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Introduction

The literature on the epistemic foundations of game theory uses a variety of
mathematical models to formalise talk about the players’ beliefs about the game,
beliefs about the rationality of the other players, beliefs about the beliefs of
the other players, beliefs about the beliefs about the beliefs of the other play-
ers, and so on (see [Bra07] for a recent survey). Examples include Harsanyi’s
type spaces ([Har67]), interactive belief structures ([Bra03]), knowledge struc-
tures ([Aum76]) plus a variety of logic-based frameworks (see, for example,
[Ben01, HM06, Bon02, Boa02, BSZ08]). A recurring issue involves defining a
space of all possible beliefs of the players and whether such a space exists. In
this paper, we study one such definition: the notion of assumption-complete
models. This notion was introduced in [Bra03], where it is formulated in terms
of “interactive belief models” (which are essentially qualitative versions of type
spaces). Assumption-completeness is also explored in [BK06], where a number
of significant results are found, and connections to modal logic are mentioned.
A discussion of that paper, and a syntactic proof of its central result, are to be
found in [Pac07].

Within and between these different mathematic models, different epistemic
notions can be formalised, one of which is the notion of an “assumption”, which
is closely related to the only-knowing operator studied by Levesque [Lev90]
(cf. [HL01]). Roughly speaking, a player’s assumption is defined as her strongest
belief: the conjunction of all her beliefs (equivalently, a belief that implies all
her other beliefs).1 Call the (two) players “Ann” and “Bob”. An interactive
belief model (we will use the shorter belief model in this paper) consists of states
for Ann and for Bob. It specifies the beliefs, and some other information like the
strategy chosen, of a player at any of his/her states. Each player’s beliefs are
defined over the other player’s states: that is, beliefs of the players are given in
terms of a set of the opponent’s states. Thus to each Ann state is associated a
set of Bob states that Ann considers possible, and to each Bob state a set of Ann
states that Bob considers possible. Bob’s assumption at a state is the set of Ann
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1The formal details will follow in Section 1. This definition of “assumption” might seem

strange, and we certainly do not claim that it, nor the formal definition that will follow, capture
the common-sense meaning of the English word “assumption”. However, when we present the
semantics of belief models we will see that, formally speaking, assumption-completeness will
be a natural enough property, albeit poorly named. Note that, while the term “assumption”
is used in [BK06], there the notion that we will study is called simply “completeness”. We
prefer the more specific, if less wieldy, term “assumption-completeness”.
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states to which that state is related. A belief model is assumption-complete for
a language of Ann-states just when for every sentence of the language, there is
some Bob-state (in the model) where Bob assumes (the set of states satisfying)
that sentence. The idea of assumption-completeness is that the language of
Ann-states should be accessible to Bob. And if it is accessible to Bob then he
should be able to assume (in this artificial sense) any member of it.

Brandenburger and Keisler prove the following impossibility result:

Theorem 4 [BK06, Theorem 5.4]. There are no assumption-complete models
for the first-order language.

This was taken to be a limitative result, and one that should be of significance
for game theory:

[O]ur impossibility theorem says: If the analyst’s tools are available
to the players, there are statements that the players can think about
but cannot assume. The model must be [assumption-]incomplete.
This appears to be a kind of basic limitation in the analysis of games.
[BK06]

As Brandenburger and Keisler point out, the existence of assumption-complete
models is not only of theoretical interest [BK06]. It turns out to be relevant for
the “epistemic program” in game theory. The goal of this program is to provide
epistemic conditions on the players (e.g., common belief in rationality) that lead2

to various solution concepts (e.g. Nash equilibrium, iterated dominance, back-
wards induction). The assumption that the belief model is assumption-complete
has been non-trivially used in two analyses: in Battigalli and Siniscalchi’s anal-
ysis of extensive-form rationalisability [BS02] and Brandenburger, Friedenberg
and Keisler’s analysis of iterated admissibility [BFK08a]. We return to the role
that assumption-completeness plays in epistemic analyses of games in Section
4.

