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Abstract. We introduce and study a PDL-style logic for reasoning about protocols, or plans,
under imperfect information. Our paper touches on a number of issues surrounding the relationship
between an agent’s abilities, available choices, and information in an interactive situation. The main
question we address is under what circumstances can the agent commit to a protocol or plan, and
what can she achieve by doing so?

§1. Introduction and motivation. There is a growing literature using different (multi-)
modal logics to reason about communities of agents engaged in some form of social
interaction. In particular, various combinations of temporal logics, epistemic and doxastic
logics, action logics, and preference logics have been studied in this context.1 A key issue
that has emerged is how best to represent and reason about the underlying protocol that
governs the agents’ interactions in a particular social situation.

Intuitively, a protocol describes what the agents “can” or “cannot” do (say, observe) in a
social interactive situation. This leads to substantive assumptions2 about the formal model,
such as which actions (observations, messages, utterances) are available (permitted) at any
given moment. These assumptions can be roughly categorized according to the different
uses of “can”:

1. To describe physical, temporal, or historical possibilities: A typical example is the
assumption an agent cannot receive a message unless another agent sent it earlier.
Such assumptions limit the options available to the agents at any given moment.

2. To describe the agents’ abilities, or skills: The options available to an agent at any
given moment are defined not only by what is “physically possible,” but also by the
agent’s capacity to perform various actions. For example, “Ann can throw a bull’s-
eye” typically means that Ann has the ability to (repeatedly) throw a bull’s-eye.

3. To describe compliance to some type of norm: The social or conversational3 norms at
play in the interactive situation being modeled (i.e., the “rules of the game”) impose

Received: September 22, 2010.

1 A complete survey of these “logics of rational agency” is outside the scope of this paper. The
interested reader can consult (van Benthem, 2010; van der Hoek & Wooldridge, 2003b; Meyer
& Veltman, 2007) for a discussion and the relevant references.

2 See Roy & Pacuit (2011) for a general discussion of “substantive assumptions” in the context of
epistemic models of games.

3 See Parikh & Ramanujam (2003, sec. 6) for a discussion of Gricean norms in this context.
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further constraints on the options available to each agent. For example, common
conversational rules include: “Do not blurt everything out at the beginning”; “Do not
repeat yourself”; “Let others speak in turn”; and “Be honest.” Imposing such rules
restricts the legitimate sequences of possible statements.

So, a protocol encodes not only which options are feasible, but also what is permissible
for the agents to do or say. Of course, an interesting and important component of a logical
analysis of rational agents is to disambiguate these different meanings of “can” (cf. Horty,
2001; van der Hoek et al., 1998; Elgesem, 1997; Governatori & Rotolo, 2005; Cross, 1986).
In this paper, we take a more abstract perspective in which a protocol simply identifies a
subtree from the “grand stage” of all possible sequences of events that could take place in
an interactive situation.

A number of authors have forcefully argued that the underlying protocol is an
important component of any analysis of (social) interactive situations and should be
explicitly represented in a formal model (cf. Fagin et al., 1995; van Benthem et al., 2009;
Parikh & Ramanujam, 2003; Hoshi, 2009; van Eijk et al., 2009; van Otterloo, 2005).
Indeed, much of the work over the past 20 years using epistemic logic to reason about
distributed algorithms has provided interesting case studies highlighting the interplay be-
tween protocol analysis and epistemic reasoning (an important example here is the seminal
paper by Halpern & Moses, 1990, on the “generals problem”).

The central question of this paper is what do the agents “know” about the underlying
protocol, and how is this reflected in the logic used to reason about social interactions? A
typical assumption is that there is a fixed global protocol that all the agents have (ex-
plicitly or implicitly) agreed to follow (and this is commonly known). This is the as-
sumption in the epistemic temporal logics, as discussed by Parikh & Ramanujam (2003),
Halpern & Moses (1990), van Benthem et al. (2009, sec. 4), among many others
(Fagin et al., 1995; van Benthem, 2010, are textbook presentations of this literature). These
logical systems use linear or branching time models with added epistemic structure induced
by the agents’ different capacities for observing events. The models provide a “grand stage”
where histories of some social interaction unfold constrained by an underlying protocol.
Thus, the protocol is represented extensionally in the models as a set of histories (sequences
of events).4 From the point of view of the logical systems that have been developed to
reason about these structures (e.g., as discussed in Halpern et al., 2004; van Benthem &
Pacuit, 2006; van Benthem et al., 2009), the protocol is only implicitly represented, for
example, with statements of the form “Fφ” meaning that “φ is true at some moment in the
future (after the agents perform actions consistent with the protocol).”

In this paper, we develop a logical framework where protocol(s) are “first-class citizens”
(cf. van Benthem, 2001a). This provides a local perspective where simple protocols can
be combined to construct more complex ones. Thus, we drop the assumption that there is
a single fixed protocol and consider situations where the protocol is created “as needed.”
A number of authors have suggested different variations of propositional dynamic logic
(PDL) to reason about protocols, or strategies, from this local, “constructive” point of
view (e.g., see, Fagin et al., 1995; van Benthem, 2001a; van Benthem & Pacuit, 2006; van
Eijk et al., 2009; Wang, 2010). The idea is that PDL action expressions explicitly describe
different protocols. Under this interpretation, the PDL formula [π ]φ has the interpretation

4 Cf. van der Meyden (1996), where the models are generated by unfolding some multiagent finite
state machine.
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“φ is guaranteed to be true by following the protocol π .” Here, “following the protocol π”
means that agent(s) makes choices so that the resulting sequence of events matches5 π .

We start with a single agent who, in each possible state, can choose from a finite set of
actions (the actions she “can” perform in the sense of points 1 and 2 above). The many
agent case is discussed in §5. Each action corresponds to a (possibly nondeterministic)
transition from the current state to a new state, and there may be different actions available
at different states. In other words, we assume that the agent is in a labeled transition system,
which we call an arena. The arena describes the actions that are available at each state and
the possible consequences of each action. The following is an example of an arena:

A protocol is a tree with labels from the (finite) set of possible actions. We are interested
in what properties the agent(s) can guarantee will be true by adopting a given protocol. The
idea is that adopting a protocol at a state restricts the paths that the agent will follow from
that state. In general, adopting a protocol does not commit the agent(s) to a single course
of action, but, rather, focuses the agent’s(s’) attention on the “relevant” decision problems.
Thus, “adopting a protocol” simply amounts to “committing to a plan,”6 something that
is crucial for an autonomous (rational) agent (this is argued most forcefully by Bratman,
1987). In his influential book, Michael Bratman argues, inter alia, that

plans help make deliberation tractable for limited beings like us. They
provide a clear, concrete purpose for deliberation, rather than merely
a general injunction to do the best. They narrow the scope of the de-
liberation to a limited set of options. And they help answer a question
that tends to remain unasked within traditional decision theory, namely;
where do decision problems come from?(Bratman, 1987, p. 33)

One contribution of our paper is to explore the conditions under which agent(s) can
engage in such (future-directed) planning (cf. Cohen & Levesque, 1990; Meyer et al.,
1999). We focus on structural properties of the interactive situation (i.e., what the agents
can do) and what the agents “know” about the decision problems they face. We leave
for future work how to incorporate the agents’ motivating attitudes (e.g., desires, goals,
wishes) into our logical analysis. Thus, we focus on when the agent(s) can (implicitly or
explicitly) agree to adopt a protocol, or commit to a plan, instead of why the agent(s) would
want to agree to a protocol, or plan.

Our first observation is that it is important to interpret the PDL actions expressions over
finite trees rather than paths. In other words, our basic actions expressions denote finite
trees instead of the usual one-step actions (cf. Ramanujam & Simon, 2009). For example,
suppose that the agent is in state s0 in the above arena and consider the protocol “either

5 Here we are thinking of π as a regular expression: See Harel et al. (2000) for a discussion.
6 In what follows, we will use “protocol” and “plan” interchangeably.
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choose c or choose d.” This protocol gives only partial information about what actions to
follow at a given state (e.g., the protocol does not offer any advice about what to do at s0).
This protocol can be described by the PDL expression (a∪b); c∪(a∪b); d. Note that every
path in the above arena is consistent with this protocol, so we can say that this protocol is
enabled at s0. However, as van Benthem (2010) points out, this way of thinking about the
protocol misses a crucial point: The agent must commit to do either c or d independent of
which action is chosen at state s0. In other words, by committing to this protocol (at s0),
the agent must choose between the following two restrictions on future choices:

This distinction is not important if we are interested in only the states that can result by
following this protocol—in this case, {s3, s4} ∪ {s4, s5}. However, it is becomes important
when constructing complex plans from simpler ones using the regular operations of PDL
(union ∪, concatenation ; , and Kleene star ∗) or if an agent conditions on the plans of
another agent (or her future self).

An interesting feature of allowing branching in atomic programs is that we can represent
a choice between a and b in two different ways. The picture on the left denotes the atomic
tree consisting of two branches, one labeled with a and the other with b. The picture on
the right is a complex program built using the union operator from two atomic trees, each
containing only one branch.

These two programs have very different interpretations corresponding to different ways
of understanding what it means for an agent to commit the plan: do a or do b. On the
first interpretation, the agent commits to choosing between actions a or b when the time
comes (possibly ignoring the other options that may be available to the agent at that
moment). On the second interpretation, the agent must choose between two future courses
of actions: doing a or doing b. The point is that a and b each may lead to a different set of
states.

Our main contribution in this paper is to analyze different ways in which a protocol
“can” be adopted (by either a single agent or a group of agents) taking each agent’s point
of view into account. Since we assume that actions may be nondeterministic, there may be
many ways in which a protocol can be “realized” at a position in an arena. This creates
uncertainty for the agent since, in general, she may not know which state results from
a particular action. However, there may be other sources of imperfect information. For
example, the agent may have only limited memory or observational power, or the agent
may be uncertain about the exact “starting position” or initial state of the situation. Thus,
at certain positions in the arena, for whatever reason, it may appear to the agent that she
is in a different position or set of positions. For example, consider the following situation
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where the agent cannot distinguish between nodes s1 and s2 and the protocol pictured to
the right (do a followed by c or do b followed by d):

This protocol is clearly enabled in the situation without the uncertainty relation between s1
and s2. However, in the above situation at s0, the agent cannot agree to “knowingly” follow
the protocol since she is uncertain about the actions that are available at states7 s1 and s2.

Sections 2 and 3 introduce our formal models (an arena (with imperfect information)
and a protocol) and discusses two key definitions: what it means for a protocol to be
enabled (Definition 2.4) and what it means to be subjectively enabled (Definition 3.3).
Section 4 develops a PDL-style logic for reasoning about what agents can achieve in arenas
by committing to protocols, or plans, with a complete axiomatization provided in Theorem
4.13. Section 6.2 compares our logic to similar logical frameworks, and Section 5 focuses
on extending our analysis to the many-agent situation.

