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ABSTRACT
Backward and forward induction can be viewed as two styles
of reasoning in dynamic games. Since each prescribes tak-
ing a different attitude towards the past moves of the other
player(s), the strategies they identify as rational are some-
times incompatible. Our goal is to study players who are able
to deliberate between backward and forward induction, as
well as conditions under which one is superior to the other.
This extended abstract is our first step towards this goal. We
present an extension of Stalnaker’s game models [34, 35], in
which the players can make “trembling hand” mistakes. This
means that when a player observes an unexpected move, she
has to figure out whether it is a result of a deliberate choice
or a mistake, thereby committing herself to one of the two
styles of reasoning.

1. INTRODUCTION AND MOTIVATION
We begin with a motivating example. Consider the game

G1 depicted in Figure 1. There are two players: Ann (A) and
Bob (B). Ann moves first (node h0) and can either choose
to go out (O), immediately ending the game, or stay in the
game (I). If she chooses to stay in, node h1 is reached. At h1,
Ann and Bob move simultaneously (Ann’s available actions
are u and v while Bob’s are a, b and c). The structure of this
game is similar to the extensively studied Battle of the Sexes
with an Outside Option (see, for instance, [7, 14, 37]).
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Figure 1: Motivating Example
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1 Introduction and Motivation

We begin with a motivating example. Consider the game depicted in Figure 1. There are

two players: Ann (A) and Bob (B). Ann goes first (node v0) and can either choose to go out

(O), immediately ending the game, or stay in the game (I). If she chooses to stay in, node

v1 is reached. At v1, Ann and Bob move simultaneously (Ann’s available actions are u and v

while Bob’s are a, b and c). The structure of this game is similar to the extensively studied

Battle of the Sexes with an Outside Option (see, for instance, [6, 12, 33]).

Suppose that Bob initially believes that Ann is going to choose O. To his amazement,

however, Ann stays in the game. Now Bob has to figure out why Ann decided to play I,

what she will choose at node v1, and, most importantly, what is his own best response.

There are two plausible “lines of reasoning” for Bob. The first goes as follows: Ann chose

I at v0 because she is hoping for a payo↵ greater than 3. Thus, Ann must be hoping that

the game will terminate in the rightmost node. Hence, the rational choice for Bob is b,

which—assuming his conjecture about Ann is correct—results in a payo↵ of 5. Alternatively,
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Figure 1: The game G1
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Suppose that Bob initially believes that Ann is going to
choose O. To his amazement, however, Ann stays in the
game. Now Bob has to figure out why Ann decided to play
I, what she will choose at node h1, and, most importantly,
what is his own best response. There are two plausible “lines
of reasoning” for Bob. The first goes as follows: Ann chose
I at h0 because she is hoping for a payoff greater than 3.
Thus, Ann must be hoping that the game will terminate in
the rightmost node. Hence, the rational choice for Bob is
b, which—assuming his conjecture about Ann is correct—
would result in a payoff of 5. Alternatively, Bob can avoid
speculating about the reasons behind Ann’s move and focus
on trying to figure out what is the rational thing for her to
do at h1. Although Ann might hope initially that the game
will end in the rightmost node, she must realize that Bob
will never choose c since it is strictly dominated by a. So,
guaranteeing a payoff of 2, u is Ann’s rational choice at h1.
Clearly, if Bob convinces himself that Ann is choosing u,
playing a is his best response. The two lines of reasoning,
thus, lead to different recommendations for Bob. The first
is an example of the so-called “forward induction reasoning”
requiring that the players think critically about the observed
past choices of their opponent(s) and find plausible explana-
tions for these choices [7, 24, 28, 35, 37]. The second can be
called “backward induction reasoning” requiring the players
to only reason about their opponents’ future behavior and
not about their past moves [2, 12, 28, 30, 35].

There are many characterizations of both forward and
backward induction reasoning in the game theory literature
(cf. [7, 28, 35]). These formal renderings match the infor-
mal explanation given above, recommending that Bob plays
a and b, respectively. However, the formal models do not
solve what we take to be Bob’s real challenge, namely, de-
ciding which of these two lines of reasoning is more plausi-
ble in the present case.1 Notice that a wrong choice leads
to an unwelcome consequence. Suppose that Bob interprets
Ann’s choice of I as an attempt to get a higher payoff, but
it turns out that she did it for some other reason—e.g. she
was careless—and that, at h1, she decides to play u. In this
case, Bob ends up with 0. Now, suppose that Bob disre-
gards Ann’s previous move, as backward induction suggests
he should, but it turns out that Ann is hoping to get 4. In
this case, Bob’s payoff is 1 instead of 5.

1We do not mean to suggest that Bob is explicitly applying
backward or forward induction himself. Rather, a theorist
can identify his reasoning as an instance of one or the other.
In our models, the players’ “choice” of reasoning style will
be traced back to their prior beliefs about how likely it is
that their opponents may make a mistake.
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of 5.