Given the above interpretation of Theorem 4, a natural question3 is: can
one consider instead a restricted set of “tools” which can be “available” to the
players, and which are also useful for the analyst? Theorem 4 shows that the
first-order language is too powerful a tool to be available; what about weaker
languages?

We will address this question from the perspective of modal logic, defining a
modal language for belief models, giving a complete axiomatisation (Theorem
9), and obtaining, as a corollary of the completeness proof, the following:

Theorem 8. There are assumption-complete models for the basic modal
language.

What about strengthening our possibility result? In Section 3 we will look
briefly at perspectives for doing exactly this. We will conjecture that the
bounded fragment of first-order logic has assumption-complete models. The
bounded fragment is expressive enough to express some concepts that are very

2More precisely representation theorems are proved stating that players satisfying such-
and-such epistemic condition will play a particular solution concept and conversely if the
players play according to some solution concept then there is an epistemic model where the
players satisfy the epistemic conditions. See [dB04] for a critical survey of this line of reasoning.

3This is also raised in [BK06, Section 2].
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important for game theory. Notably, in the appropriate framework, it can ex-
press the proposition that a player is rational4

1 Preliminaries

Except in Appendix A, we will work in the framework from [BK06]. Belief
models are two-sorted first-order structures.5

Definition 1 ([BK06], Definition 3.1). A belief model is a structure

(Ua, U b, Ra, Rb, {Pα}α∈N), where

1. Ua 6= ∅ 6= U b, Ua ∩ U b = ∅;

2. Ra ( Ua × U b, Rb ( U b × Ua;

3. for every u ∈ Ua there is a v ∈ U b such that uRav, and similarly for every
v ∈ Ub;

The elements of the domain U = Ua ∪ U b are called “states”. Specifically
those in Ua are called “Ann states” and those in U b “Bob states”. We might
also call them “types”, because each one specifies an epistemic type (in the
sense of an Harsanyi type space) of the relevant player. The relations Ra and
Rb specify those states considered possible by Ann and Bob respectively: uRav
means that the Ann-state u considers the Bob-state v to be possible. We write
Ra(u) to mean {v ∈ U b | uRav}, and we use similar terminology with b switched
for a. We say that for u ∈ Ua and E ⊆ U b, u believes E just when Ra(u) ⊆ E,
and (stronger) that u assumes E just when Ra(u) = E. We will write R for
Ra ∪Rb.

The predicates Pα are there to carry additional information about the states.
For example, when considering models for games, each Pα may represent which
strategy is chosen by each player state.

The conditions imposed by Definition 1 are natural: (1) says that there are
Ann states and Bob states, (2) that for both Ann and Bob there is at least one
non-trivial belief state, i.e. at which some Bob or Ann state is ruled out as a
possibility, and (3) that at every Ann or Bob state, some Bob or Ann state is
taken to be possible.

State-based models, and a definition of belief like the one given, are familiar
from epistemic logic since the work of Hintikka [Hin62]. In those single-sorted
models that are standard in epistemic logic, states (sometimes called “possible
worlds”) specify a type for each player, i.e. in the two-player case a state would
specify an Ann-type and a Bob-type. (The connection between qualitative type
spaces and single-sorted models is discussed in [BB99, Chapter 3].) We discuss

4Here rationality is interpreted in the standard way: optimising given the agent’s cur-
rent beliefs. Making the statement that a particular logic can/cannot express this notion of
rationality precise is still ongoing work. This is also briefly discussed in [BK06, Section 2].

5In [BK06], the definition of belief models is more general, allowing for almost arbitrary
signatures for belief models. With condition (3), we restrict our attention to monadic predi-
cates (the P α’s) because it is natural to do so in the stated field of application of the belief
models, viz. to games, in which the P α’s represent choices made by the players. Furthermore,
they allow arbitrary strategy sets, where we restrict our attention, for simplicity’s sake, to
countable strategy sets.
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in Appendix A how to define assumption-completeness for standard models.
Modulo this different perspective given by the two-sortedness of the models,
the notion of an assumption is essentially the same as that of “only knowing”,
which was introduced by Levesque [Lev90], and axiomatised by Halpern and
Lakemeyer ([HL01], cf. [Ben79, Hum87]).