§2. Preliminaries: arenas and protocols. The definitions in this section are standard
and are included to make the paper self contained and to fix notation (the key notions are
Definitions 2.2, 2.3, and 2.4).

Basic protocols. As discussed in the previous section, protocols are finite labeled trees.
We first settle on notation for finite trees. Let � be a finite set whose elements are called
actions. A �-labeled (finite) tree T is a tuple (S, {⇒a}a∈�, s0) where S is a (finite) set of
nodes, s0 ∈ S is the root, and for each a ∈ �, ⇒a⊆ S × S is the edge relation satisfying
the usual properties (we write si ⇒a s j for (si , s j ) ∈⇒a):

1. irreflexive: for each a ∈ � and s ∈ S, it is not the case that s ⇒a s;
2. antisymmetric: for each a ∈ � and s, t ∈ S, if s ⇒a t then it is not the case that

t ⇒a s; and
3. unique predecessor: for each s ∈ S with s �= s0 there is a unique t such that t ⇒a s

for some a.

For a node s ∈ S, let A(s) = {a ∈ � | ∃s′ ∈ S where s ⇒a s′} denote the set of actions
available at s. A node s is called a leaf node ifA(s) = ∅, and the set of all leaf nodes in the
tree is denoted by frontier(T). For a set X and a finite sequence ρ = x1x2 . . . xm ∈ X∗, let
last(ρ) = xm denote the last element in this sequence and f irst (ρ) = x1 the first element.
We extend this notion to a set Y ⊆ X∗ as last(Y ) = {x | ∃ρ ∈ Y with last(ρ) = x}. The
following definition is standard:

DEFINITION 2.1 (Paths). A path in the tree T = (S, {⇒a}a∈�, s0) is an alternating
sequence of nodes and actions ρ = s0a0s1a1 · · · ak−1sk satisfying the following condition:

7 Alternatively, we can say that the agent forgets at state s1 (and s2) the choice that was made at
state s0.
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for all j : 0 ≤ j < k, we have s j ⇒a j s j+1. The length of a path ρ, denoted len(ρ), is the
number of actions appearing in ρ. A path ρ is maximal in T if f irst
(ρ) = s0 and A(last(ρ)) = ∅. Let Paths(T) denote the set of all maximal paths in T. For
ρ = s0a0s1a1 . . . sk , let head(ρ) = a0 and tail(ρ) = s1a1 . . . sk .

In some cases, it is convenient to define a path as a sequence of states (or actions). For
example, we say a sequence of states σ = s0s1 · · · sk is a path of states if there are actions
a0, . . . , ak−1 such that s0a0s1a1 · · · ak−1sk is a path (define a path of actions similarly).
We can use these definitions to define the height of a finite tree T (the length of the longest
path): height (T ) = max{len(ρ) | ρ ∈ Paths(T)}. Note that the above labeled trees may be
nondeterministic since two edges from the same node can have the same label (i.e., there
may be distinct nodes s, s′, and s′′ such that s ⇒a s′ and s ⇒a s′′). However, if the tree is
intended to represent a protocol or plan that an agent has committed to follow, then it is
natural to restrict attention to deterministic trees:

DEFINITION 2.2 (Basic Protocol). A finite tree T = (S, {⇒a}a∈�, s0) is called a (basic)
protocol if it is deterministic: for each s, s′, s′′ ∈ S and a ∈ �, if s ⇒a s′ and s ⇒a s′′
then s′ = s′′.

Finite arenas. We model an interactive (or decision-theoretic) situation in a standard way
as a labeled transition system, which we call an arena (or finite state machines, follow-
ing standard terminology in theoretical computer science literature, or a frame, following
standard terminology in the modal logic literature).

DEFINITION 2.3 (Finite Arena). Let W be a nonempty finite set, whose elements are
called positions or states, and � a finite set of basic actions. An arena is a structure
G = (W, {→a}a∈�) where for each a ∈ �, →a ⊆ W × W . Following standard notation,
we write w →a v if (w, v) ∈ →a .

The above notation for available actions and paths (Definition 2.1) is readily applied to
finite arenas. Finite arenas are “third-person” models of the interactive situation describing:

1. all available choices for the agent(s) at each state (for each state s, this is the set
A(s)); and

2. the sequence of all possible decision problems the agent(s) will encounter (via the
transitions given by →a for each a ∈ �).

A protocol or plan restricts the available choices for the agent(s). Intuitively, if an agent
agrees to follow a finite protocol, then she commits to restricting her choices to all and only
those actions compatible with the protocol. Of course, not all protocols can be followed
in any situation. This leads us to the key notion of a protocol being enabled at a state u
in an arena. If there is no uncertainty in the arena, then the formal definition of a protocol
being enabled is completely straightforward: A protocol T is enabled at u in G if T can be
embedded in the unwinding of G at u. We give the formal details of this definition below.

• Suppose that T = (S, {⇒a}a∈�, s) and T ′ = (S′, {⇒′
a}a∈�, s′). We say that T can

be embedded in T ′, denoted T � T ′, if there is an injective function f : S → S′
such that for all a ∈ � and s, t ∈ S, s ⇒a t iff f (s) ⇒′

a f (t).
• Suppose that T = (S, {⇒a}a∈�, s) can be embedded in T ′ = (S′, {⇒′

a}a∈�, s′)
(with embedding f ). The tree8 ( f [S], {⇒′′

a}a∈�, f (s)) where for a ∈ �, ⇒′′
a is the

8 Recall that for X ⊆ S, f [X ] = { f (s) |s ∈ X}.
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relation ⇒′
a ∩ ( f [S]× f [S]) is called a restriction of T ′ to T and is denoted T ′ |\ T .

If T is a protocol and T ′ and arbitrary tree, then, since T is deterministic and T ′ is
nondeterministic, there may be more than one embedding of T into T ′. In such a
case, let the union of the restrictions be the restriction of T ′ by T .

• Let G = (W, {→a}a∈�) be an arena. The unwinding, or tree unfolding, of G at
state u the tree Tu = (Su, {⇒u

a}a∈�, su) where 1. Su is the set of all paths of nodes
starting at u (Su = {x0x1 · · · xn | for each i = 0, . . . , n xi ∈ W where x0 = u and
x0x1 · · · xn is a path of states in G} (note that Definition 2.1 can be applied to arenas
as well as to trees), 2. ux1 · · · xn ⇒u

a ux1 · · · xn xn+1 iff xn →a xn+1, and 3. su = (u)
(i.e., the path consisting of the single state u). Note that, in general, the tree unfolding
Tu will be a nondeterministic tree.

DEFINITION 2.4 (Enabled). Suppose that T is a basic protocol and that G = (W,{→a}a∈�)
is an arena. We say that T is enabled at u, denoted enabled(t, u), if T can be embedded
in Tu.

Intuitively, if a protocol T is enabled at a state u in an arena G, then it is (physically,
objectively) possible for the agent to agree to follow T . Of course, this does not necessarily
mean that the agent knows (or believes) that she can follow T ; the agent wants to follow
T ; or that it is in the agent’s interest to follow T .

§3. Imperfect information. A protocol being enabled simply means that the protocol
is feasible—that is, physically possible. In this section, we explore a different sense in
which a protocol is “possible,” one that takes into account the agent’s point of view. Our
first task is to extend the definition of an arena with an explicit representation of the agent’s
“point of view” at each position in the arena. As is standard in the epistemic logic literature,
we use a relation on the set of states in an arena to represent the agent’s uncertainty
about her position in the arena. In general, there are many sources of this uncertainty:
For example,

1. if action a is nondeterministic, then the agent may be uncertain about which state
will result by choosing a;

2. the agent may have some prior (partial) information about the interactive situation;
or

3. the agent may be limited in what she can observe and what she remembers.

In many situations, it is interesting to distinguish between these different sources, but for
now, we simply describe the agent’s point of view at each state.

DEFINITION 3.1 (Arena with Imperfect Information). An arena with imperfect informa-
tion is a structure G I = (W, {→a}a∈�,;) where (W, {→a}a∈�) is a finite arena and
;⊆ W × W .

For each position u, let I(u) = {w | u ; w} be the agent’s “point of view.” A
useful way of thinking about the; relation is as special “ε-transitions”9 (well studied in
the automata-theoretic literature). They represent transitions that the agent does not have
control over, and so they cannot be ruled out by committing to a protocol or plan. An

9 We are very grateful to R. Ramanujam, who suggested (among other things) this way of thinking
about the agent’s “uncertainty” in the context of our paper.
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important conceptual point is that; is not the same “type” of transition as the �-labeled
transitions: Rather than the agent deciding whether to follow such a transition, ε-transitions
are externally imposed “silent” transitions that generate uncertainty.

The above models do not impose any structural properties on the action and; relations.
However, a number of properties discussed in the literature are relevant. Suppose that the
agent is in position w but “thinks” she is in position v (i.e., w ; v), and consider an
action a ∈ A(w) ∩ A(v). In this case, the agent is aware that she can do a and will not
fail. Furthermore, unless there is a “miracle,” doing action a should not remove the agent’s
“uncertainty” (e.g., the; relation). Formally,

• No Miracles: For all a ∈ � and all w, v,w′, v ′ ∈ W , if w ; v , w →a w′, and
v →a v ′, then w′ ; v ′.

Imposing no miracles means that the basic actions are assumed to be “uninformative.” No
miracles covers the situation when a ∈ A(w) ∩A(v) (recall thatA(w) is the set of actions
available at w). The remaining interesting situations are when an action a is available only
in one of the states. First, if a ∈ A(w), but a �∈ A(v), then the agent does not realize that a
is actually available. Second, if a ∈ A(v), but a �∈ A(w), then the agent believes that she
can do a, but will fail10 if she attempts to execute this action. Formally, these situations
are:

• Success: If w ; v , then A(v) ⊆ A(w).
• Awareness: If w ; v , then A(w) ⊆ A(v).

Of course, if ; is symmetric, then these properties are equivalent and we have A(w) =
A(v) provided w ; v . These properties address the relationship between the actions
available at the current state (which the agent may not have access to) and the actions
available at states the agent considers “possible” (via;). The next property focuses on the
relationship between the actions available at the set of states the agent considers “possible.”
If w ; v and w ; v ′, then the agent may find herself in either v or v ′ and so should face
the same decision problem:

• Certainty of available actions: If w ; v and w ; v ′, then A(v) = A(v ′).