These considerations bring us to the following general question: How can a player de-

liberate between backward and forward induction in cases in which both seem plausible (at

least prima facie) while dictating incompatible choices? Admittedly, in the above situation,

Bob seems to be faced with a particularly di�cult choice, since his information does not

seem to sway the scales in favor of one or the other style of reasoning. But suppose that he

is in a situation in which the players are prone to making mistakes relatively frequently—we

elaborate on this notion below; for now simply think of the so-called “trembling hand mis-

takes” [28]: Ann chooses O, but plays I instead. In this case, backward induction reasoning

should be preferred. Or let’s say that Ann and Bob are playing a di↵erent game in which

mistakes are still possible, but Ann has two opportunities to go out before reaching the node

at which the players move simultaneously—see Figure 2. Intuitively, if Bob observes Ann

play I1, it is reasonable for him to interpret her move as a mistake. Suppose, however, that

Bob subsequently observes that Ann plays I2. Now, the interpretation of her previous choices

that is suggested by forward induction seems more plausible (we could of course modify the

game further by adding more opportunities for Ann to exit the game). What this all suggests

is that additional information about the context of the game—e.g., how probable it is that
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Figure 2: The game G2

These considerations bring us to the following general
question: How can a player deliberate between backward and
forward induction in cases in which both seem plausible (at
least prima facie) while dictating incompatible choices? Ad-
mittedly, in the above situation, Bob seems to be faced with
a particularly difficult choice, since his information does not
seem to sway the scales in favor of one or the other style of
reasoning. But suppose that he is in a situation in which the
players are prone to making mistakes relatively frequently—
we elaborate on this notion below; for now simply think of
the so-called“trembling hand mistakes” [32]: Ann chooses O,
but plays I instead. In this case, backward induction reason-
ing should be preferred. Or let’s say that Ann and Bob are
playing a different game, G2, in which mistakes are still pos-
sible, but Ann has two opportunities to go out before reach-
ing the node at which the players move simultaneously—see
Figure 2. Intuitively, if Bob observes Ann play I1, it is rea-
sonable for him to interpret her move as a mistake. Suppose,
however, that Bob subsequently observes that Ann plays I2.
Now, the interpretation of her previous choices that is sug-
gested by forward induction seems more plausible (we could
of course modify the game further by adding more opportu-
nities for Ann to exit the game). What this all suggests is
that additional information about the context of the game—
e.g., how probable it is that players make mistakes—can help
the player settle on a style of reasoning.

Our ultimate goal is to study players that are able to de-
liberate between forward and backward induction, as well
as conditions which make each style of reasoning superior to
the other. The above considerations suggest that to do so
we need to endow standard game theoretic agents with (rel-
atively) rich beliefs. We use a model introduced by Stalnaker
[33, 34, 35, 36] to describe the players’ beliefs. In addition
to having beliefs about their opponents’ strategies and the
game—standard for Epistemic Game Theory [16, 27, 29]—
our players can also interpret observed behavior as either
the result of deliberate action or as a mistake.

This paper is structured as follows. Section 2 describes
the formal framework that allows us to represent the two
lines of reasoning discussed above: extensive games with si-
multaneous moves (Section 2.1), our extension of Stalnaker’s
model (Section 2.2), two notions of rationality (Section 2.3),
as well as an illustrative example (Section 2.4). In Section 3,
we argue that our model offers an illuminating perspective
on epistemic characterizations of backward induction and is
a conservative extension of Stalnaker’s model. Finally, Sec-
tions 4 and 5 discuss related work and outline a number of
directions for future research.

2. FRAMEWORK

2.1 Extensive games with simultaneous moves
The examples from the introduction are extensive games

with simultaneous moves.2 Following [26, Section 6.3.2],
we describe them as structures 〈N,Act,H, τ, {ui}i∈N 〉, where:

• N is a finite set of players.

• Act is the set of actions available to the players. To
simplify notation, we assume that Act is partitioned
into sets of actions for each player. For player i ∈ N ,
let Acti ⊆ Act denote player i’s actions.

• H is a set of finite sequences of finite sequences of
elements of Act. Elements h ∈ H are called histories.
We assume H satisfies the following constraints:

– ε ∈ H, where ε denotes the empty history.

– If h ∈ H and h′ � h, then h′ ∈ H, where h′ � h
means that h′ is a initial segment of h. Formally,
we write h′ � h provided h = h′u where u is a
sequence of sequences from Act, and h′u denotes
the concatenation of h′ with u.

– Each h ∈ H is finite. That is, we restrict attention
to finite horizon games.3 We write len(h) for the
length of h (i.e., the number of elements in h).

A history h ∈ H is called a terminal history if
there is no h′ ∈ H such that h′ 6= ε and hh′ ∈ H.
Let Z ⊆ H denote the set of terminal histories. Let
V = H − Z be the set of non-terminal histories. Each
non-terminal history is associated with a simultaneous
decision problem for a set of players. For this reason,
we sometimes call elements of V decision nodes. For
h ∈ V , let A(h) be the possible extensions of h:

A(h) = {~a | h~a ∈ H and ~a is a sequence of actions}.

• τ is a turn function τ : V → ℘(N) assigning a set of
players4 to each non-terminal history h ∈ V . For each
i ∈ N , let Vi = {h ∈ V | i ∈ τ(v)} be the set of

2We assume that the reader is familiar with the basics of
game theory. The formal definitions are included here to fix
notation.
3This is a standard restriction in the literature on epistemic
characterization of backward induction.
4Throughout this article, we assume that for all h ∈ V ,
τ(h) 6= ∅. If we drop this assumption, then histories in
which τ(h) = ∅ should be interpreted as a move by nature.



non-terminal histories where player i moves. Similarly,
we define the set of actions available to i at a decision
node h ∈ Vi. For each h ∈ V and i ∈ τ(h), let Ai(h)
be the set of actions available to i at h:

Ai(h) = {a ∈ Acti | there is an ~a ∈ A(h) containing a}

If i 6∈ τ(h), then let Ai(h) = ∅. We impose an addi-
tional constraint to ensure that each decision node is
associated with a strategic game:5

– For each h ∈ V , A(h) = Πi∈τ(h)Ai(v).

• For each i ∈ N , ui : Z → R is a utility function.