Fix a belief model (Ua, U b, Ra, Rb, {Pα}α∈N). Following [BK06], a language
for Ann (based on the fixed belief model), denoted La, is any subset of Ua

(similarly for Bob). For example, the powerset language for Ann (Bob) is
La = p(Ua) (Lb = p(U b)), where we write p(X) to denote the power set of
X. Another natural example is the first-order language defined to be the
sets definable by sentence of first-order logic. Formally, a first-order formula is
defined by the following recursion schema:

ϕ ::= Ua | Pαx | xRay | xRby | ¬ϕ | ϕ ∧ ϕ | ∃xaϕ | ∃xbϕ

As usual, sentences are closed formulae (i.e., those without free occurrences of
variables). Given a belief model, each first-order sentence defines a subset of
that model in the standard way (with a caveat about two-sorted quantification:
∃xa quantifies only over Ann states). Then the first-order language La1 is
the set of subsets of Ua that are definable by a first-order sentence (similarly
for Bob). We are now ready to define the notion that will be central to our
concerns in this paper.

Definition 2 ([BK06], Definition 4.2). A belief model is assumption-complete
for the language L = La ∪ Lb just if

(Ca) for every ∅ 6= Eb ∈ Lb, there is an u ∈ Ua such that Ra(u) = Eb, and
for every ∅ 6= Ea ∈ La, there is a v ∈ U b such that Rb(v) = Ea.

That is, (Ca) ensures that every definable set of Ann (or Bob) states can be
assumed by Bob (resp. Ann). Formally speaking, this is a natural condition to
impose. We will say of a language that it is assumption-complete just when there
is some model that is assumption-complete for it, and that it is assumption-
incomplete just when there is no such model.

2 Main Results

Intuitively, if a language is assumption-complete then it has a “big” model,
which means, roughly, that any property of Bob states (expressible in the lan-
guage) can be assumed by Ann (and vice versa for Bob). The following theo-
rem demonstrates that some restriction on the language is needed for it to be
assumption-complete:

Theorem 3 ([Bra03]). The powerset language (where La = p(Ua) and Lb =
p(U b)) is assumption-incomplete.

The proof of Theorem 3 uses Cantor’s Theorem that there is no surjection
from a set onto its power set. But what about slightly weaker languages that still
are stronger than the first-order language? (For example, first-order logic with
fixed-points, or some second-order logic.) The following theorem states that the
first-order language is already too expressive to be assumption-complete:
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Theorem 4 ([BK06, Theorem 5.4]). L1 is assumption-incomplete.

Thus the standard tool first-order logic is too strong to have this formally
natural property.6 The proof of Theorem 4 uses a generalised version of Russell’s
paradox, and essentially relies on the same kind of diagonalisation argument
used to prove Cantor’s Theorem. Although we refer to [BK06] for the proof, we
note for later reference that it is important that the sentence (BK) is expressible
in the first-order language L1:

(BK) Ann believes that Bob’s assumption is that Ann believes that Bob’s as-
sumption is wrong.

Theorem 4 rules out the first-order language; what then might we use in its
stead? – What are our alternatives? We now mention very briefly one positive
result, for the so-called “positive fragment” (see [BK06, Definition 10.1]), which
is essentially a mixture of first-order and modal languages without negation.

Theorem 5 ([BK06, Theorem 10.4]). The positive fragment is assumption-
complete.