Of course, these properties are all equivalent in the important special case when the agent’s
ε-transition is an equivalence relation (a common assumption in the epistemic logic and
game theory11 literature). When; is an equivalence relation, we follow standard notation
and write ∼ for;. This special case is particularly interesting since it helps position our
work within the broad literature using various combinations of modal logics to reason
about game/decision-theoretic situations (cf. Lorini et al., 2009; van Benthem, 2001b). We
will return to these properties throughout the paper but do not commit ourselves to any of
them at this point.

10 Note that we do not address in this paper what happens (from the agent’s point of view) if she tries
to do an action a that is not actually available (i.e., the agent attempts action a). This interesting
situation will be addressed in future work. See Lorini & Herzig (2008) for a very interesting
discussion relevant to this situation.

11 Of course, game theorists tend to focus on arenas that are themselves trees—that is, extensive
games with imperfect information.
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For a protocol T and a position u, the notion of T being enabled (Definition 2.4) at u is
well defined for an arena with imperfect information. However, as discussed above, this is
an objective notion from the modeler’s point of view that does not take into account that
the agents may be imperfectly informed about their “location” in the arena. What we need
is a subjective version of Definition 2.4. One idea is to mimic the restriction operation of
Definition 2.4, but to ensure at each step that we take into account all and only the positions
that the agent has access to via the ; relation. Intuitively, a protocol T is subjectively
enabled at a position u in an arena with imperfect information if:

1. the agent is certain that T is enabled (for all v ∈ I(u), T is enabled at v); and
2. the agent will be certain that she is, in fact, following the protocol at every stage of

the protocol.

This second point is important as there is a difference between “knowing that a protocol is
enabled” and “being able to knowingly follow a protocol.”12 This difference is crucial for
an agent contemplating committing to a long-term plan.13 Thus, our definition must take
into account the forest {Tv | v ∈ I(u)} for every position u not ruled out by the protocol.

According to Definition 2.4, enabled(T, u) is true if there is an embedding of T into
Tu . We have to complicate this simple picture in the presence of imperfect information.
We start by stating the most general definition and then show how to simplify it in the
presence of the structural assumptions discussed above (e.g., assuming; is an equivalence
relation14). First of all, note that in arenas with imperfect information, the restriction of a
protocol T is not a tree, but, rather, a forest (possibly containing trees of different heights).
Thus, we need to introduce notation for forests in an arena. Let G be an arena (with
imperfect information). First, recall that the notion of a path (Definition 2.1) applies to
arenas and, by assumption, the last element of a path is always a state. We say that a
path ρ is an initial segment of ρ′ if ρ′ is ρ followed by a possibly empty path. Formally,
ρ = w0a0 · · · ak−1wk is an initial segment of ρ′ if there is an i ≥ 0 such that ρ′ =
w0a0 · · · ak−1wkak+1 · · · ak+i−1wk+i . Given a set of paths X that is closed under initial
segment, we define an edge relation in the obvious way: ρ ⇒X

a ρ′ iff ρ = w0a0 · · · ak−1wk

and ρ′ = w0a0 · · · ak−1wkaw. A set of paths X from an arena G that is closed under
initial segment is called a forest in G if {⇒X

a }a∈� satisfies the properties 1, 2, and 3 in the
definition of a tree given above.

It is not hard to see that if a protocol T is enabled at u, then the restriction of T at u
gives us a forest X with each path in X is associated with a node in T . Generalizing to
situations with imperfect information, we may need to associate more than one path with
a node in T . Thus, we define the restriction of T in an arena with imperfect information to
be a forest X and function mapping paths in X onto nodes in T :

DEFINITION 3.2 (Subjective Restriction). Let G I = (W, {→a}a∈�,;) be an arena with
imperfect information, u ∈ W and T = (S, {⇒a}a∈�, s0) a protocol. The subjective

12 See Broersen (2008) for a discussion related to this point.
13 After all, an agent cannot commit to a temporally extended plan if she is certain now that she

will not be able to choose in a way that is consistent with that plan. Of course, this does not
preclude the possibility that the agent may need to revise or drop her plan even after committing
to it (perhaps because she learned that the plan is no longer feasible) (Icard et al., 2010).

14 The reader interested only in this special case can use the statement of Lemma 6.1 in place of the
definition given below.
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restriction of T in (G I , u), denoted (G I , u) |\
s T , is a pair (X, f ) where X is a forest in G I

and f is a function from X onto S. Both X and f are defined inductively as follows:

0. X0 = I(u) (v ∈ X0 is understood as a one-element sequence) and for all v ∈ X0, set
f0(v) = s0

n. Suppose Xn and fn have been constructed, for each ρ ∈ Sn, for all a ∈ A( fn(ρ)), let
Ya = {ρaw | last (ρ) →a w in G I } ∪ ⋃{I(w) | last (ρ) →a w inG I }. Define

Xn+1 = Xn ∪
⋃

a∈A( fn(ρ)),ρ∈Xn

Ya

Let fn+1 extend fn such that for each new node ρaw ∈ Ya, set fn+1(ρaw) = s′ where
fn(ρ) ⇒a s′ in T .

Let X = Xheight (T ) and f = fheight (T ). Finally, define the frontier of (G I , u) |\
s T as

follows: frontier((G I , u) |\
s T ) = {last (ρ) ∈ W | A( f (ρ)) = ∅}.

Note that since T is deterministic, fn+1 is well defined. Define the actions available at a
path in a forest as follows: suppose that X is a forest and ρ ∈ X and define A(ρ) = {a ∈
� | there is a ρ′ ∈ X such that ρ ⇒X

a ρ′}.
DEFINITION 3.3 (Subjectively Enabled). A protocol T is subjectively enabled at u in
G I = (W, →,;), denoted s-enabled(T, (G I , u)), if the structure (G I , u) |\

s T = (X, f )
satisfies the condition ∀ρ ∈ X, A(ρ) = A( f (ρ)).

Notice that without additional structural assumptions on ;, a protocol being subjec-
tively enabled does not imply that the protocol is enabled. For example, consider the arena
below and the protocol discussed in the Introduction: “either do a followed by c or do b
followed by d .” This protocol is subjectively enabled but not enabled at state s0.

(Note that the protocol is still subjectively enabled if we impose the no miracle property,
which would add a number of; edges, represented by dashed arrows.)

We conclude this section with two observations. The first is that in situations of perfect
information, subjectively enabled is equivalent to enabled:

PROPOSITION 3.4. Suppose that G I = (W, {→a}a∈�,;) satisfies the property that for
all w ∈ W , I(w) = {w}. Then, for any protocol T and state w ∈ W , T is enabled at w in
(W, {→a}a∈�) iff T is subjectively enabled at w in G I .

The proof follows by unpacking the definitions and is left to the reader. Additional
structural properties can further simplify the definition of subjectively enabled. We have
already remarked that a protocol being “subjectively enabled” at a state w is, in general,
not equivalent to the agent knowing that the protocol is enabled at w (i.e., the protocol is
objectively enabled according to Definition 2.4 at every state in I(w)) A simple argument
shows that these notions coincide when the agent is certain of her available actions and the
actions are not informative:
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LEMMA 3.5. Suppose that G I = (W, {→a}a∈�,;) satisfies certainty of actions and
no miracles. Then, the agent knows that t is enabled at u iff t is subjectively enabled at u.

§4. What can be achieved with protocols? An arena with imperfect information
describes what can happen in an interactive situation both objectively (from the modeler’s
point of view) and subjectively (from the agent’s point of view via the; relations). That
is, they describe both what is physically possible for the agent to do and what she thinks
she can do in an interactive situation. We have not yet addressed what the agent is able
to do in an interactive situation. In this section, we focus on a different sense of “can”
that takes into account the agent’s “abilities.” We study a number of logical systems that
describe what can be achieved in an interactive situation.

What can be achieved in an interactive situations depends on the protocol or plan that
the agent is currently following. Thus far, we have focused only on basic protocols. It is
convenient to give an explicit syntax for describing basic protocols.

DEFINITION 4.6 (Syntax for Protocols). Let V be a countable set of node variables.
A protocol expression is inductively defined as follows:

• For each x ∈ V , (x) is a protocol expression.
• Suppose that J = {a1, . . . , am} is a set of (distinct) actions and for each ai we have a

(unique) protocol expression tai . Then,

(x, a1, ta1) + · · · + (x, am, tam )

is a protocol expression where x is a new variable not appearing in tai .

Let P(V) denote the set of protocol expressions.

The idea is that the expression (x, a, ta) denotes the subtree where x is the root and
there is an a-edge from x to the subtree described by ta . Note that this syntax generates
only deterministic trees (i.e., basic protocols) since each action a in a protocol expression is
associated with only one subtree. Of course, there are other ways to syntactically describe
finite trees, but the particular choice of syntax is not crucial for our analysis. The important
point is that each syntactic expression t ∈ P(V) corresponds to an finite tree Tt :

DEFINITION 4.7 (Interpretation of Protocol Expressions). Given t ∈ P(V), we can induc-
tively define the basic protocol Tt generated by t as follows:

• if t = (x), then let Tt = (St , ⇒t , sx ) where St = {sx } and ⇒t= ∅.
• if t = (x, a1, ta1) + · · · + (x, ak, tak ), then inductively we have trees T1, . . . Tk where for

j : 1 ≤ j ≤ k, Tj = (S j , ⇒ j , s j ). Define Tt = (St , ⇒t , sx ) where sx is a new state and

(i) St = {sx } ∪ ST1 ∪ . . . ∪ STk .
(ii) ⇒t= (

⋃
j=1,...,k ⇒ j ) ∪ {sx ⇒a j j s j | 1 ≤ j ≤ k}.

For t ∈ P(V), we often abuse notation and identify t with Tt . The following example
illustrates the above construction:

The next step is a syntax for describing complex protocols. To keep things simple, we
focus on the regular operations familiar from action logics such as PDL: Let � be a finite
set of basic actions, and define � to be the smallest set of expressions generated by the
following grammar:

t | π1; π2 | π1 ∪ π2 | π∗
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The syntactic representation of this tree using
Definition 4.6 is:

• t = (x0, a, t1) + (x0, b, t2) where

— t1 = (x1, c1, (x3)) + (x1, d1, (x4)) and
— t2 = (x2, c2, (x5)) + (x2, d2, (x6)).

where t ∈ P(V) is a basic protocol (using actions from �). Note that we do not include
tests in our language. Adding tests raises a number of interesting issues (many have been
extensively discussed in the literature on knowledge programs, see (Fagin et al., 1995;
Fagin et al., 1997); however, we leave this extension for future work.15 We can easily
adopt the standard interpretation of these operations to our setting:

1. π1; π2 is the protocol where the agent first adopts the protocol π1 and then (no matter
what happens) adopts the protocol π2;

2. π1 ∪ π2 is the protocol where the agent must first choose which of the two protocols
to adopt; and

3. π∗ is the protocol where the agent continues with protocol π any finite number of
times (including zero).

