and C do not change their votes. For B’s top choice o0z is the current
winner and as for C, they have no o' better than oo which satisfies condition 2).
Ironically, Group D and E change their votes to o; since it is prefered to the
current winner is 0, and group A is currently voting for o;. Finally, in round IV,



group A notices that E is voting for 0; which A prefers to o4 and so changes its
votes back to o;. The situation stabilizes with 0; which, as it happens, is also
the Condorcet winner.

Much more can be said about the above analysis, but this is a topic for a
different paper. We now point out that for every aggregation function Ag and
any strategizing f, there must be instances in which f never stabilizes:

Theorem 1. For any given tallying function Ag,, there exists an initial vector
of preferences such that f never stablizes.

This follows easily from the Gibbard-Satterthwaite theorem. Suppose not, then
we show that there is a strategy-proof tallying function contradicting the Gibbard-
Satterthwaite theorem. Suppose that Ag, is an arbitrary tallying function and
P* the vector of true preferences. Suppose there always is a level k£ at which f
stabilizes given the agents’ true preferences P*. But then define Ag’ to be the
outcome of applying Ag, to f¥(P*) where P* are the agents’ true preferences.
Then given some obvious conditions on the strategizing function f, Ag’ will
be a strategy-proof tallying function contradicting the Gibbard-Satterthwaite
theorem. Hence there must be situations in which f never stabilizes.

Since our candidate and agent sets are finite, if f does not stabilize then
f cycles. We say that f has a cycle of length n if there are n different votes
Py,...P, such that f(P;) = P;yq forall1 <i<mn-—1and f(P,) = P;.

3 Dependency on knowledge

Suppose that agent i knows the preferences of the other agents, and that no
other agent knows agent i’s preference (and agent ¢ knows this). Then 4 is in
a very privileged position, where its preferences are completely secret, but it
knows it can strategize using the preferences of the other agents. In this case, i
will always know when to strategize and when the new outcome is ‘better’ than
the current outcome. But if i only knows the preferences of a certain subset B
of the set A of agents, then there still may be a set of possible outcomes that it
could force. Since i only knows the preferences of the agents in the set B, any
strategy P will generate a set of possible outcomes. Suppose that there are two
strategies P and P’ that agent 7 is choosing between. Then the agent is choosing
between two different sets of possible outcomes. Some agents may only choose to
strategize if they are guaranteed a better outcome. Other agents may strategize if
there is even a small chance of getting a better outcome and no chance of getting
a worse outcome. We will keep this process of choosing a strategy abstract, and
only assume that every agent will in fact choose one of the strategies available
to it. Let S; be agent i’s strategy choice function, which accepts the votes of a
group of agents and returns a preference P that may result in a better outcome
for agent ¢ given the agents report their current preference. We will assume that
if B = 0 then S; picks P;. That is, agents will vote according to their true
preferences unless there is more information.



As voting takes place or polls reveal potential voting patterns, the facts that
each agent knows will change. We assume that certain agents may be in a more
privileged position than other agents. As in [14], define a knowledge graph to
be any graph with A as its set of vertices. If there is an edge from ¢ to j, then we
assume that agent ¢ knows agent j’s current vote, i.e., how agent j voted in the
current election. Let K = (A, Ex) be a knowledge graph (Ex is the set of edges
of K). We assume that ¢ € A knows the current votes of all agents accessible
from 4. Let B; = {j | there is an edge from 4 to j in K}. Then S; will select the
strategy that agent i would prefer given how agents in B; voted currently.

We clarify the relationship between a knowledge graph and the existence of a
cycle in the knowledge graph K = (A, Ex) by the following:

Theorem 2. Fiz a voting model (A, O,{P}}ica,Ag, f) and a knowledge graph
K = (A, Ex). If K is directed and acyclic then the strategizing function f will
stabilize at level k, where k is the height of the graph K; f can cycle only if the
associated knowledge graph has a cycle.