Related to this Theorem, Mariotti, Meier and Piccione show that there exists
a “universal possibility structure” [MMP05]. We now begin an investigation of
other fragments of first-order logic that may be assumption-complete. We start
with the basic modal language ML. The basic modal formulae are those defined
by the following schema:

ϕ ::= ♀ | pα | ¬ϕ | ϕ ∧ ϕ | �ϕ

We write ♦ to abbreviate ¬�¬, ϕ ⊃ ψ for ¬(ϕ ∧ ¬ψ), and ♂ for ¬♀. The
basic modal language ML is the set of subsets that are definable by some
basic modal formula, where ♀ defines the Ann states Ua; pα defines the set
Pα; negation and conjunction work as usual; and �ϕ defines the set where the
state-owner believes ϕ. That is, where JϕK is the set defined by ϕ, �ϕ defines
the following set:

{u ∈ U | R(u) ⊆ JϕK},

It was shown in [BK06, Section 9] that, since the basic modal language
cannot express the assumption operator, there are belief models “complete in a
weaker sense that every statement which is possible can be believed (instead of
assumed) by the player.” What about the stronger statement, that if a language
cannot express the assumption operator, then there are assumption-complete
models? Certainly, being able to talk about Bob’s assumptions is essential
in the particular proof of Theorem 4; however, the converse is open: that if
one cannot talk about the players’ assumptions in the language then there is an
assumption-complete model (we are not making any claims concerning the truth
of this statement, just that it has not been proved). We do have the following
theorem:

Theorem 6. ML is assumption-complete.

In fact we can strengthen Theorem 6, by adding a property which is also in
effect present in Brandenburger and Keisler’s positive result.

6Of course, there may be some other language which is expressively incomparable with L1,
but we will not pursue this line of reasoning here.
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Definition 7. Say that a belief model is total just when

(Cb) for every Pα, Ua ∩ Pα 6= ∅ and U b ∩ Pα 6= ∅.

Condition (Cb) means that every possible ‘basic configuration’ is present, so
in the case where the Pα’s represent choice of strategy, it means that for each
of player i’s strategies si, there is a state at which i chooses that si. (This is
assuming the same strategy sets for both players; the case of disjoint strategy
sets does not add any mathematical complication.) We will therefore prove the
following:

Theorem 8. There are total assumption complete belief models for the basic
modal language.

Although the totality condition is never made explicit out in [BK06], it is
implicit there. (Not only does their Theorem 5 actually show the existence of
total complete belief models, but also if the requirement that the model be total
is dropped, then [BK06, Problem 7.7] is trivially answerable [Zve07].)

We give now a complete axiomatisation for ML over belief models. The
axioms consist of an axiomatisation of the propositional connectives ¬ and ∧,
plus the following:

` �(p ⊃ q) ⊃ (�p ⊃ �q) K
` �p ⊃ ♦p D
` ♂ ⊃ �♀ U1
` ♦♀ ⊃ ♂ U2

The following are the rules of inference:

` ϕ ` ϕ ⊃ ψ
` ψ MP

` ϕ
` �ϕ

Nec
` ϕ

` ϕ[p 7→ ψ] Sub

If there is an inference (using only these axioms and rules) of ϕ then we write
` ϕ. We write |= ϕ just when ϕ is valid, that is: when in every belief model, ϕ
defines the whole set U . To show that a logic is (weakly) complete7 is to show
that |= ϕ⇒` ϕ.

Theorem 9. |= ϕ ⇔ ` ϕ

Theorem 9 is proved in a standard way by building a “canonical model”
(cf. [BdRV01]). The states in the canonical model are maximally-consistent
sets, and the relation is defined as follows:

R(Γ) = {∆ | ∀ψ ∈ ∆,♦ψ ∈ Γ}

Theorem 8 can then be proved by observing that this canonical model is
appropriately assumption-complete. We sketch now the proof of Theorem 8.
Take any definable subset of the canonical model E ∈ MLa (without loss of
generality: the same will hold with a switched for b). Then by definition of
MLa, there is some modal formula ϕ such that JϕK = E. Furthermore, we
must have ` ϕ ⊃ ♀, because otherwise there would be some Bob-state Γ ∈ E.
Then it remains to show that there is a state Γϕ that assumes ϕ in the canonical
model. We use the following lemma:

7This notion of completeness, familiar from formal logic, has (usually!) nothing to do with
assumption-completeness.
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Lemma 10. The set Γ′ϕ is consistent:

Γ′ϕ := {♦γ |0 ¬(ϕ ∧ γ)} ∪ {�ϕ}

Proof. We appeal to completeness and invariance of basic modal formulae under
disjoint unions and generated submodels ([BdRV01, Propositions 2.3 and 2.6]):

Let Πϕ = {γ |0 ¬(ϕ ∧ γ)} be the set of formulae consistent with ϕ. For
each such γ ∈ Πϕ, by completeness there is a pointed model Mγ , ωγ such that
Mγ , ωγ � ϕ∧γ. Since the language is preserved under generated submodels and
disjoint unions, we will still have that each ωγ � ϕ when we take the disjoint
union of all of the submodels generated by the ωγ ’s for every γ ∈ Πϕ. Now define
a new model M by taking the disjoint union of the submodels generated by each
ωγ , adding one new state ω0, and stipulating that R(ω0) = {ωγ |γ ∈ Πϕ}. Notice
that since by hypothesis ϕ ` ♀, this is indeed a model, since every ωγ � ♀ (and
so ω0 � ♂). By construction we have ω0 � �ϕ, because for each γ ∈ Πϕ, ωγ � ϕ.
Furthermore, for each γ ∈ Πϕ, we also have ω0 � ♦γ, since ω0Rωγ and ωγ � γ.
This simple construction is illustrated in figure 1.
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OOYY

. . . ωγi

OO EE

. . .

ω0

ccFFFFFFFFFFFFFFFFFFFFF

YY333333333333333

EE���������������
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Figure 1: The construction described in the proof of lemma 10

�

From Lemma 10, it follows that Γ′ϕ can be extended to form a state Γϕ in
the canonical model. We must show that R(Γϕ) = JϕK:

• Since �ϕ ∈ Γϕ, R(Γϕ) ⊆ JϕK;

• Take any ∆ ∈ JϕK. Then take any ψ ∈ ∆; we know that 0 ¬(ϕ∧ψ), since
∆ is by hypothesis consistent. So by definition of Γ′ϕ, ♦ψ ∈ Γ′ϕ ⊆ Γϕ. So
by definition of the canonical model, ∆ ∈ R(Γϕ).

This concludes the proof of Theorem 8. The argument can in fact be made
more general, to the effect that any saturated canonical model [BdRV01] is in
this sense assumption-complete – a suggestion made to the second author by
van Benthem (p.c.).

3 Beyond the Basic Modal Language

The basic modal language is natural, but is arguably not expressive enough
a “tool” for the analyst. It is not possible to give general results about the
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expressibility of game-theoretical concepts in terms of a language, since there are
different ways of representing the various elements involved in a game. However,
we get some indications from the fact that in [BOR05] the authors deem it
necessary to extend the basic modal language (with so-called “nominals”) in
order to express Nash equilibrium, and in [AZ07] the authors express rationality
in a natural modal way using bounded quantification.8 (Again, in these papers
the framework is one of single-sorted models, which we will discuss below in
Appendix A.) It is therefore natural to search for more expressive extensions
of the basic modal language that nonetheless are assumption complete; given
Theorem 4, it is natural to look for fragments of first-order logic that have
the property.9 In this section we briefly discuss perspectives for finding such
fragments. Since we take the vocabulary of the basic modal language to be
intuitively appealing, and of use to the analyst, we will look at extensions of
the basic modal language.