A strategy for player i assigns an action to each of i’s
decision nodes. Formally, a strategy for player i is a function
si : Vi → Act where for all h ∈ Vi, si(h) ∈ Ai(h). Let Si
be the set of all strategies for player i. As usual, a strategy
profile is a sequence of strategies, one for each player (i.e.,
an element of Πi∈NSi). Given a strategy profile s, let si be
player i’s component of s and s−i the sequence of strategies
from s for all players except i (i.e., s−i ∈ Πj 6=iSj). Each
profile of strategies s generates a terminal history ρs ∈ Z.
We say that a non-terminal history is reached by a strategy
profile provided h is an initial segment of ρs.

A strategy for player i represents her conditional plan for
the game. It prescribes a choice for player i at all of i’s
decision nodes, including those that are ruled-out by the
strategy itself. Suppose that h ∈ Vi. An action a ∈ Acti(h)
rules out a decision node h′ ∈ Vi provided h � h′, but
h~a 6� h′ for any ~a ∈ A(h) containing a. In addition, we say
that a rules out action a′ provided a′ ∈ Ai(h

′) for some
decision node h′ ∈ Vi that is ruled-out by a.6 For example,
in Figure 1, A’s action O at h0 rules out the actions u and
d (because O rules out h1).

2.2 Game models
A game model describes the players’ beliefs during a

play of the game. As discussed in the introduction, we are
interested in representing players that allow for the possi-
bility that one or more of their opponents made a mistake.
This means that we must include states in which the moves
of player i (i.e., the observed behavior of player i) does not
match i’s choices. To make this precise, each state in the
game model will be associated with both strategies for the
players and sequences of actions representing the observed
behavior of the players.

The players’ behavior in a game is represented by a se-
quence of actions. Recall that histories h ∈ H are sequences

5There is a hidden notational difficulty here. Since differ-
ent players move at different decision nodes, the indices of
the sequences of actions change from decision node to deci-
sion node. Formally, we represent a sequence ~a at decision
node h as a function ~a : τ(h) → ∪i∈τ(h)Ai(h) where for
each i ∈ τ(h), ~a(h) ∈ Ai(h). We write ~ai to denote the ac-
tion a ∈ Ai(h) such that ~a(i) = a and say ~a contains a.
This implicitly assumes that i ∈ τ(h) (otherwise ~ai is not
well-defined). Alternatively, we could assume that all players
move at every decision node and introduce notation to dis-
tinguish “active” players from “passive” players. The passive
players at a decision node would only have a single action
available for their choice. We follow the first approach in this
article.
6We are implicitly assuming that all the action labels are
unique. This assumption can be dropped, although it does
simplify the notation.

of sequences of actions (one action for each player whose turn
it is to move). For each h ∈ H, let behi(h) be the sequence
of i’s actions in h. Formally, behi is defined by induction on
the length of histories: behi(ε) = ε (at the initial node, none
of the players have made a choice), and

behi(h~a) =

{
behi(h)a if i ∈ τ(h) and ~a contains a

behi(h) i 6∈ τ(h)

If X is a set, then X∗ is the set of all finite strings of X.
An i-history is a sequence of actions such that α = behi(h)
for some h ∈ H. Given an i-history α and a decision node
h ∈ Vi, let αh be the component of α describing the action
chosen at h. If α does not specify a move at h (either because
the previous moves in α rule out h or α is not a maximal
history), then αh is undefined. For instance, in Figure 1,
there are four A-histories (ε, O, Iu, and Id) and four B-
histories (ε, a, b, and c). We use Ou to denote the strategy
sA in which sA(h0) = O and sA(h1) = u (similarly, for
Od). Furthermore, we have Iuh0 = I, Iuh1 = u, and Oh1 is
undefined.

A player history may be a partial description of what that
player does in the game. This happens when the i-history α
does not specify a choice for i at a decision node h not ruled
out by α. Of course, if an i-history α specifies an action for
player i at a decision node h ∈ Vi, then α specifies an ac-
tion for i at each h′ such that h′ � h and h′ ∈ Vi. We are
interested in sets of player histories that represent possible
plays of the game. A set of player histories {αi}i∈N is co-
herent if there is a history h ∈ H such that for all i ∈ N ,
behi(h) = αi. Note that a set of i-histories may be coherent,
yet not completely describe a path trough the game. For in-
stance, {I, c} is a coherent set of player histories in the game
pictured in Figure 1: There are two histories h = (I)(u, c)
and h′ = (I)(d, c) such that behB(h) = behB(h′) = c and
behA(h) = behA(h′) = I. However, there is a unique history
representing the play of the game associated with a coher-
ent set of player strategies. The play of the game generated
by a coherent set of i-histories {αi}i∈N is the longest his-
tory h such that h � h′ for each h′ such that for all i ∈ N ,
behi(h

′) = αi. The play of the game associated with the co-
herent set {I, c} in the game in Figure 1 is h = (I). The play
of the game associated with a coherent set of player histo-
ries may be empty and need not be maximal. For example,
the following table lists the coherent sets of strategies and
the corresponding play of the game for the game pictured in
Figure 1.

Coherent sets player strategies Play of the game
{ε, ε} ε

{O, ε} (O)

{I, a}, {I, b}, {I, c}, {I, ε} (I)

{Iu, ε}, {Id, ε} (I)

{Iu, a} (I)(u, a)

{Iu, b} (I)(u, b)

{Iu, c} (I)(u, c)

{Id, a} (I)(d, a)

{Id, b} (I)(d, b)

{Id, c} (I)(d, c)

The sets {O, a}, {O, b} and {O, c} are not coherent.