Of course, there may be other natural operations in this context, such as “merging”16 or
“revising” (cf. Icard et al., 2010).

Committing to a basic protocol T restricts the choices available to the agent, but there
is a trade-off: It also increases the agent’s ability of the agent to guarantee that certain
propositions are true. Formally, each basic protocol is associated with a set of states X (the
frontier of T in an arena). The agent can “force” the situation to end up in these states by
making choices consistent with the protocol. There are a number of ways to make precise
what it means for an agent to “guarantee” that some proposition is true because she adopts
the protocols T . One option is to see what is true no matter what the agent does, as long
as it is consistent with T . A second option recognizes that T still represents choices for
the agent that will be settled in the course of the interaction. In this case, we are interested
in what the agent can force by doing something consistent with T . The situation is even
more interesting when the agent commits to a complex protocol. If the protocol involves
the operators ∪ or Kleene star, then the agent first must choose which set of states she
wants to have the ability to force. For example, consider the protocol T1 ∪ T2; in order to
commit to this protocol, the agent must choose which of the two basic protocols to follow.
More generally, given a complex protocol π , the agent must first decide both how to go
about adopting π and then make her choices “in the moment” consistent with this plan.

This discussion suggests that our basic modality will be interpreted as a sequence of
two quantifiers (each corresponding to the different “types” of decisions the agent makes
when committing to a protocol). This is familiar from other modal logics of ability

15 Note that there is nothing inherently difficult about adding tests to our language; and, indeed,
the results in this paper can be adapted to this situation. We do not include them here to simplify
the setting and focus on issues that are orthogonal to issues that are relevant when tests are in the
language.

16 There is an extensive discussion of this using PDL in Wang (2010).
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(cf. Balbiani et al., 2007) and game logics (Parikh, 1985). Of the four possible combi-
nations of quantifiers, we take the following two as primitive (corresponding to ∃∀ and ∃∃,
respectively):

• 〈π〉∀α: By adopting the protocol π , α is guaranteed to be true.
• 〈π〉∃α: By adopting the protocol π , the agent can do something consistent with the

protocol that will make α true.

As usual, the remaining two possible combinations of quantifiers are dual to these. We
take “adopting a protocol” to mean that the agent decides how to follow the protocol (so
an existential quantifier over the different sets of states the agent can force). The second
quantifier is over the different ways that the agent actually implements the protocol. These
notions are objective since they do not take into account the fact that the agent may be
imperfectly informed about her current position in the arena. This suggests the following
“epistemized” versions of the above operators:

• 〈π〉2α: By agreeing to adopt the protocol π , the agent is certain that α is guaranteed
to be true.

• 〈π〉3α: By agreeing to adopt the protocol π , the agent is can “knowingly” do some-
thing consistent with the protocol that will make α true.

4.1. Epistemic protocol logic. Let At be a countable set of atomic propositions and �
a set of protocol expressions as defined in Definition 4.7 (based on basic actions �). The
epistemic protocol language is the smallest set LE P L of formulas generated by:

p ∈ At | ¬α | α1 ∨ α2 | 2α | 〈π〉∃α | 〈π〉∀α | 〈π〉2α | 〈π〉3α

where π ∈ �. By convention, let � = p ∨ ¬p, 3α = ¬2¬α, [π ]∃α = ¬〈π〉∀¬α,
[π ]∀α = ¬〈π〉∃¬α, [π ]3α = ¬〈π〉2¬α, and [π ]2α = ¬〈π〉3¬α. We discussed the
four protocol modalities above. The remaining modality2 quantifies over states accessible
(in one step) via the ; relation. Thus, it describes what is true from the agent’s point of
view. As usual, models are arenas with valuation functions:

DEFINITION 4.8 (Model). Let G I = (W, {→a}a∈�,;) be an arena with imperfect in-
formation (cf. Definition 3.1). A model based on G I is a structure (W, {→a}a∈�,;, V )
where and V : At → 2W a valuation function.

Before defining truth in a model, we must “interpret” complex protocols. The idea is to
associate with each protocol π the collection of states that the agent can force by following
π . Formally, we define sets RQπ ⊆ W × 2W for Q ∈ {∃, ∀,2,3} by induction on the
structure of π . We start with the atomic protocols.

Atomic Protocols. For an atomic protocol expressions t , and Q ∈ {∃, ∀,2,3}, we define
the relation RQt ⊆ W × 2W as follows:

• RFt = {(u, X) | enabled(Tt , u) and last(frontier(Tu |\ Tt )) = X} (for F ∈ {∃, ∀}).
• R2t = {(u, X) | s-enabled(Tt , u) and last(frontier((G, u) |\

s Tt )) = X}.

The definition of R3t is more complicated. The issue is that, in this case, the way the
agent implements the protocol must take into account the agent’s imperfect information.
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This suggests the following notion: given a path ρ = s0
t a0s1

t . . . sk
t ∈ Paths(t), the subjec-

tive path defined by ρ on the structure (G, u) |\
s t = (S, ⇒, f ) is the sequence S(ρ, u) =

Z0 Z1 . . . Zk where for all j : 0 ≤ j ≤ k, Z j = {s ∈ S | f (s) = s j
t }. We now have

• R3t = {(u, X) | s-enabled(Tt , u) and ∃ρ ∈ Paths(Tt ) with S(ρ, u) = Z0 Z1 . . . Zk

and X = Zk}.
Composition.

• R∃
π1;π2

= {(u, X) | ∃Y ⊆ W such that (u, Y ) ∈ R∃
π1

and ∃v j ∈ Y such that (v j , X) ∈
R∃

π2
}.

• for F ∈ {∀,2,3},
— RFπ1;π2

= {(u, X) | ∃Y = {v1, . . . , vk} such that (u, Y ) ∈ RFπ1
and ∀v j ∈ Y ,

there exists X j ⊆ X such that (v j , X j ) ∈ RFπ2
and

⋃
j=1,...,k X j = X}.

Note that in the definition above, we can assume the set Y is finite since our models are
finitely branching. The definition of union and Kleene star is standard (though some care
must be taken in the latter case to use a fixed point definition):

Union. For Q ∈ {∃, ∀,2,3}, RQπ1∪π2
= RQπ1

∪ RQπ2
.

Iteration.

• R∃
π∗ = ⋃

n≥0(R∃
π )n .

For Q ∈ {∀,2,3}, it is tempting to define iteration as RQπ∗ = ⋃
n≥0(RQπ )n . However,

this definition does not give the intended interpretation of the Kleene star operator. To
see this, consider the simple tree t consisting of a root and two outgoing edges a and b.
Intuitively, the above definition would force all the branches of t∗ to be of the same depth.
This also illustrates the underlying difference between our approach and that of standard
dynamic logic: Sequential composition in our setting is defined over trees rather than over
paths. The semantics of Kleene star, thus, needs to be defined with respect to a least fixed-
point operator. We formalize this as follows: Let · be a binary operator over W ×2W , which
is defined as:

• R1 · R2 = {(u, X) | ∃w1, Y1, . . . , wk, Yk with (u, {w1, . . . , wk}) ∈ R1, ∀ j, (w j , Y j )
∈ R2 and X = ⋃

j Y j }.

for all R1, R2 ⊆ W × 2W .
Given a Z ⊆ W × 2W , let FZ be the operator over the domain W × 2W defined as

FZ (R) = R� ∪ Z · R where R� = {(u, {u}) | u ∈ W }. Observe that the operator ·
is monotonic in the following sense: If R1 ⊆ R2, then R0 · R1 ⊆ R0 · R2. This also implies
that FZ is monotonic for every Z ⊆ W × 2W . Thus, by the Knaster–Tarski theorem we
have that for every Z , the least fixed point (LFP) of FZ exists. LFP(FZ ) can be computed
as the limit of the following sequence of partial solutions: R0 = R�, R j+1 = FZ (R j )
(= R� ∪ Z · Ri ), and Rλ = ∪ν<λ Rλ for a limit ordinal λ. For Q ∈ {∀,2,3}, we define:

• RQπ∗ = LFP(FRQπ ).

We are now in a position to formally define truth in a model:
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DEFINITION 4.9 (Truth). The truth of a formula α ∈ LE P L in a model M = (W, →,
;, V ) at a position u (denoted M, u |� α) is defined as follows:

• M, u |� p iff p ∈ V (u)
• M, u |� ¬α iff M, u �|� α
• M, u |� α1 ∨ α2 iff M, u |� α1 or M, u |� α2

• M, u |� 2α iff for all w such that u ; w we have M, w |� α
• M, u |� 〈π〉∃α iff ∃(u, X) ∈ R∃

π , ∃w ∈ X such that M, w |� α
• M, u |� 〈π〉∀α iff ∃(u, X) ∈ R∀

π such that ∀w ∈ X we have M, w |� α
• M, u |� 〈π〉2α iff ∃(u, X) ∈ R2π such that ∀w ∈ X we have M, w |� α
• M, u |� 〈π〉3α iff ∃(u, X) ∈ R3π such that ∀w ∈ X we have M, w |� α

where for Q ∈ {∃, ∀,2,3}, RQπ ⊆ W × 2W is defined above. The logical notions
satisfiability and validity are defined as usual.

The first technical contribution of this paper is a sound and (weakly) complete axiom
system (in the language LE P L ) for the class of all arenas with imperfect information. A
straightforward consequence of this completeness proof is decidability of the satisfiability
problem, which we discuss below.

The axiomatization and completeness proof extends the one found in Ramanujam &
Simon (2009) to situations with imperfect information. In this section, we present this
axiom system and discuss the proof (details can be found in Appendix A). First of all,
note that the language LE P L extends the standard PDL language: Let ea denote the tree
ea = (x, a, y) with a single a-edge, and define for each a ∈ �, 〈a〉α = 〈ea〉∃α. Given the
semantics defined above (Definitions 4.8 and 4.9), we have the standard interpretation for
〈a〉α: 〈a〉α holds at a state u iff there is a state w such that u

a−→ w and α holds at w.
A key observation is that whether a protocol t is (subjectively) enabled can be described

by a standard PDL formula. Formally, for each protocol T , let t
√

be a formula that is
intended to denote that the tree structure t is enabled. This is defined inductively on the
structure of t as:

• if t = (x), then t
√ = �.

• if t = (x, a1, ta1) + . . . + (x, ak, tak ), then

t
√ = (

∧
j=1,...,k(〈a j 〉� ∧ [a j ]t

√
a j )).

We use the formula t2
√

to denote that the protocol t is subjectively enabled:

• if t = (x), then t2
√ = �.