Proof. Since K is a directed acyclic graph, there is at least one agent i such that
B; = (. By assumption such an agent will vote according to P} at every stage.
Let

Ag={i|i€ Aand B; =0}

and
Ap = {i| if thereis (i,j) € Ex,then j € A; for I < k}

Given (by induction on k) that the agents in Ag_; stabilized by level k — 1, an
agent ¢ € A need only wait k — 1 rounds, then choose the strategy according to
S;. O

The following is an example of a situation in which the associated strategizing
function never stabilizes:

Ezample 2. Consider three candidates {a,b,c} and 100 agents connected by a
complete knowledge graph. Suppose that 40 agents prefer a > b > ¢ (group I), 30
prefer b > ¢ > a (group II) and 30 prefer ¢ > a > b (group III). If we assume that
the voting rule is simple majority, then after reporting their initial preferences,
candidate a will be the winner with 40 votes. The members of group II dislike a
the most, and will strategize in the next election by reporting ¢ > b > a as their
preference. So, in the second round, ¢ will win. But now, members of group I
will report b > a > ¢ as their preference, in an attempt to draw support away
from their lowest ranked candidate. ¢ will still win the third election, but by
changing their preferences (and making them public) group I sends a signal to
group II that it should report its true preference - this will enable group I to
have its second preferred candidate b come out winner. This cycling will continue
indefinitely; b will win for two rounds, then a for two rounds, then ¢ for two, etc.



4 An epistemic logic for voting models

In this section we define an epistemic logic for reasoning about voting models.
In Example 2, it is clear that voters are reasoning about the states of knowledge
of other voters and furthermore, an agent reasons about the change in states
of knowledge of other voters on receipt of information on votes cast by them.
We now sketch the details of a logic KV for reasoning about knowledge and the
change of knowledge in a fixed voting model V.

4.1 The logic KV - syntax

In this section we will assume that each vote is an expressed preference, which
may or not be the true preference of an agent. So the expression ‘preference’
without the qualifier ‘true’ will simply mean an agent’s current vote. We assume
that for each preference P there is a symbol P that represents it. There are
then two types of primitive propositions in £(KV). First, there are statements
with the content “agent i’s preference is P”. Let P; represent such statements.
Secondly, we include statements with the content “P is the current outcome of
the aggregation function”. Let Po represent such statements.

Our language includes the standard boolean connectives, an epistemic modal-
ity K; indexed by each agent i plus an additional modality <; (similarly indexed).
Formulas in £(KV) take the following syntactic form:

p:=p|-d| oAy | Kig| Cig

where p is a primitive proposition, i € A. We use the standard definitions for
V, — and the duals L;, 0;. K;¢ is read as “agent i knows ¢; ©;¢ is read as “after
agent i strategizes, ¢ becomes true”.

4.2 The logic KV - semantics

Before specifying a semantics we make some brief remarks on comparing prefer-
ences. Strategizing means reporting a preference different from your true pref-
erence. An agent will strategize if by reporting a preference other than its true
preference, the outcome is ‘closer’ to its true preference than the outcome it
would have obtained had it reported its true preference originally. Given pref-
erences P, (), R, we use the notation P Cgr @ to indicate that P is at least as
compatible with R as () is. Given the above ternary relation, we can be more
precise about when an agent will strategize. Given two preferences P and @,
we will say that an agent whose true preference is R prefers P to Q if P Cgr Q
holds. That is, ¢ prefers P to @ if P is at least as ‘close’ to 4’s true preference as
Q is.

We assume the following conditions on C. For arbitrary preferences P, @, R, S:

1. (Minimality) R Cg P
2. (Reflexivity) P Cg P



3. (Transitivity) f PCr @ and Q Cg S, then PCg S.

4. (Pareto Invariance) Suppose that R = (01,...,0,) and P = (o},...,0,,)
and () is obtained from P by swapping o; and o} for some i # j. If R(0}, 0})
and P(o;,0}), i.e., R agrees with P on 0},0; and disagrees with @, then P

must be at least as close to R as Q (P Cgr Q).

(Minimality) ensures that a true preference is always the most desired outcome.
(Reflexivity) and (Transitivity) carry their usual meanings. As for Pareto invari-
ance, note that swapping of, 03- may also change other relationships. Our example
below will show that this is not a problem.