Suppose that W is a nonempty set, elements of which
are called states. Each player i will be associated with two
functions βi and σi subject to the following constraints:

1. For each i ∈ N , βi(w) is a (possibly empty) i-history
and σi(w) is a strategy for player i.

2. The i-histories {βi(w)}i∈N are coherent.

We say that a player made a mistake at a history h ∈ Vi
in the world w provided her behavior is different than what
is prescribed by her chosen strategy σi(w) at h. Formally, i
made a mistake at h ∈ Vi provided βi(w)h 6= σi(w)(h) (if
βi(w)h is defined).

Example. Recall the game in Figure 1 and consider three
states w1, w2 and w3. Suppose that σA(w1) = σA(w2) =
σA(w3) = Ou (recall that Ou is the strategy in which A
chooses O at h0 and u at h1, but it is not an A-history)
and βA(w1) = βA(w2) = βA(w3) = I. Thus, A made a
mistake at h0. The strategies for player B are σB(w1) = a,
σB(w2) = b, σB(w3) = c (again, these are the strategies
in which B chooses, respectively, a, b, and c at h1), and
βB(w1) = βB(w2) = βB(w3) = c. These states are pictured
as follows:

A : Ou;B : a

A : I;B : c

w1

A : Ou;B : b

A : I;B : c

w2

A : Ou;B : c

A : I;B : c

w3

The strategies σA(w) and σB(w) are displayed in the top
half of the circles and the histories βA(w) and βB(w) in
the bottom half (where w ∈ {w1, w2, w3}). If these states
describe A’s beliefs (i.e., they are the set of doxastic possi-
bilities for A), then A is certain that B will play c, but is
uncertain about exactly why B is playing c. It might be be-
cause B made a mistake (as in states w1 and w2) or because
B simply followed through on his plan to play c. Further-
more, A arrived at these beliefs under the supposition that
she (contrary to her chosen strategy) selected I at h0.

The players’ beliefs and belief revision policies are repre-
sented in the standard way (cf. [4, 10, 36]). Each player i ∈ N
is associated with a prior probability on the set of states,
Pi ∈ ∆(W ),7 and a plausibility ordering �i⊆ W × W
satisfying the following constraints: for each i ∈ N and for
each w ∈ W , Pi(w) > 0 (i.e., Pi is a full support prob-
ability measure); �i is a locally connected (for all w, v, x,
if w �i x and w �i v, then v �i x or x �i v) partial
order (reflexive and transitive relation) on W . The plausi-
bility ordering �i represents player i’s belief revision pol-
icy. For each i ∈ N and states w, v ∈ W , let w ≈i v iff
w �i v or v �i w. Since, �i is a locally complete par-
tial order, ≈i is an equivalence relation. For w ∈ W , let
[w]i = {v | w ≈i v} denote the equivalence class of w for
≈i, called i’s information cell. The intended interpretation
is that w ≈i v means that w and v are subjectively indistin-
guishable to player i (i’s beliefs, knowledge, and conditional

7For a set X, let ∆(X) be the set of all probability measures
on X. In this paper, we assume that the set of states is finite,
so we can assume that P is defined on all subsets of W .

beliefs are the same in both states).8 The players’ full be-
liefs at a state w are defined as usual: For each w ∈ W , let
max�i([w]i) = {x | there is no y ∈ [w]i such that y �i x},
where y �i x means that y �i x but x 6�i y.

Definition 1. For each w ∈W and i ∈ N , player i’s (par-
tial) beliefs at state w are given by the probability measure
Pi,w ∈ ∆(W ) defined as follows: For each E ⊆W ,

Pi,w(E) = Pi(E | max
�i

([w]i))

The players’ partial beliefs Pi,w represent their beliefs
about the possible choices, behaviors and beliefs of their op-
ponents at state w.9 The belief revision policy describes how
the players revise their beliefs given any evidence F ⊆W :

Pi,w(E | F ) = Pi(E | max
�i

(F ∩ [w]i)).

Note that this conditional probability is well-defined for any
set F such that F ∩ [w]i 6= ∅. In particular, there may be a
set F such that Pi,w(F ) = 0, yet Pi,w(· | F ) is well-defined.
This is a very general model of belief revision for the players,
since it describes how each player revises her beliefs given
any evidence consistent with her current information (i.e.,
any F such that [w]i ∩ F 6= ∅). However, we are primarily
interested in how the players revise their beliefs given the
actions that they observe in the game.10 Each state w ∈W
is associated with a history h ∈ H as follows. Let hw be
the history corresponding to the play of game associated
with {βi(w)}i∈N (see the discussion above). Note that hw
need not be a maximal history, so hw is the behavior that is
observed at state w. For any h ∈ H, let [h] = {w | βi(w) =
behi(h) for all i ∈ N} be the event that the players behaved
according to history h. Then, Pi,w(E | [hw]) is i’s probability
of E given her most plausible explanation of the actions she
observed at state w. Thus, the belief revision policy describes
how the players’ beliefs change during a play of the game.11

Putting everything together, a game model for a game
G is a tupleMG = 〈W, {(βi, σi)}i∈N , {�i}i∈N , {Pi}i∈N 〉. In
addition, we impose the following two constraints:

• For all w ∈ W and i ∈ N , if v ∈ [w]i, then σi(w) =
σi(v). That is, players know their own strategy.12

• For all w ∈W and i ∈ N , for each initial segment h′ ⊆
hw (including the empty history), there is a w′ ∈ [w]i
such that hw = h′.

The last constraint ensures that if a sequence of choices in
the game is consistent with a player’s information, then all of

8That is, the equivalence classes of ≈i are the different
“types” for player i.
9That is, beliefs about the possible types of their opponents.