• if t = (x, a1, ta1) + . . . + (x, ak, tak ), then

t2
√ = (

∧
j=1,...,k(2〈a j 〉� ∧ 2[a j ]t

2
√

a j )).

It is straightforward to check that these definitions work as intended:

LEMMA 4.10. For any protocol T and model M = (W, →,;, V ), for each w ∈ W ,
M, w |� t

√
iff enabled(t, w) holds, and M, w |� t2

√
iff s-enabled((G, w), t) holds.

The above reductions from trees to standard PDL formulas suggest that the methods
of Kozen & Parikh (1981) to prove completeness of PDL are also applicable in our set-
ting. Our axiomatization follows this “reduction axiom” methodology (i.e., the Segerberg
axioms for complex programs) with one important twist: Since the atomic protocols still
encode the structure of a tree, we need to provide “reduction axioms” for atomic protocol
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trees as well. The key idea is to define a formula pushQ(t, α) for Q ∈ {∃, ∀,2} which
means that t is (subjectively) enabled and that α holds at all the frontier nodes selected
by the relation RQt . These formulas will be defined by induction on the structure of t : For
atomic trees t = (x),

(C1) push∃((x), α) = α.
(C2) push∀((x), α) = α.
(C3) push2((x), α) = 2α.

For t = (x, a1, ta1) + . . . + (x, ak, tak ) and A = {a1, . . . , ak}, we have

(C4) push∃(t, α) = ∨
am∈A 〈am〉〈tam 〉∃α.

(C5) push∀(t, α) = ∧
am∈A[am]〈tam 〉∀α.

(C6) push2(t, α) = ∧
am∈A 2[a j ]〈ta j 〉2α.

Note that we have not given the corresponding formula for 〈t〉3α. This formula is of
a different nature than the formulas above. The intended interpretation of 〈t〉3α is that
the protocol t is subjectively enabled and α holds at all frontier nodes reached along a
subjective path in t . Formally, (recall that Paths(t) is the set of maximal paths in Tt ),
when the path consists of a single node (i.e., ρ = (x)) we have:

(P1) cpath((x), α) = 2α.

When the path ρ is consists of at least two nodes, we have:

(P2) cpath(ρ, α) = 2[head(ρ)]cpath(tail(ρ), α).

DEFINITION 4.11 (Axiomatization). The epistemic protocol logic, which we denote EPL,
is the smallest set of formulas from LE P L containing all instances of the following axiom
schemes and closed under the following inference rules:

Propositional Tautologies

(A1) All instances of propositional tautologies.

Normality Axioms

(A2) (a) 〈π〉∃(α1 ∨ α2) ≡ 〈π〉∃α1 ∨ 〈π〉∃α2
(b) 2α1 ∧2(α1 ⊃ α2) ⊃ 2α2

Reduction axioms for atomic and composite protocols

(A3) 〈t〉∀α ≡ t
√ ∧ push∀(t, α)

(A4) 〈t〉∃α ≡ t
√ ∧ push∃(t, α)

(A5) 〈t〉2α ≡ t2
√ ∧ push2(t, α)

(A6) 〈t〉3α ≡ t2
√ ∧

∨
ρ∈Paths(t)

cpath(ρ, α) for Q ∈ {∃, ∀,2,3}

(A7) 〈π1 ∪ π2〉Qα ≡ 〈π1〉Qα ∨ 〈π2〉Qα
(A8) 〈π1; π2〉Qα ≡ 〈π1〉Q〈π2〉Qα
(A9) 〈π∗〉Qα ≡ α ∨ 〈π〉Q〈π∗〉Qα

Inference rules

(MP) α, α ⊃ β (ANec) α (KNec) α
β [a]α 2α
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(INDQ) 〈π〉Qα ⊃ α

〈π∗〉Qα ⊃ α
for Q ∈ {∃, ∀,2,3}

Some remarks are in order. First, restricting attention to finite trees ensures that that the
disjunction in axiom A6 is finite. Second, note that normality axioms for 〈π〉∀ and 〈π〉2
are not valid. Finally, since the action modalities make assertions about the frontier of trees
(and forests), the relation RQπ is not “upward closed.” Nonetheless, the usual PDL axiom
for composite programs is still sound:

PROPOSITION 4.12. 〈π1; π2〉Qα ≡ 〈π1〉Q〈π2〉Qα is valid for Q ∈ {∃, ∀,2,3}.
Proof. We give a proof for the case when Q = ∀, the other cases are similar. Suppose

that M, u |� 〈π1; π2〉∀α. We will show M, u |� 〈π1〉∀〈π2〉∀α. Since M, u |� 〈π1; π2〉∀,
there exists (u, X) ∈ R∀

π1;π2
such that ∀w ∈ X , M, w |� α. Hence, there exists Y =

{v1, . . . , vk} such that (u, Y ) ∈ R∀
π1

and ∀v j ∈ Y , there exists X j ⊆ X such that (v j , X j ) ∈
R∀

π2
and

⋃
j=1,...,k X j = X . Therefore, ∀vk ∈ Y , we have M, vk |� 〈π2〉∀α and, hence,

M, u |� 〈π1〉∀〈π2〉∀α.
Conversely, suppose that M, u |� 〈π1〉∀〈π2〉∀α. We will show M, u |� 〈π1; π2〉∀α. We

have M, u |� 〈π1〉∀〈π2〉∀α iff there exists (u, Y ) ∈ R∀
π1

such that ∀vk ∈ Y , M, vk |�
〈π2〉∀α. M, vk |� 〈π2〉∀α iff there exists (vk, Xk) ∈ R∀

π2
such that ∀wk ∈ Xk , M, wk |� α.

Let X = ⋃
k Xk ; from the definition of R∀ we get (u, X) ∈ R∀

π1;π2
. Hence, M, u |�

〈π1; π2〉∀α. �
We can now state the two main theorems of this section:

THEOREM 4.13. EPL is sound and weakly complete with respect to the class of all arenas
with imperfect information.

The proof of this theorem is found in Appendix A.

COROLLARY 4.14. The satisfiability problem for EPL is decidable in nondeterministic
double exponential time.17

REMARK 4.15. Note that the definition of subjectively enabled considers only single steps
of the ; relation. One natural generalization here is to consider the transitive closure
of; in Definition 3.3. This suggests extending the language with a 2∗ operator, which in
turn may open the door to the many axiomatization issues in epistemic temporal languages
with common knowledge (cf. van Benthem & Pacuit, 2006, for references and a discussion).
Also relevant here are the axiomatizations of products of PDL and various epistemic and
doxastic logics (Schmidt & Tishkovsky, 2008).

We can incorporate the properties discussed in Section §3. Recall that a formula φ ∈
LE P L is valid in an arena (with imperfect information) if it is valid in every model based on
the arena. First, note that a standard modal correspondence argument (cf. Blackburn et al.,
2002, chap. 3) gives us:

17 This is an upper bound; the precise lower bound of the satisfiability problem is left open. The
proof is a direct consequence of the proof of the completeness theorem since we construct a finite
model.
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LEMMA 4.16. Let G I = (W, {→a}a∈�,;) be an arena with imperfect information.
Then,

• G I satisfies no miracles iff [a]2α ⊃ 2[a]α is valid.
• G I satisfies success iff 3〈a〉� ⊃ 〈a〉� is valid.
• G I satisfies awareness iff 〈a〉� ⊃ 2〈a〉� is valid.
• G I satisfies certainty of actions iff 3〈a〉� ⊃ 2〈a〉� is valid.

Furthermore, it is not hard to see that adding the axioms in the above lemma to the
axioms in Definition 4.11 leads to a sound and weakly complete axiomatization of the
relevant class of models.

§5. Joint protocols. The central issue addressed in this paper is the circumstances
under which an agent can “knowingly” agree to follow a protocol or plan. We have seen
that even in the single-agent case, this notion is interesting and nontrivial to formalize.
However, the situation becomes even more interesting and complex in situations with more
than one agent. A first approach to the multiagent situation is to assume that each agent
follows her own “local” protocol. More formally, we can associate with each agent a set
of local actions and define (local) protocols for each agent as before (Definitions 2.2 and
4.6) based on the agents’ local actions. This is the underlying idea behind the interpreted
systems of Halpern and others (see Fagin et al., 1995, for a discussion and references to
the relevant literature). However, this approach hides an important distinction between an
action profile and a joint action. The former is a sequence of (individual) actions describing
choices made by each agent, while the latter involves an additional component “gluing” the
agents’ actions together.

The nature of this additional component is the subject of much debate among philoso-
phers (cf. Bratman, 1999, on “shared intentions,” Gilbert, 1989, on “joint commitments,”
and Sugden, 2003, on “team reasoning,” among others Searle, 1990; Tuomela, 2010). The
logic we present in this section does not commit to any specific view of joint actions.
Our goal is to extend the analysis from the previous sections to the many-agent situation
where some of the basic actions are classified as joint actions. Taking inspiration from
concurrency theory, we use a “location function” that specifies for each basic action a set
of agents involved in the action. Formally, the function agents : � → 2N specifies for each
action the subset of players associated with the action. Such a function has been extensively
used in the analysis of asynchronous systems, where it typically specifies synchronized
communication among a group of agents (Zielonka, 1987; Mukund & Sohoni, 1997). Also
relevant for this paper is Ramanujam, 1996, where such a function is used to explicitly
specify the source of agents’ uncertainty in terms of synchronization actions. In this paper,
if i ∈ agents(a), then this means that agent i is involved in the execution of a. In other
words, in order to do action a, each agent in agents(a) must do his or her “part” (whatever
that may be). For example, if a is the action “lift the piano” and agents(a) = {i, j}, then
doing action a means that i lifts the left side and j lifts the right side (or vice versa). Thus,
we do not specify how the agents in agents(a) go about doing action a.

The definition of a (basic) protocol is the same as in the previous sections. That is, a
(joint) protocol is a finite labeled tree (Definition 2.2) where the labels now represent joint
actions. While this move to the many-agent setting raises many technical and conceptual
questions (cf. Lorini et al., 2009), we focus on one specific question: What does it means
for a joint protocol to be subjectively enabled? In the single-agent case this was defined
by taking the closure under the uncertainty relation of the player at every stage (or node
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corresponding to the protocol tree). This technique does not work in the case of joint
protocols since the actions (and not the nodes) specify the agents involved in the protocol.
Below, we discuss a number of ways to solve this problem. We start with a very simple
solution: Whenever a joint action a is in a protocol, we require that for each agent i ∈
agents(a), the action a must be enabled at all the states that i considers possible (specified
by i’s uncertainty relation). We formalize these ideas below.