The following is an example of an ordering Cg satisfying the above condi-
tions. Let R = (o1, - -.,0m). For each vector P, suppose that cp(0;) is the count
of o; in vector P, i.e., the numeric position of 0; numbering from the right. For
any vector P, let VR(P) = cr(o1)cp(01) + - -+ ¢r(0m)cp(0r). This assigns the
following value to R, Vr(R) = m? + (m —1)? 4+ --- + 12. We say that P is closer
to R than Q iff Vg(P) is greater than Vg(Q). This creates a strict ordering over
preferences, which can be weakened to a partial order by composing Vg with a
weakly increasing function.’

Let V = (A, O, {P;}ica, Ag, f) be a fixed voting model. We define a Kripke
structure for our bi-modal language based on V. States in this structure are
vectors of preferences!® together with the outcome of the aggregation function.
The set of states W is defined as follows:

W ={(P,0) | P € Pref”, Ag(P) =0}

Intuitively, given a state (P,0), P represents the preferences that are reported
by the agents and O is the outcome of the aggregation function applied to P.
So states of the world will be complete descriptions of stages of elections.

Our semantics helps clarify our decision to use two modalities. Let (P, O)
be an element of W. To understand the strategizing modality, note that when
an agent strategizes it only changes the ith component of P, i.e., the accessible
worlds for this modality are those in which the remaining components of P are
fixed. For the knowledge modality note that all agents know how they voted,
which implies that accessible worlds for this modality are those in which the ith
component of P remains fixed while others vary.

We now define accessibility relations for each modality. Since the second
component of a state can be calculated using Ag we write P for (P,0O). For the
knowledge modality, we assume that the agents know how they voted and so
define for each i € A and preferences P, Q:

(P,O)R:(Q,0") iff Pi=Q;

9 Plurality cannot be produced this way, but other functions satisfying 1-4 can easily
be found that do.

10 Defining Kripke structures over agents’ preferences has been studied by other au-
thors. [18] has a similar semantics in a different context.



The above relation does not take into account the fact that some agents may
be in a more privileged position than other agents, formally represented by the
knowledge graph from the previous section. If we have fixed a knowledge graph,
then agent ¢ not only knows how it itself voted, but also the (current) preferences
of each of the agents reachable from it in the knowledge graph. Let K = (A, Ex)
be a knowledge graph, and recall that B; is the set of nodes reachable from 3.
Given two vectors of preferences P and @ and a group of agents G C A, we say
Ps = Qg iff P; = Q; for each i € G. We can now define an epistemic relation
based on K:

(P,O)RF(Q,0") iff P,=Q; and Pp, = Qp,

Clearly for each agent i and knowledge graph K, RY is an equivalence rela-
tion; hence each K; is an S5 modal operator. The exact logic for the strategizing
modalities depends on the properties of the ternary relation C.

For the strategizing modalities, we define a relation 4; C W x W as follows.
Given preferences P, Q:

(P, O)A,(Q, Ol) iff P_;= Q—i and O' Epi* 0]

where P_; is all components of P except for the ith component. So, (P,0) and
(Q,0") are A; related iff they have the same jth component for all j # i and
agent ¢ prefers outcome O’ to outcome O relative to i’s true preference P;.

An election is a sequence of states. We say that an election E = (s1, 82, ..., 85)
respects the strategizing function f if f(s;) = s;41 fori =1,...,n—1. We assume
always that f is such that f(s) = s unless the agent knows that it can strategize
and get a better outcome, and how it should so strategize. A model for V is a
tuple M = (W, R;, A;, V) where V : W — 2%° (where @ is the set of primitive
propositions). We assume that all relations R; are based on a given knowledge
graph K. Let (P,0) € W be any state; we define truth in a model as follows:

1. (P,O) Epif pe V(P,0) and p € &,

2. (P,0) E~¢iff (P,0) |~ ¢

3. (P,0) = gAY iff (P,0) | ¢ and P =

4. (P,0) k= K¢ iff for all (Q,0') such that (P,0)RE(Q, 0')( L0 = ¢
5. (P,0) [ ©;¢ iff there is (Q, 0") such that (P,0)4;(Q,0") and (Q,0") = ¢

Nothing in our definition of a model forces primitive propositions to have their
intended meaning. We therefore make use of the following definition.