10Our models of games are closely related to Bayesian exten-
sive games with observable actions [26, Section 12.3]. How-
ever, there are important methodological and conceptual
differences between Bayesian games and epistemic models
of games (see [27, Section 1.4]). For this reason, we post-
pone a complete comparison between our game models and
Bayesian extensive games with observable actions to the full
version of the paper.

11Thus, our models are related to the type spaces based on
conditional probability systems from [7, Section 2.2].

12Each player can be associated with a standard knowledge
operator where for all E, Ki(E) = {w | [w]i ⊆ E}.



its initial segments must be consistent with the player’s in-
formation. This is a consequence of assuming that the struc-
ture of the game is (commonly) known to all the players and
that players cannot think it is possible to observe a history
without observing the sequence of choices that generated
the history. Compare the above constraint with the stronger
assumption that for all w ∈ W , for all h ∈ H, there is a
w′ ∈ [w]i such that hw′ = h. This ensures that it is consis-
tent with the players’ information that every possible history
in the game could be realized. Of course, ex ante, the players
do not rule out any histories.13 However, our models repre-
sent the players’ ex iterim beliefs. In such models, it may be
consistent with a player’s information (which includes her
chosen strategy) that some history of the game will not be
played (cf. the discussion of richness conditions on the model
in Section 5).

2.3 Rationality
A player chooses rationally provided her strategy choice

at a state maximizes the players subjective expected util-
ity with respect to her beliefs about the past and expected
moves of her opponents. We do not assess the rationality of
the players’ moves themselves. Thus, a player may choose
rationally at a state, though she may not carry out her plan
because she made a mistake.

Suppose that G is an extensive game with simultaneous
moves and MG = 〈W, {(βi, σi)}i∈N , {�i}i∈N , {Pi}i∈N 〉 is a
game model for G. For each w ∈W , the strategy realized at
w by player i is si(w) : Vi → Acti defined as follows:

si(w)(h) =

{
βi(w)h if βi(w)h is defined

σi(w)(h) otherwise

Then, s(w) = (s1(w), . . . , sn(w)) is a profile of strategies,
and let Out(s) be the (unique) terminal history generated
by s.

Definition 2. For any strategy si ∈ Si for player i, the
expected utility of si at state w is:

EUi,w(si) =
∑
w′∈W

Pi,w({w′} | [hw])ui(Out(si, s−i(w))).

A player chooses optimally at state w provided her cur-
rent strategy maximizes her subjective expected utility at
w, given the actions that she observed. Let Si(w) ⊆ Si be
the set of strategies for player i that conform to player i’s
moves in state w. That is, si ∈ Si(w) implies that for all
h ∈ Vi, if βi(w)h is defined, then si(h) = βi(w)h. Then,

Opti = {w | σi(w) maximizes expected utility
with respect to Pi,w and Si(w)}.

If w ∈ Opti, then player i is adopting the best possible strat-
egy given i’s observations at w. Rationality is more demand-
ing. There are two versions of rationality. The first requires
that a player is rational at a state w provided her strategy
at w is optimal given her beliefs at w and was optimal at all
previous decision nodes given her beliefs at the moment of
decision. We say that a state w′ ∈ [w]i is an earlier choice
state provided βi(w

′) is an initial segment of βi(w).

13Assuming that all the players are aware (in the sense of
[22, 23]) of the structure of the game.

Definition 3. Player i is rational-1 at state w provided
w′ ∈ Opti for all earlier choice states w′. Let Rat1i be the
set of all states w such that i is rational-1 in w.

A player may be rational-1 even if she does not correctly
implement her strategy. The second version of rationality
requires that a player’s strategy is optimal even when the
player learns that her beliefs are mistaken. That is, the strat-
egy is optimal and remains optimal after any belief revision.

Definition 4. Player i is rational-2 at state w provided
w′ ∈ Opti for all states w′ ∈ [w]i. I.e., [w]i ⊆ Opti. Let Rat2i
be the set of all states w such that i is rational-2 in w.

Of course, Rat1i ⊆ Rat2i (if a player is rational-1, then the
player is rational-2). However, in general, the converse is not
true (this is illustrated by an example in the next section).

2.4 Example
Figure 3 depicts models of the games from Figures 1 and

2. These models represent the players’ initial beliefs and dis-
positions to change their beliefs that we discussed in the in-
troduction. The model on the left, M1, represents one play
of the game in Figure 1, and the model on the right, M2,
represents a play of the game in Figure 2. We draw an ar-
row from state v to state w when w �i v. The solid arrows
represent Bob’s plausibility ordering �B and the dashed
arrows represent Ann’s plausibility ordering �A (we only
represents Bob’s beliefs in M2). To keep down the clut-
ter in the pictures, we assume that the remaining arrows
can be inferred by transitivity and reflexivity. The strate-
gies σA(w) and σB(w) are displayed in the top half of the
circles and the histories βA(w) and βB(w) in the bottom
half (empty histories are left blank). We think of the play-
ers strategy choices and moves as discrete random variables.
Thus, [Choosehi = a] = {w | σi(w)(h) = a} is the event
that player i chooses action a at decision node h. Similarly,
[Movehi = a] = {w | βi(w)h = a} is the event that player i
played a at history h. The (common) prior probabilities are
displayed next to the states.