Many-agent epistemic protocol logic. Let N = {1, . . . , n} be the set of agents. A
multiagent arena with imperfect information is a tuple G I = (W, {→a}a∈�, {;i }i∈N )
where (W, {→a}a∈�) is a finite arena, as earlier, and for each i ∈ N , the relation ;i⊆
W × W specifies the uncertainty of agent i . For a position u ∈ W , let Ii (u) = {w ∈ W |
u ;i w}. The definition of a protocol remains the same as earlier: a (finite) labeled tree
where the labels are now interpreted as joint actions. For a protocol tree T , let ξT denote
the set of agents involved in the protocol T—that is, ξT = {i ∈ N | ∃s ∈ S, ∃a ∈
A(s) with i ∈ agents(a)}. Thus, a local protocol for agent i is one in which ξT = {i} or, in
other words, for all actions a occurring in T we have agents(a) = {i}. For any finite path
ρ such that A(last(ρ)) �= ∅, let N (ρ) = {i ∈ N | ∃a ∈ A(last(ρ)) and i ∈ agents(a)}.

The subjective restriction of T = (S, {⇒a}a∈�, s0) in (G I , u) (which we denote
(G I , u) |\

s T ) is a tuple (X, f, act) where X is a forest in G I , f is a map f : X → S
and act is a map act : X → 2� . This is defined inductively as follows:

0. We have two cases to consider:

• if A(s0) = ∅, then X0 = ⋃
i∈ξT
Ii (u); and

• if A(s0) �= ∅, then X0 = ⋃
i∈N (s0)

Ii (u) (v ∈ X0 is understood as a one-
element sequence). For all v ∈ X0, set f0(v) = s0 and act(v) = {a ∈ A(s0) |
v ∈ Ii (u) and i ∈ agents(a)}.

n. Suppose that Xn and fn have been constructed. For each ρ ∈ Sn , we need to consider
two cases:

• if A( fn(ρ)) �= ∅, then for all a ∈ act(ρ), let

Y ρ
a = {ρaw | last (ρ) →a w in G I } and Zρ

a =
⋃

ρ′∈Y ρ
a

⋃
i∈N (ρ′)

Ii (ρ
′).

Let fn+1 extend fn such that for all ρ′ ∈ Zρ
a , fn+1(ρ

′) = s′ where fn(ρ) ⇒a s′
in T . The map actn+1 is also defined as an extension of actn , where for all
ρ′ ∈ Zρ

a we define actn+1(ρ
′) = {a ∈ A(last(ρ)) | last(ρ′) ∈ Ii (ρ) and i ∈

agents(a)}. Define

Xn+1 = Xn ∪
⋃

ρ∈Xn ,a∈A( fn(ρ))

Zρ
a .

• if A( fn(ρ)) = ∅, then Xn+1 = Xn ∪ ⋃
ρ∈Xn ,i∈ξT

Ii (ρ).

Finally, let X = Xheight(T ), f = fheight(T ) and act = actheight(T ).

REMARK 5.17. Observe that in the above definition, when A( fk(ρ)) = ∅ for some k, we
take the closure under the uncertainty relation of all the agents involved in the protocol
T . This reflects the fact that at the end of the protocol, the analysis takes into account the
uncertainty of all the players involved in the protocol. In general, one could consider any
group of agents ξ ⊆ N and define the closure with respect to this group.
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DEFINITION 5.18 (Subjectively Enabled for Joint Protocols). A joint protocol T is subjec-
tively enabled at u in G I = (W, →,;) if the structure (G I , u) |\

s T = (X, f, act) satisfies
the condition ∀ρ ∈ X, act(ρ) = A(ρ).

Thus, in order for a joint protocol to be subjectively enabled, it is required that for each
joint action a in the protocol, for all i ∈ agents(a), a is enabled at all the states that i
considers possible. Of course, this is only one of many different ways to formally define
what it means for a joint protocol to be subjectively enabled. Another approach would
be to require that the relevant actions are enabled in the states in the intersection of the
uncertainty relation of the agents involved. This corresponds to the distributed knowledge
of the relevant agents. At the other extreme, we could base our definition of subjectively
enabled on the common knowledge of the relevant agents. A detailed analysis of this and
other issues raised by the many-agent setting will be left for future work. We conclude this
section with a brief discussion of axiomatic issues.

Given the above definition of subjectively enabled, we can prove a completeness theorem
for the class of multiagent arenas with imperfect information (in the obvious language)
using the methods discussed in Section 4.1. The crucial observation is that a joint protocol
being subjectively enabled is expressible in a multiagent epistemic PDL language. Given
a protocol specification t , let ξt be the set of agents involved in t—that is, ξt = {i ∈ N |
∃s ∈ Tt , ∃a ∈ A(s) such that i ∈ agents(a)}. The formula t2

√
(ξt ), which denotes that the

joint protocol t is subjectively enabled, is defined as:

• if t = (x), then t2
√
(ξt ) = ∧

i∈ξt
2i�.

• if t = (x, a1, ta1) + . . . + (x, ak, tak ) with A = {a1, . . . , ak}, then

t2
√
(ξt ) =

∧
a j ∈A

∧
i∈agents(a j )

(2i 〈a j 〉� ∧ 2i [a j ]t
2

√
a j

(ξt )).

§6. Conclusion and discussion. This paper focuses on the interplay between epis-
temic reasoning and protocol analysis. In particular, we developed an epistemic protocol
logic and discussed what it means for an agent to “subjectively” agree to follow a given
protocol. We see this as one step towards addressing the fundamental problem of how to
model agents “knowing a protocol, plan, or strategy” in situations with imperfect infor-
mation, and we proved a number of results about our logical system. We conclude with a
discussion of related and future work.

6.1. Actions, abilities, and know-how. Our paper touches on a number of issues sur-
rounding the relationship between an agent’s abilities, available choices, and information
in an interactive situation. The issues here are subtle and a complete discussion is beyond
the scope of this paper; however, we would like to explain how our logical frameworks fit
into to this broader literature. We assume that the agents may be uncertain about which
(basic) actions are available (i.e., which choices are feasible). Amidst this uncertainty, the
agents commit to a (joint) plan or protocol. Some features of our notion of a plan are worth
highlighting:

• Plans are compositional: complex plans are built from simpler ones using the stan-
dard regular operators (concatenation, union, and Kleene star).

• Plans may be partial: basic protocols may be branching.
• We do not include tests in our language.

In this paper, we focus on the question under what circumstances can an agent commit to
a (joint) protocol or plan, and what can she achieve by doing so? But, this is only one of
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many different questions that can be investigated. We mention here three questions that are
related to issues that have come up in this paper.

What does it mean for an agent to “know a protocol”? As we remarked in the Introduction,
a common assumption is that it is common knowledge that there is a fixed protocol which
all the agents have (implicitly or explicitly) agreed to follow. In what sense do the agents
know the protocol? Formally, the protocol describes which states or histories are “in the
model,” so the proposition expressing that “the protocol is being followed” is the set of
all elements in the model (i.e., the set W of all possible worlds in the model). Thus, in
terms of the agents’ propositional knowledge, “knowing the protocol” amounts to knowing
“that the set of possible states is W ,” but this just means that the agent knows that ‘�’.
Nonetheless, “knowing the protocol” has important practical and pragmatic ramifications
on the agents’ information. First, the protocol explicitly limits the available observations,
messages, and/or actions available (or permitted) to the agent.18 Second, the protocol
affects how the agents interpret their observations (Parikh & Ramanujam, 2003). These
two aspects of knowing a protocol are extensively discussed in Yanjing Wang’s recent PhD
thesis (Wang, 2010).19

How do the agents come to know a protocol? Our logical frameworks focus on what agents
can achieve by committing to a protocol or plan. But, we do not address the dynamics of
these commitments. A dynamic (epistemic) protocol logic has recently been introduced
by Wang (2010, chap. 4). The key idea is to extend PDL with a program announcement
modality, denoted [!π ] where π is a PDL action expression (unlike us, Wang does not
allow branching for atomic programs). Formulas are interpreted in the usual PDL models
at a state and a program expression representing the protocol the agents are currently
committed to. So, for example, it may be currently true that the agent can do a (i.e., a
complies with the current protocol), but after announcing that the protocol is b, then a is
no longer compliant (this is represented by the formula 〈a〉� ∧ [!b]¬〈a〉�). This type of
dynamics also makes sense in our setting. Indeed, it would be a very interesting line of
research to add Wang’s “protocol announcement” operators to our epistemic protocol logic
(Section 4.1).

What is the (formal) difference between an agent knowing that she can achieve φ and
knowing how to achieve φ?20 Much of the work on epistemic extensions of logics of
actions and abilities has focused on the distinction between de re/de dicto knowledge
of what agents can achieve (van Benthem, 2001b; Herzig & Troquard, 2006; van der
Hoek & Wooldridge, 2003a; Jamroga & Agotnes, 2007). To illustrate the issue, we use
an example from Herzig & Troquard (2006): Suppose that Ann, who is blind, is standing
with her hand on a light switch. She currently does not know whether the light is on or off.
The question is does she have the ability to turn the light on? Is she capable of turning the

18 So, for example, truth of φ no longer implies that φ can be announced (cf. van Benthem et al.,
2009).

19 In particular, see chapters 2 and 3.
20 Philosophers since Ryle, 1949, chap. 2, have discussed the distinction between “knowing that”

and “knowing how.” Consult Fantl (2008) for an up-to-date survey of the current philosophical
debate. Certainly, some of the issues raised in this debate are relevant to the discussion here,
but we leave a complete analysis for a different occasion. See Carr (1979) and Singh (1999) for
logical analyses of “knowing how” that is related to the framework we develop in this paper.
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light on? Does she know how to turn the light on?21 We do not address these conceptual
questions here, but, rather, illustrate some distinction we can make in our logical system.
Ann has two options available to her: toggle the switch (t) or do nothing (s). This situation
is represented by the following arena with imperfect information:

Suppose that the actual state is w1, so the light is currently off. Now, since Ann is blind,
she does not know that the light is off (w1 |� ¬2 f ).22 Furthermore, the following formulas
are true at w1: 〈t〉o (“after toggling the light switch (t), the light will be on (o)”), ¬2〈t〉o
(“Ann does not know that after toggling the light switch, the light will be on”), 2(〈t〉� ∧
〈s〉�) (“Ann knows that she can toggle the switch (t) and she can do nothing (s),” and
〈t〉¬2o (“after toggling the switch Ann does not know that the light is on”). These formulas
describe the basic options available at w1 and the information Ann has about these options.
Consider the basic plan “turn the light on”23 (denoted by l). Agreeing to this plan commits
Ann to a choice between t and o, but this choice can only be made “in the moment” (since,
the “correct” option depends on the state of affairs). So, l is a basic protocol consisting of
a tree with two branches, one labeled with t and the other labeled with o. We have:

• w1 |� 〈l〉∃o∧¬〈l〉∀o: executing the plan “turning the light on” can lead to a situation
where the light is on, but this is not guaranteed (the plan may fail).