[Cat05] studies a number of extensions of the basic modal language. Of
particular interest to us now is L↓, known as “hybrid language with binder”.
Let the binder formulae be those of the following form:

ϕ ::= ♀ | pα | x | ¬ϕ | ϕ ∧ ϕ | �ϕ |↓x.ϕ

Binder formulae (↓ is know as the “binder”) define sets relative to a variable
assignment, that is: a function σ : V ar → U .10 We write JϕKσ for the subset
of U defined by the formula ϕ relative to σ. And we write σ[x 7→ u] for the
assignment that agrees everywhere with σ except that it maps x to u. The
semantics of the new connectives are as follows:

• JxKσ = {σ(x)};

• J↓x.ϕKσ = {u ∈ U | u ∈ JϕKσ[x 7→u]}

For a binder sentence ϕ, we write just JϕK (since it makes no difference which
assignment we choose). The language L↓ of subsets defined by a binder sentence
is indeed a language in our strict sense, because L↓ is a fragment of the first-
order language. Indeed, it is expressively equivalent to the “bounded fragment”
of the first-order language [ABM99]. Since Feferman has studied the bounded
fragment [Fef68], we know that it is invariant under generated submodels. In
the details of the proof of Theorem 8, the only ‘modal’ behaviour we exploit,
in showing that the set Γ′ϕ is consistent, is that sentences are preserved under
disjoint unions and generated submodels. Thus – although there is no canonical
model construction for L↓– we are still lead to suspect that this language also
has assumption-complete models:

Conjecture 11. There are (total) assumption-complete belief models for the
bounded fragment.

8Indeed, (instrumental) rationality essentially says that an agents choice ‘now ’ is optimal
given her beliefs ‘now ’, something which is typically not expressible in a basic modal language,
but which calls for the kind of “hybrid” language, i.e. using nominals.

9Though fixpoint logics for common knowledge go beyond first-order logic, and are obvi-
ously of relevance to the epistemi analysis of games; we do not examine those here.

10The same is true of first-order formulae, but we skipped the details because they are more
standard.
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An inspection of the proof of Theorem 4 reveals three conditions that together
are sufficient to show that a language L is not assumption-complete. The first
condition, satisfied by all of these modal languages, is that La be closed for the
belief operator:

(C0) X ∈ Lb ⇒ {ua ∈ Ua | Ra(ua) ⊆ X} ∈ La

The second condition is that L contain the following set:

DA := {ω ∈ UA | ∀ω′ ∈ (R(ω) ∩ UB), ω /∈ R(ω′)}

(C1) DA ∈ La.

C1 says that Bob has “available” (i.e. in La, the language for defining sets of
Ann states) the sentence “Ann believes that Bob’s assumption is wrong”.

The third condition is that La be closed under the assumption operator, i.e.:

(C2) X ∈ La ⇒ {ub ∈ Ub | Rb(ub) = X} ∈ Lb

If all of (C0)–(C2) hold, then L is assumption-incomplete. In particular, L
will allow sentence (BK) to be expressed. Note that DA is expressible by a
binder sentence, so is in L↓:

Fact 12. DA = J♀∧ ↓x.��¬xK ∈ L↓

However, since the language is closed under generated submodels then, im-
portantly, the assumption operator is not expressible:

Fact 13. L↓ does not have condition C2.

Any extension of the modal language has C0; we’ve looked at a language with
C1; so what about C2? Clearly, adding an assumption operator to L↓ will make
the language assumption-incomplete. (So this would be a strictly weaker lan-
guage than first-order logic, that is nonetheless assumption-incomplete.) Nonethe-
less, while we do not investigate the matter further here, we conjecture that
adding an assumption operator into ML would not leave the happy realm of
assumption-completeness.

4 Discussion

We plan to explore a number of issues in the future. The most pressing issue is
finding interesting languages, primarily fragments of first-order logic, that are
assumption-complete, especially languages that can express concepts that are
of interest to game-theorists, and that have a natural appeal in terms of being
languages that we would want to attribute to the agents to capture their ability
to think about the situation they are in (e.g., the bounded fragment). We also
think that it is important to explicate the notion of assumption-completeness in
terms of some of the other models that are used in the game-theory literature,
for example those that we mentioned in the introduction. – If assumption-
completeness is an important epistemic notion, then it is important to under-
stand it also in terms of other epistemic models. We address this issue, for the
case of single-sorted epistemic models that are familiar from the epistemic logic
literature since [Hin62], in the Appendix A.
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It is also natural to question the quoted interpretation of the Brandenburger
and Keisler impossibility result: does Theorem 4, which is essentially a gener-
alisation of Russell’s paradox, really point to “a kind of basic limitation in the
analysis of games”?