Suppose that w4 is the actual world in model M1. Thus,
Ann chose the strategy Ou, but made a mistake and played
I followed by u (as originally planned). Bob chose strategy
a which he correctly implemented when given the chance to
move. His (overall) most plausible worlds are w1 and w2.
This means that he is certain that Ann plays O at h0 (i.e.,

PB,w4([Chooseh0
A = O]) = 1). Moreover, he (initially) thinks

that Ann’s strategies Ou and Od are equally likely (i.e.,

PB,w4([Chooseh1
A = u]) = PB,w4([Chooseh1

A = d]) = 0.5).
If Ann surprises Bob by playing I, he is disposed to inter-
pret this as a mistake on her part, rather than as revealing
that she is following a different strategy (i.e., max�B ([w4]B∩
[Moveh0

A = I]) = {w3}, βA(w3) = I while σA(w3) = Ou).
Furthermore, after observing Ann play I, Bob is certain that
her next move will be u: PB,w4([Chooseh1

A = u] | [Moveh0
A =

I]) = 1. This model also illustrates what it means for a
player to be rational-1. Note that Ann made a mistake in
w4, yet she is still rational-1 (w4 ∈ Rat1A). Both w1 and w3

are earlier choice states for Ann (as is w4), and she chooses
optimally in all these states: OptA = {w1, w2, w3}.

The modelM2 in Figure 3 represents Bob’s beliefs in the
game from Figure 2 in which Ann has two opportunities
to exit the game. Suppose that w6 is the actual world. No
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mistakes are made with Ann playing I1I2c and Bob play-
ing u. Initially, Bob believes that Ann is going to choose O1

(max�B ([w6]B) = {w1, w2} with σA(w1)(h0) = σA(w2)(h0) =
O1). On the condition that Ann actually plays I1, he is dis-
posed to interpret her move as a mistake, predicting that she
is going to go out at the next opportunity (max�B ([w6]B ∩
[Moveh1

A = I1]) = {w3, w4}, σA(w3)(h1) = σA(w4)(h1) =
O2. If Ann surprises Bob the second time by playing I2, he
is disposed to conclude that it is very likely that Ann ac-
tually chose to play I1 and I2 (PB,w6([Chooseh0

A = I1] ∩
[Chooseh1

A = I2] | [Moveh0A = I1] ∩ [Moveh1A = I2]) = .9).
Intuitively, if Ann surprises Bob, he is disposed to reason
in the backward induction style (ignoring her mistake), but
if she surprises him a second time, Bob switches to forward
induction and conjectures that (it is highly probable that)
Ann is going to play d. The modelM2 also illustrates the dif-
ference between rationality-1 and rationality-2. In w2, Bob
is rational-1, since {w1, w2} ⊆ OptB , but he is not rational-
2, since w6 ∈ [w2]B , but w6 /∈ OptB . That is, the strategy
that Bob chooses at w2 is not optimal with respect to the
beliefs he would have after revising his initial beliefs with
the information that Ann plays I1 and I2.

3. STALNAKER AND AUMANN
It is easy to see that our game model is a conservative

extension of Stalnaker’s [34, 35, 36]. Since we extend his
model by allowing states in which the players’ moves differ
from what is prescribed by their chosen strategy, the players
can know each other’s strategies and still be uncertain about
the way the game is going to end. In spite of this, however,
our models can accommodate the standard epistemic char-
acterizations of backward induction found in the literature,
and, in particular, Aumann’s classic characterization.

Aumann proved that if there is common knowledge that
all of the players are rational, then the backward induc-
tion path will be realized [2]. Our models are richer than
Aumann’s: We describe the players’ beliefs and belief revi-
sion policies in addition to the players’ knowledge. Recently,

Samet extended Aumann’s result to doxastic models, which
are much closer to the models we use. He proved that if there
is common belief 14 that all the players’ strategies are doxas-
tically substantively rational, then the backward induction
path is realized [31]. Since we allow for mistakes, we will
have models in which there is common belief that the play-
ers choose optimally, but the backward induction path does
not obtain. There is another difference between our models
and Aumann’s and Samet’s. The behavior functions can be
viewed as a temporal parameter. That is, our model includes
states that describe the players’ beliefs at different moments
during the play of the game (cf. [5, 12]). In general, the play-
ers’ beliefs may change even if the game unfolds according to
their chosen strategies. We can recover Samet’s characteri-
zation of backward induction with an additional constraint:

For all i ∈ N and w,w′ ∈ W , if w′ ∈ [w]i, then for each
w′′ ∈ max�i([w]i ∩ [hw′ ]) there is a w′′′ ∈ max�i([w]i) such
that σi(w

′′) = σi(w
′′′) for all i ∈ N .

This constraint says that the players cannot learn any-
thing about their opponents’ strategies that they did not
already know at the beginning of the game.

Proposition 1. Suppose that G is an extensive game
(without simultaneous moves) in “general position” (see Ap-
pendix A) and MG is a model for G satisfying the above
constraint and that every possible mistake is considered: for
all w ∈ W , every possible mistake that i can make given
i’s strategy at w is realized by the behavior at some state
w′ ∈ [w]i. Suppose that w ∈ W is a state in which the his-
tories (β1(w), . . . , βn(w)) generate a maximal path through
the game. If there are no mistakes in w and common belief
at w that all the players are rational-1, then the path that is
generated by the histories is the backward induction path.

14We assume that the reader is familiar with the formal def-
inition of common belief. See Appendix A for the formal
definition in our framework.