• w1 |� 2〈l〉∃o: Ann knows that she is capable of turning the light on. She has de
dicto knowledge that she can turn the light on.

• w1 |� ¬〈l〉3o: Ann cannot knowingly turn on the light (she does not have de re
knowledge that she can turn the light on): there is no subjective path leading to
states satisfying o (note that all elements of the last element of the subject path must
satisfy o).24

So, our logical framework can express interesting relationships between a plan π , propo-
sitions that can be “brought about” by following π , and what the agent(s) knows about π :
For example, 2〈π〉∀φ means “the agent knows that she can bring about φ by following π ,”
〈π〉∀2φ means “the agent can bring about her knowledge of φ by following π ,” and 〈π〉2φ

21 There is an interesting philosophical debate about what are the right distinctions to make here (cf.
Lesperance et al., 2000, for a perspective from artificial intelligence) and the precise relationship
with propositional knowledge (cf. Stanley & Williamson, 2001; Williams, 2008). In the interest
of space, we do not discuss these interesting issues here.

22 We do not label the modal operator since Ann is the only agent.
23 Alternatively, we may use the command “make sure the light is on!” for this plan.
24 It is interesting to note that if t was informative for Ann, so that there is no uncertainty for Ann

between states w3 and w5, then 〈l〉3o would be true at state w1. For example, suppose that Ann
was not blind, but was standing outside of the room with the door shut and t was the action “open
the door.”
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means “the agent knows how to follow π in order to bring about φ.” Arguably, the issues
discussed above become even more pressing when developing logics of explicit strategies
for reasoning about game-theoretic situations (van Benthem, 2008). In particular, a player
may know that she can win the game without actually knowing how (see van Benthem,
2001b, for a discussion). We conclude this subsection with an initial discussion about how
to use our framework for reasoning about strategies in games with imperfect information.
Consider an extensive game where Bob moves first (choosing between x and y) and Ann
moves second (choosing between a and b) without knowledge of Bob’s choice:

Suppose that pA denotes a win for Ann and pB a win for Bob. Let s be the plan on the right
which can be thought of as a strategy for Ann. Indeed, this is a winning strategy for Ann:
w0 |� 〈s〉∀ pA. Furthermore, Ann knows that this is a winning strategy, w0 |� 2〈s〉∀ pA (as-
sume that w0 ∈ I(w0) for Ann). However, even though this strategy is subjectively enabled
for Ann, she does not know how to use this strategy to win the game (in the terminology of
van Benthem, 2001b: the strategy is not prescriptive:25 That is, we have w0 |� ¬〈s〉2 pA.
These are only some initial observations about how to use our logical framework to reason
about strategies in imperfect information games—a complete discussion will be left for
future work.

We conclude this section by observing that the definition of subjectively enabled (Defi-
nition 3.3) can be simplified when; is an equivalence relation:

PROPOSITION 6.1. Let G I = (W, {→a}a∈�,;) be an arena with imperfect informa-
tion where; is an equivalence relation that satisfies no miracles. Then, for any protocol
T , T is subjectively enabled at position u in G I iff there is a function f mapping nodes in
T = (S, {⇒a}a∈�, s) to positions in G I ( f : S → W ) such that

1. f (s) = u; and
2. for all t ∈ S, if a ∈ A(t) and v ∈ I( f (t)), then a ∈ A(v).

This simple (but instructive) proof is left to the reader. This proposition is important
because it can be used to establish connections between our work and existing literature
on related topics. Much of the current work on protocols and strategies discusses epistemic
issues: Witness the “knowledge programs” of Fagin et al. (1997) and Halpern & Fagin

25 This should be contrasted with a strategy that is uniform. In our terminology, a protocol π is
uniform if it is subjectively enabled and it is prescriptive for φ if 〈π〉2φ is true at the root node.
van Benthem, 2001b, showed that in games with perfect recall a winning strategy for player i is
uniform iff it is prescriptive (for the proposition expressing that player i won the game).
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(1989) and the recent contributions of Jan van Eijck and Yanjing Wang, as well as others
using PDL to reason about executing a knowledge program (van Eijk et al., 2009; Wang,
2010). The focus here tends to be on knowing some objective, under the assumption
that the agents implicitly agree to follow a “knowledge protocol” designed by the mod-
eler to achieve the objective. Our work suggests a different question where the protocols
themselves can be the object of knowledge: Given some (epistemic) objective, is there a
protocol that the agents can (knowingly) agree to follow that will achieve the objective?
Certainly, much more can be said on this topic (and has: see, e.g., Lesperance et al., 2000;
Herzig et al., 2000), but this will be left for future work.

6.2. Comparisons. There are many other interesting questions to ask about the log-
ical system introduced in the previous section. For example, we can show that LE P L is
strictly more expressive than the language of PDL (both interpreted over labelled tran-
sition systems), but what about concurrent PDL, game logic, the modal μ-calculus, or
branching time temporal logic (CTL)? This section contains a number of preliminary
observations; a more detailed comparison with related logical systems will be left for
future work. It is easy to see that PDL is a fragment of LE P L (indeed, we use this in
our axiomatization). Furthermore, a simple adaptation of Peleg’s (1987) argument show-
ing that concurrent PDL (CPDL) is strictly more expressive than PDL shows that LE P L

without 〈π〉2 and 〈π〉3 (as considered in Ramanujam & Simon, 2009) is strictly more
expressive than PDL. The main idea stems from a crucial observation made in Peleg
(1987): No PDL formula can express the property of spawning an unbounded number
of processes in parallel. This can be expressed in LE P L using the branching in our atomic
programs.

Observation 1 LE P L is strictly more expressive than PDL.

Proof. Consider the formula: φ = 〈(t ; (a ∪ b))∗〉∀[a]⊥ where t = (x, a, y1)+(x, b, y2).
In other words, t is the tree with two branches labeled a and b. Consider the model M (see
Peleg, 1987, p. 459, figure 1), consisting of an infinite sequence of states labeled 0,1,2, . . .
From every state i , i > 0 there are both a and b edges leading to i − 1. There is also a
“bypassing” edge from every odd state 2i + 1 to state 2i − 1.

It can be easily verified that, on the one hand, φ is satisfiable in every even state of the
model. On the other hand, no odd state satisfies φ since in any restriction starting from an
odd state, some branch will always be forced to remain on the main path and will not use
bypasses. Therefore, φ precisely describes the even states of the model. Now, from Peleg
(1987, pp. 472–475), we have the following lemma:

LEMMA 6.2 (Peleg, 1987). Every PDL formula in the model M defines either a finite
or a cofinite set.

It follows that no PDL formula can be equivalent to φ. �
Of course, the interesting question is whether our language LE P L is more expressive

than that of CPDL. Indeed, LE P L is very similar to the language of CPDL. The crucial dif-
ference is that CPDL allows parallel branching on arbitrary programs: There is a program
operator ‘π1 ∩ π2’ meaning “execute π1 and π2 in parallel.” However, parallel branching
occurs only at the atomic level in LE P L . Thus, determining whether LE P L is as expressive
as the language of CPDL reduces to showing that every regular expression involving a
parallel operator ∩ can be rewritten as a regular expression where the atomic programs are
finite trees. A related question is can we characterize the fragment of the μ-calculus that
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is equivalent to our epistemic protocol logic?26 We leave these interesting questions for
future work.

Finding the precise relationship between our epistemic protocol logic and other logical
frameworks raises an important question: can we characterize the expressive power of our
epistemic protocol language (over the class of arenas with imperfect information). In order
to tackle this problem, we need a notion of equivalence between models corresponding
to equivalence with respect to LE P L . For example, it is well known that (standard) PDL
formulas are invariant under bisimulation,27 and this fact is instrumental in helping us
understand the precise relationship between PDL and other logical languages (interpreted
over the same structures, such as the μ-calculus). Consider the following arenas:

Note that G1 and G2 are trace equivalent28 but not bisimilar; and, indeed, it is not hard to
find a formula of LE P L that can distinguish these models.29 Furthermore, it is not hard to
see that there is no formula of LE P L that can distinguish G1 and G3. An interesting line of
research, which we leave for future work, is to find the appropriate notion of equivalence
between models (cf. Nicola, 1987).

Another interesting question concerns the choice of the modal language. Note that the
modalities ‘〈π〉2’ and ‘〈π〉3’ are “epistemized” versions of the action modalities ‘〈π〉∀’
and ‘〈π〉∃’. A natural question is whether we can drop the former modalities in favor of a
more expressive protocol language that incorporates uncertainty in the tree structure. More
generally, we would like to construct the “actual” uncertainty an agent faces as a consistent
product of uncertainty described in the model and uncertainty specified in a protocol. This
is closer in spirit to the notion of product update used in dynamic epistemic logic (see van
Benthem, 2010, for references).

The main idea here is to consider protocol trees, denoted by Pε(V) (cf. Definition 4.6),
over an extended alphabet set �ε = � ∪ {ε}. The ε edges specify the uncertainty relation
in the atomic protocol tree, and the notion of a protocol t being enabled at a state u can be

26 Note that the key construction in this paper (iterating a finitely branching tree) can also
be represented in the μ-calculus: For example, μp.〈a〉p ∧ 〈b〉p defines the same tree at t∗where
t = (x, a, (x1))+(x, b, (x2)) (the atomic tree with two branches one labeled with a and the other
with b).

27 We assume the reader is familiar with the notion of bisimulation. See Blackburn et al. (2002) for
a detailed discussion.

28 Trace equivalent means that the models contain the same sequence of actions: In this case,
{ab, ac}.

29 Consider the basic protocol t which consists of one a-edge followed by tree with two branches,
one labeled with b and the other with c. This protocol is enabled in G1 (indeed, it is isomorphic
to G1) but not in G2.
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defined in a manner similar to Definition 3.3. The idea is that the ε edges in the protocol tree
match the silent transitions ; present in the model. Of particular interest is the subclass
of protocol trees P2ε (V) ⊆ Pε(V) where the labels on the path strictly alternate between
ε and an action symbol in �, and the ε edge is never combined with � in the branching
structure.

PROPOSITION 6.3. If the protocol tree includes uncertainty (as described above), then
the 〈π〉2 and 〈π〉3 modalities are definable using 〈π〉∀ and 〈π〉∃.