Why work in assumption-complete models? A natural reaction to the
Brandenburger and Keisler impossibility result (Theorem 4) is to wonder what
all the fuss is about. Assumption-completeness is a nice abstract property of
a logical language, but what is the harm in working with languages without
this property? One answer from the literature on the epistemic foundations of
game theory is that assumption-complete belief models are needed to provide an
epistemic analysis of certain solution concepts. Indeed, Battigalli and Siniscalchi
argue convincingly that “analysing an extensive-form game in the framework
of an incomplete type space11 introduces implicit and potentially undesirable
restrictions on forward-induction reasoning” ([BS02, pg. 368], original italics).
More broadly, Brandenburger, Friedenberg and Keisler point out that

We think of a particular incomplete structure as giving the “context”
in which the game is played. In line with Savage’s Small-Worlds idea
in decision theory [...], who the players are in the given game can
be seen as a shorthand for their experiences before the game. The
players’ possible characteristics — including their possible types —
then reflect the prior history or context. (Seen in this light, complete
structures represent a special “context-free” case, in which there has
been no narrowing down of types.) [BFK08b, pg. 319]

So, we have two examples of epistemic analyses of solution concepts where it
is crucial that the analysis takes place in assumption-complete models. In fact,
[BFK08a] introduce a new form of irrationality where a player optimises, but
does not consider all possibilities. Making this notion of irrationality precise re-
quires defining a formal model of “all possibilities”, and assumption-completness
is one approach to rigorously defining such a model. Finally, we note that
there are other “epistemic” analyses of iterated admissibility, or removal of
weakly dominated strategies, where assumption-completeness plays less of a
role (see [Ben07, Bon02, AZ07]). Of course, comparing these different analyses
to [BFK08b] and judging the need for assumption-complete models is difficult
without a precise set of criteria (cf. [dB04]).
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A Single-sorted Models

The “belief models” of [BK06] are not standard in the epistemic logic literature.
There is another more standard class of models used in epistemic logic, which
are mentioned in [BK06] as “[a]nother approach”. The obvious way of defining
assumption-completeness turns out to be much too strong: not even extremely
un-expressive languages would have assumption-complete models in this sense,
on the condition that the players are “introspective”.12 We will point out that,
on the other hand, if the players are not introspective, then the sentence (BK)
can be satisfiable. So, since it is central to the proof of Theorem 4 that (BK)
be unsatisfiable on the relevant class of models, the impossibility theorem might
fail for non-introspective models.

In any case, it is usually assumed that players are introspective, so we
will also look at a different definition of assumption-completeness for single-
sorted models. This second definition is more faithful to the original def-
inition of assumption-completeness for belief models: When we translate a
belief model into a single-sorted model, the resulting single-sorted model is
assumption-complete in the second sense if and only if the original belief model
was assumption-complete.

Single-sorted models consist of a non-empty set of “possible worlds” Ω and
a relation Ri ⊆ Ω×Ω for each player. In the two-player case, a “frame” is a list
(Ω, Ra, Rb). In belief models there was additionally some information (in the
Pα’s) about strategies and so forth; since we are now in a modal framework,
we will encode this using a set Φ = Φa ∪ Φb of proposition letters, and adding
a valuation V : Φ→ p(Ω): a single-sorted model is a frame equipped with a
valuation. (We will henceforth sometimes refer to single-sorted models simply
as “models”.) The idea behind dividing the proposition letters into two sets is
that some pertain to Ann (for example, those saying which strategy she plays),
and some to Bob. So in the case when we want a model for an interactive model,
we will want a proposition letter for each player i and each strategy Pα That
is:

Φi = {pαi | α ∈ N}

We say that player i is consistent and introspective just if the following
conditions hold:

(Di) Ri(s) 6= ∅

(4i) sRt & tRu⇒ sRu.

(5i) sRt & sRu⇒ tRu.