There are many other epistemic characterizations of back-
ward induction.15 What is more relevant for our purposes is
Stalnaker’s criticism of Aumann’s epistemic characterization
of backward induction [35, Section 5]. The problem lies with
Aumann’s notion of rationality which is captured and re-
fined by our rationality-1. A player is rational-1 provided
her strategy is optimal (given a sequence of moves) and was
optimal at all previous choices with respect to her beliefs at
the moment of choice. Stalnaker argues that this notion of
rationality is much too strong.16 His idea is that a strategy
for player i is optimal provided i would choose optimally
at node v (according to his strategy) given i’s beliefs under
the hypothesis that node v is reached. To formalize this idea,
Stalnaker introduces the notion of perfect rationality: “In
cases where two or more [strategies] are [optimal], the agent
should consider, in choosing between them, how he should
act if he learned he was in error about something.” [34, pg.
148]. It is not hard to see that our definition of rationality-2
is equivalent to Stalnaker’s definition of perfect rationality.
Thus, our models can accommodate both Stalnaker’s and
Aumann’s analysis of backward induction. Of course, this,
by itself, is not new (cf. [5] and [19]). However, our analysis
also opens the door for further refinements of the notions of
rationality they use.

For instance, perfect rationality (or rationality-2) requires
that a player’s strategy is robustly optimal. That is, it is opti-
mal even after the player learns that her beliefs are mistaken.
Variants of rationality-2 can be defined by fixing the set of
evidence that may induce a change of belief for a player. For
instance, we can require that a player’s strategy must be
robustly optimal with respect to evidence about her oppo-
nents’ moves (cf. [7, Section 2.2]), strategy choices, beliefs,
or even evidence about the player’s own moves. A complete
analysis of the different options will be left for the full ver-
sion of the paper.

4. RELATED WORK
Our model allows for states in which the players’ moves

differ from what is prescribed by their chosen strategy. This
general idea (i.e., trembling hand mistakes) was used by
Selten and others to characterize refinements of the Nash
equilibrium (cf. [18, 32]). Within the equilibrium refinement
program, Bicchieri’s work on forward and backward induc-
tion [9] comes closest to ours. In [9], the players respond to
(hypothetical) surprising moves in an extensive game (that
may be the result of a trembling-hand mistake) by revising
their beliefs à la AGM [1]. Our models differ in both impor-
tant technical details and the underlying motivations. Most
importantly, we downplay the role that the Nash equilib-
rium (and its refinements) plays in the analysis of rational
behavior in game situations (this is in line with much of the
epistemic game theory literature, cf. [13]).

More recently, Cubitt and Sugden develop a model in
which a player’s behavior may, in principle, differ from her
(rational) choice [15]. They include a postulate stating that
the players’ behavior must all conform to the same principles

15It is beyond the scope of this article to survey all of the
different approaches. See [29, Section 8.11] and [27] for a
discussion and pointers to the literature.

16We will not repeat Stalnaker’s argument here. The gist of
it is that it is important not to conflate “action a would be
optimal if node v were reached” and “if node v is reached,
then action a is optimal”.

of rational choice. Among other things, they are interested
in highlighting the role that this assumption plays in the
players’ reasoning about what to do in a game situation (cf.
also Bacharach’s discussion of the transparency of reason in
[3, Section 4.2]). There are some intriguing connections be-
tween our work and theirs, but a complete discussion will
be left for the full version of this paper.

5. CONCLUDING REMARKS
We have imposed only two minimal constraints on our

models: every information cell must include the player’s be-
liefs at all previous choice points, and the players “know”
their own strategy choice. The literature on forward induc-
tion, and, more generally, belief revision in games [5, 11,
35], contains other natural constraints that we may want to
impose. One belief revision policy that has been extensively
discussed in relation to forward induction reasoning is the
so-called rationalizability principle [8]: “A player should
always try to interpret her information about the behavior
of her opponents assuming that they are not implementing
‘irrational’ strategies.” (cf. [6]). In order to represent this
belief revision policy, Stalnaker includes a “richness” condi-
tion on his models [35, pg. 35, footnote 5] ensuring that the
players have the conditional beliefs needed to rationalize any
observed behavior.17 With such a richness condition, we can
formally prove Stalnaker’s characterization of the belief re-
vision policy in which the players apply the rationalizability
principle at most once.18

Another direction for future research is to compare our
approach to belief revision with non-standard probabilities,
lexicographic probability systems, and conditional probabil-
ity systems [21, 25]. Once the relationship between these
different models is understood, we can connect our work
with Battgalli and Siniscalchi’s characterizations of com-
mon strong belief of rationality [7] and Halpern’s recent epis-
temic characterizations of trembling-hand equilibria using
non-standard probabilities [20].

Finally, note that the games in Figures 1 and 2 have the
same reduced normal form. However, our analysis in this pa-
per suggests that there are strategically relevant differences
between the two games (cf. [24]). In particular, the players
may be able to learn about their opponents’ strategies dur-
ing a play of the game. This suggests possible connections
with models of learning in extensive games [17].
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APPENDIX
A. PROOF OF PROPOSITION 1

In this appendix, we restrict attention to extensive games
G = 〈N,Act,H, τ, {ui}i∈N 〉 without simultaneous moves.
So, for all decision nodes v ∈ V , |τ(v)| = 1. In this case,
we can view histories as sequences of actions rather than
sequences of sequences of actions. Furthermore, following
[2], we assume that the payoff for each of the players is
different at different terminal nodes (the game is in “general
position”). This implies that the result of applying the back-
ward induction algorithm19 is uniquely defined.

19The terminal nodes are labeled with the payoffs for each
player. For each non-terminal history h with τ(h) = {i},
label h with the maximum of all the labels of the succes-
sors of h. This labeling is then used to identify the so-called
backward induction path.