Definition 3. A waluation function V is an appropriate valuation for a
model Ml iff V' satisfies the following conditions. Let V = (A, O, {P} }ica, Ag, f)
be a voting model and M a model based on V. Let (P,0) € W be any state.
Then:

1. For each i € A, P; € V(P,0) iff P represents the preference P;.
2. For each Po, Po € V(P,0) iff P represents O.



We assume that valuation functions are appropriate for the corresponding model.

The following formula implies strategizing for an individual agent. It says that
agent ¢ knows that the outcome is Pp and by reporting a different preference a
preferred outcome can be achieved.

K;(Po AO;T)
We are now in a position to present our last main result.

Theorem 3. Given a voting system V = (A, O,{P}}ica,Ag, f), a knowledge
graph K and a model M for V, let E be an election that respects the strategizing
function f. If there is a state P such that E; = P for somel and P |= —~K;(Po A
&;T) for all i, then P is a fized point of f. Equivalently, Given an election E
that respects f and some k such that Eyi1 # Ey, i.e., Ey is not a fixed point of
f, then 3i € A such that:

Ey IZ Ki(PO A OiT)

That is, if an agent strategizes at some stage in the election then the agent knows
that this strategizing will result in a preferred outcome.

5 Conclusion

‘We have explored some properties of strategic voting and noted that the Gibbard-
Satterthwaite theorem only applies in those situations where agents can obtain
the appropriate knowledge. Note that our example in the Introduction showed
how strategizing can lead to a rational outcome in elections. In our example the
Condorcet winner - the winner in pairwise head-to-head contests - was picked
via strategizing. Since our framework makes it possible to view opinion polls as
the n — 1 stages of an n-stage election, it implies that communication of voters’
preferences and the results of opinion polls can play an important role in en-
suring rational outcomes to elections. A similar line of reasoning in a different
context can be found in [15]. Put another way, while the Gibbard-Satterthwaite
theorem implies that we are stuck with voting mechanisms susceptible to strate-
gizing, our work indicates ways for voters to avoid irrational outcomes using such
mechanisms. Connections such as those explored in this paper are also useful in
deontic contexts [10, 16] i.e., an agent can only be obligated to take some action
if the agent is in possession of the requisite knowledge.

For future work, we note that in this study, we left the definition of the
agents’ strategy choice function informal, thus assuming that agents have some
way of deciding which preference to report if given a choice. This can be made
more formal. We could then study the different strategies available to the agents.
For example, some agents may only choose to strategize if they are guaranteed
to get a better outcome, whereas other agents might strategize even if there is
only a small chance of getting a better outcome.



Another question suggested by this framework is: what are the effects of
different levels of knowledge of the current preferences on individual strategy
choices? Suppose that among agent ¢ and agent j, both ¢ and j’s true preferences
are common knowledge. Now when agent ¢ is trying to decide whether or not to
strategize, ¢ knows that j will be able to simulate i’s reasoning. Thus if ¢ chooses
a strategy based on j’s true preference, i knows that j will choose a strategy
based on i’s choice of strategy, and so 7 must choose a strategy based on j’s
response to 4’s original strategy. We conjecture that if there is only pairwise
common knowledge among the agents of the agents’ true preferences, then the
announcement of the agents’ true preferences is a stable announcement.

On a technical note, the logic of knowledge we developed uses S5 modalities.
We would like to develop a logic that uses KD45 modalities - i.e., a logic of belief.
This is because beliefs raise the interesting issue that a voter - or groups of voters
- can have possibly inconsistent beliefs about other voters’ preferences, while this
variation is not possible in the knowledge case. Another area of exploration will
be connections with other distinct approaches to characterize game theoretic
concepts in modal logic such as [8,3,18]. Lastly, a deeper formal understanding
of the relationship between the knowledge and strategizing modalities introduced
in this paper will become possible after the provision of an appropriate axiom
system for V. Our work is a first step towards clarifying the knowledge-theoretic
properties of voting, but some insight into the importance of states of knowledge
and the role of opinion polls is already at hand.
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