If a model (or frame) satisfies all of these properties for all players, then we say
that it is “KD45”. It is straightforward (though not entirely trivial) to translate
in a meaningful way between belief models and single-sorted models. That is, to
give a pair of functions (ρ, τ) with ρ taking a single-sorted model and returning
an “equivalent” belief model, and τ taking a belief model and returning an
equivalent single-sorted model. We give the details of such a translation below:

12A player i is introspective just if when i believes ϕ she believes that she believes it, and
when she does not believe it she believes that she does not believe it. Introspection is usually
taken for granted (often tacitly) in formulating epistemic models used in game theory
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Definition 14 (Translation Belief Models to Single-Sorted Models).

τ(Ua, U b, Ra, Rb, {Pα}α∈N) = (Ua × U b, Ra, Rb, V ),

where:
(ua, ub)Ri(u′a, u

′
b)⇔ (ui = u′i & uiR

iu′j),

V (pαa ) = (Pα ∩ Ua)× U b,

&
V (pαb ) = Ua × (Pα ∩ U b).

Definition 15 (Translation from Single-Sorted Models to Belief Models).

ρ(Ω, Ra, Rb, V ) = (Ua, U b, Ra, Rb, {Pα}α∈N),

where:
First define for i ∈ {a, b} the equivalence relation ∼i:

s ∼i t⇔ (Ri(s) = Ri(t)&s ∼Vi
t)

Then let U i = Ω/∼i
, and say:

[s]iRi[u]j ⇔ ∃v ∈ [u] : sRiv.

Finally, let:
Pα = {[s]i | s ∈ V (pαi )}

How are we to define assumption-completeness for models? The näıve ap-
proach would be to say that a model S is assumption-complete for L ⊆ p(Ω)
just if for any X ⊆ L, there is ω ∈ Ω such that Ra(ω) = X, and similarly for
b. However, it is not difficult to see that this is not an innocent approach. For
then even very simple languages are not assumption-complete:

Fact 16. For the definition of assumption-completeness just proposed, any lan-
guage that is closed under unions would be assumption-incomplete with respect
to KD45 models.

Furthermore, if we were to take this as a sign that we should not be working
in KD45 models, here is another fact:

Fact 17 ([Zve07]). The formal translation of the sentence (BK) is satisfiable if
Da or 4a or 5a does not hold.

That is, if introspection fails then the sentence (BK) is consistent. It might
seem puzzling that an informal argument is given in [BK06, Section 1] to the
effect that (BK) is not satisfiable, an argument where the word “introspection”
is never used, nor is any concept like it employed. It turns out that corners
were cut in the informal argument. eliminating needed talk introspection; the
threads of the argument are unpicked in [Zve07].

(BK) cannot hold in belief models because in belief models there is an im-
plicit assumption of introspection:

Fact 18. For any belief model M, τ(M) is KD45.
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We will now give a proper definition of assumption-completeness for models.
We write s ∼Vi

t to mean that s and t have the same propositional valuation
with respect to Φi, i.e.:

∀p ∈ Φi, s ∈ V (p)⇔ t ∈ V (p)

Definition 19. A model S = (Ω, Ra, Rb, V ) is assumption-complete for a
language L ⊆ p(Ω) just if for any X ∈ L, for {i, j} = {a, b}, there exists y ∈ Ω
such that the following two conditions hold:

• ∀x ∈ X,∃v ∈ Ri(y) : Rj(v) = Rj(x) & v ∼Vj x;

• ∀v ∈ Ri(y),∃x ∈ X : Rj(v) = Rb(x) & v ∼Vj
x.

We say that S is assumption complete tout court when it is assumption
complete for a and for b.

Definition 19 might seem more long-winded, but it is equivalent to the defi-
nition for belief models, in the following sense:

Theorem 20. Any belief modelM is assumption-complete iff τ(M) is assumption-
complete. And any model S is assumption-complete iff ρ(S) is assumption-
complete.

Thus we have found the “correct” definition of assumption-completeness for
single-sorted models.
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