Belief operators: Suppose that

MG = 〈W, {(βi, σi)}i∈N , {�i}i∈N , {Pi}i∈N 〉

is a game model. For each event E ⊆W , we say that player
i believes E, Bi(E), provided E is implied by i’s full beliefs.
That is, Bi(E) = {w | max�i([w]i) ⊆ E}.

Samet’s game model: Samet’s game model is a tuple
〈W, {Πi, ti}i∈N , s〉, where W is a non-empty set of states,
for each i ∈ N , Πi is a partition on W , ti : W → ∆(W ) is a
type function assigning a probability measure to each state,
and s : W → S (where S = ΠiSi) assigns a strategy to
each state. Let [si(w) = si] be the set of states w such that
si(w) = si. The knowledge and belief operators are defined
as usual: for all E ⊆ W , Ki(E) = {w | Πi(w) ⊆ E} and
Bi(E) = {w | ti(w)(E) = 1}. Samet includes the following
constraints:

• For all w ∈W , if v ∈ Πi(w), then ti(w) = ti(v)

• For all w ∈W , ti(w)(Πi(w)) = 1

• For all w ∈ W , if v ∈ Πi(w), then [si(w) = si] ⊆
Bi([si(w) = si]).

Rationality in Samet’s model: Building on the no-
tation introduced in Section 2, for a strategy profile s, let
Outh(s) be the (unique) terminal history that is reached if
the players follow their strategies in s starting at h. Then,
for a state w ∈ W and strategy si ∈ Si, Outv(si, s−i(w))
is the terminal node that is reached, starting at h, if player
i follows the strategy si and the other players follow the
strategies associated with state w. Then, let

[Outh(si, s−i) >i Outh(s)] = {w | ui(Outh(si, s−i(w))) >
ui(Outh(s(w)))}.

Player i is said to be doxastically substantively rational
at all states when:

Rdsi =
⋂
h∈Vi

⋂
si∈Si

¬Bi([Outh(si, s−i) >i Outh(s)])

Let Rds =
⋂
i∈N R

ds
i .

Common belief: Given belief operators Bi : ℘(W ) →
℘(W ) for each player i ∈ N (defined in Samet’s game model
or our game model), we define a common belief operator
CB : ℘(W )→ ℘(W ) in the usual way. First, define everyone
believes: For all E ⊆ W , B(E) =

⋂
i∈N Bi(E). Then define

the nth power of B, Bn, as follows: for all E ⊆W , B1(E) =
B(E) and for n > 1, Bn(E) = B(Bn−1(E)). Finally, com-
mon belief of an event E is CB(E) =

⋂
n≥1B

n(E)

Samet’s Theorem 3 states that, in any of his models,
CB(Rds) ⊆ I, where I is the set of states in which the
backward induction path is played.

Suppose thatMG = 〈W, {(βi, σi)}i∈N , {�i}i∈N , {Pi}i∈N 〉
is a game model for our game G. The forgetful projec-
tion of MG, denoted M◦G, is the tuple 〈W, {Πi, ti}i∈N , s〉,
where for each w ∈ W , let Πi(w) = [w]i, ti(w) = Pi,w, and
s(w) = (σ1(w), . . . , σn(w)). It is not hard to see that M◦G
satisfies the constraints imposed by Samet. For instance, we
have, for all w′ ∈ Πi(w), ti(w) = ti(w

′), since if w′ ≈i w,
then max�i([w]i) = max�i([w

′]i).

We first state and prove a simple Lemma that will be used
to relate Samet’s notion of doxastic substantive rationality
with our rationality-1.

Lemma 1. Suppose that the game G and game modelMG

and state in w satisfy the assumption of Proposition 1. Then,
for all players i ∈ N , for all w′ ∈ W , if w ∈ Rat1i , then
for all v ∈ Vi, there is some w′ ∈ max�i([w]i) such that
ui(Outh(s(w′)) > ui(Outh(si; s−i(w

′))).

Proof. First of all, it is easy to see that if a strategy si is
optimal for player i at state w, then for all strategies ti 6= si,
there must be at least one state w′ ∈ max�i([w]i∩[Movewi =
βi(w)) such that ui(Out(si; s−i(w))) > ui(Out(ti; s−i(w))).

Suppose that w ∈ Rat1i . Then, for all h ∈ Vi, if βi(w)h
is defined (i.e., h on the path generated by the behavior
of the players in state w), then for all si ∈ Si(w), there
is at least one state w′ ∈ max�i([w]i ∩ [hw]) such that
ui(Outh(s(w))) > ui(Outh(si; s−i(w))). Note that we can
move from Out(·) to Outh(·) since we restrict attention to
strategy profiles that conform to the behavior of the play-
ers at w. By the constraint stated before Proposition 1,
this implies that there is a w′′ ∈ max�i([w]i) such that
ui(Outh(s(w′′))) > ui(Outh(si; s−i(w

′′))). This, together
with the assumption that all mistakes are realized by some
state in i’s information cell, ensures that, for every decision
node h ∈ Vi, there is some w′ ∈ max�i([w]i) such that

ui(Outh(s(w′))) > ui(Outh(si; s−i(w
′))).

This completes the proof of the Lemma.

The proof of the proposition follows immediately:

Proof of Proposition 1. Suppose that w ∈ W and
(β1(w), . . . , βn(w)) generate a maximal path through the
game. If w ∈ CB(

⋂
j Rat

1
j ) in MG, then Lemma 1 implies

that w ∈ CB(Rds) in the forgetful projection M◦G. Since
M◦G is a Samet model of a game, Samet’s Theorem 3 im-
plies that w ∈ I. Since no mistakes are made in w, this
implies that (β1(w), . . . , βn(w)) is the backward induction
path.