A formal statement30 of this proposition and a sketch of the proof can be found in
Appendix B. This proposition shows that being able to specify the uncertainty relation
directly on the protocol tree gives rise to a more general framework.
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A Proof of Theorem 4.13. To show completeness, we prove that every consistent
formula is satisfiable. Let α0 be a consistent formula, and CL(α0) denote the subformula
closure of α0. In addition to the usual closure, we also require that

1. 〈t〉Qα ∈ CL(α0) implies pushQ(t, α) ∈ CL(α0) for Q ∈ {∃, ∀,2} and
2. 〈t〉3α ∈ CL(α0) implies

∨
ρ∈Paths(t) cpath(ρ, α) ∈ CL(α0).

Let AT (α0) be the set of all maximal consistent subsets of CL(α0), referred to as atoms.
We use u, w to range over the set of atoms. Each u ∈ AT (α0) is a finite set of formulas and
we denote the conjunction of all formulas in u by û. For a nonempty subset X ⊆ AT , let
X̃ = ∨

w∈X û. Define the transition relation on AT (α0) as follows: u
a−→ w iff û ∧ 〈a〉ŵ

is consistent. We define the uncertainty relation as: u ; w iff û ∧ 3ŵ is consistent. The
valuation V is defined as V (w) = {p ∈ P | p ∈ w}. The model is M = (W, →,;, V )
where W = AT (α0). We also make use of the following notation, for u ∈ W and an action
a ∈ �, let (u, a)→ = {w | u

a−→ w}. The key observations are:

• For all 〈π〉∃α ∈ CL(α0) and for all u ∈ W , û ∧ 〈π〉∃α is consistent iff there exists
(u, X) ∈ R∃

π and w ∈ X such that α ∈ w.
• For F ∈ {∀,2,3}, for all 〈π〉Fα ∈ CL(α0) and for all u ∈ W , û ∧ 〈α〉F is consistent

iff there exists (u, X) ∈ RFπ such that for all w ∈ X , α ∈ w.

We present proofs for the cases 〈π〉∃α and 〈π〉2α. The arguments for the remaining
cases are similar. The following lemma can be shown using standard modal logic tech-
niques.

LEMMA 1.1. For all u ∈ W , we have the following properties.

• if û ∧〈a〉α is consistent then there exists w such that u→aw and ŵ ∧α is consistent.
• if û ∧ [a]α is consistent then for all w such that u→aw we have ŵ ∧ α is consistent.

30 Goranko & Jamroga (2004) make a similar observation in the context of epistemic extensions of
alternating-time temporal logic.
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• if û ∧2α is consistent then for all w such that u ; w we have ŵ ∧ α is consistent.
• if û ∧ 3α is consistent then there exists w such that u ; w and ŵ ∧ α is

consistent.

LEMMA 1.2. For all t ∈ P(V), for all u, w ∈ W , if û∧〈t〉∃ŵ is consistent then ∃X ⊆ W
such that (u, X) ∈ R∃

t and � ŵ ⊃ X̃ .

Proof. By induction on the structure of t .

• t = (x): From axiom (A4) case (C1) we get 〈(x)〉∃α ≡ α. The lemma follows from
this quite easily.

• t = (x, a1, ta1) + . . . + (x, ak, tak ): Suppose û ∧ 〈t〉∃ŵ is consistent, from axiom
(A4) we get û ∧ t

√
is consistent. Therefore there exists sets Y1, . . . , Yk such that

∀ j : 1 ≤ j ≤ l, for all v l
j ∈ Y j we have u

a j−→ v l
j . From (A4) case (C1) we get

û∧(
∨

a j ∈A 〈am〉〈tam 〉∃ŵ) is consistent. Therefore there exists vr
m such that u

am−→ vr
m

and vr
m ∧〈tam 〉∃ŵ is consistent. By induction hypothesis, for all j, l we get ∃Xl

j such

that (v l
j , Xl

j ) ∈ R∃
ta j

and there exists Xr
m such that (vr

m, Xr
m) ∈ R∃

tam
, � ŵ ⊃ X̃r

m . Let

X = ⋃
j=1,...,k

⋃
l=1,...,|Y j | Xl

j , from semantics we get (u, X) ∈ R∃
t . We also have

� X̃r
m ⊃ X̃ and � ŵ ⊃ X̃r

m and thus � ŵ ⊃ X̃ as required.

�
The following two lemmas can be proved using standard techniques.

LEMMA 1.3. For all π ∈ �, for all u, w ∈ W , if û ∧ 〈π〉∃ŵ is consistent then ∃X ⊆ W
such that (u, X) ∈ R∃

π and � ŵ ⊃ X̃ .

LEMMA 1.4. For all 〈t〉∃α ∈ CL(α0) and for all u ∈ W if there exists (u, X) ∈ R∃
t and

w ∈ X such that α ∈ w then û ∧ 〈t〉∃α is consistent.

LEMMA 1.5. For all 〈π〉∃α ∈ CL(α0) and for all u ∈ W , û ∧ 〈π〉∃α is consistent iff
∃(u, X) ∈ R∃

π , ∃w ∈ X such that α ∈ w.

Proof. (⇒) Let Xα = {w | ŵ ∧α is consistent}. Suppose û ∧ 〈π〉∃α is consistent. From
axiom (A2a) we get ∃w ∈ Xα such that û ∧ 〈π〉∃ŵ is consistent. From Lemma 1.3, there
exists X ⊆ W such that (u, X) ∈ R∃

π and � ŵ ⊃ X̃ . Since � ŵ ⊃ α, we have ∃(u, X) ∈ R∃
π ,

∃w ∈ X such that α ∈ w.
(⇐) Suppose ∃(u, X) ∈ R∃

π , ∃w ∈ X such that α ∈ w. We need to show that û ∧ 〈π〉∃α is
consistent. This is done by induction on the structure of π .

• The case when π = t ∈ P(V) follows from Lemma 1.4. For π = π1 ∪ π2 the result
follows from axiom (A7).

• π = π1; π2: Suppose (u, X) ∈ R∃
π1;π2

and ∃w ∈ X such that α ∈ w. From the

definition of R∃ we get that there exists Y ⊆ W such that (u, Y ) ∈ R∃
π1

and ∃v ∈ Y

such that (v, X) ∈ R∃
π2

. By induction hypothesis we have v̂ ∧ 〈π2〉∃α is consistent.
By definition of closure we have 〈π2〉∃α ∈ CL(α0). Therefore we get 〈π2〉∃α ∈ v .
Again applying induction hypothesis we get that û∧〈π1〉∃〈π2〉∃α is consistent. From
(A8) we get û ∧ 〈π1; π2〉∃α is consistent.

• π = π∗
1 : From definition of R∃ there must be sets Y1, . . . , Yk such that u ∈ Y1,

X = Yk and for all j : 1 < j < k, ∃v j ∈ Y j such that (v j , X j+1) ∈ R∃
π1

. From (A9)

we get ŵ ∧ 〈π∗
1 〉∃α is consistent. By definition of closure, we have 〈π1〉∃〈π∗

1 〉∃α ∈
CL(α0). By induction hypothesis, v̂k−1 ∧ 〈π1〉∃〈π∗

1 〉∃α is consistent and therefore
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from (A9) v̂k−1 ∧〈π∗
1 〉∃α is consistent. Continuing in this manner we get û ∧〈π∗

1 〉∃α
is consistent.

�
LEMMA 1.6. For all t ∈ P(V), for all X ⊆ W and for all u ∈ W the following holds:

1. if (u, X) ∈ R2t then û ∧ 〈t〉2 X̃ is consistent.
2. if û ∧ 〈t〉2 X̃ is consistent then there exists X ′ ⊆ X such that (u, X ′) ∈ R2t .

Proof. The proof is by induction of the structure of the atomic tree t .
Let t = (x).

Suppose (u, X) ∈ R2t then from semantics we have X = {w | u ; w}. This implies
that for all w ∈ X , ŵ ∧ X̃ is consistent. From Lemma 1.1 we get û ∧ 2X̃ is consistent.
From axiom (A5) case (C3) we get û ∧ 〈t〉2 X̃ is consistent.

Suppose û ∧ 〈t〉2 X̃ is consistent then by axiom (A5) case (C3) we have û ∧ 2X̃ is
consistent. By Lemma 1.1 we get for all w such that u ; w, ŵ ∧ X̃ is consistent. Let
X ′ = {w | u ; w}, it is easy to see that X ′ ⊆ X and thus from the semantics we get
(u, X ′) ∈ R2t .
Let t = (x, a1, ta1) + . . . + (x, ak, tak ).

Suppose (u, X) ∈ R2t . From semantics we have ∀wl ∈ I(u), ∀a j ∈ A, ∀v ∈ (wl , a j )→
there exists X v

l, j such that (v, X v
l, j ) ∈ R2ta j

. This implies that for all wl ∈ I(u) and for all

a j ∈ A, ŵl ∧ 〈a j 〉� is consistent and therefore û ∧ 2〈a j 〉� is consistent. By applying
induction hypothesis and due to the fact that � X̃ v

j,l ⊃ X̃ we get that v̂ ∧ 〈ta j 〉2 X̃ is
consistent for all wl ∈ I(u), for all a j ∈ A and for all v ∈ (wl , a j )→. Thus from Lemma
1.1 and axiom (A5) case (C6) we can deduce that û ∧ 〈t〉2 X̃ is consistent.

Suppose û ∧ 〈t〉2 X̃ is consistent. From axiom (A5) case (C6) we get that for all wl ∈
I(u), for all a j ∈ A, ŵl ∧ 〈a j 〉� is consistent. This implies that (wl , a j )→ �= ∅. From
axiom (A5) case (C6) we also have that û ∧ 2[a j ]〈ta j 〉2 X̃ is consistent for all a j ∈ A
and therefore for all wl ∈ I(u), for all a j ∈ A, for all v ∈ (wl , a j )→, v̂ ∧ 〈ta j 〉2 X̃ is
consistent. By induction hypothesis, there exists X v

l, j ⊆ X such that (v, X v
l, j ) ∈ R2ta j

. Let

X ′ = ⋃
l=1,...,m

⋃
j=1,...,k

⋃
v∈(wl ,a j )→

X v
l, j , by definition of R2t we have (u, X ′) ∈ R2t .�

LEMMA 1.7. For all π ∈ �, for all X ⊆ W and u ∈ W , if û ∧ 〈π〉2 X̃ is consistent then
there exists X ′ ⊆ X such that (u, X ′) ∈ R2π .

Proof. By induction on the structure of π .

• π = t ∈ P(V): Suppose û ∧〈t〉2 X̃ is consistent. From Lemma 1.6 item 2, it follows
that there exists X ′ ⊆ X such that (u, X ′) ∈ R2π .

• π = π1 ∪ π2: By axiom (A7) we get û ∧ 〈π1〉2 X̃ is consistent or û ∧ 〈π2〉2 X̃ is
consistent. By induction hypothesis there exists X1 ⊆ X such that (u, X1) ∈ R2π1

or
there exists X2 ⊆ X such that (u, X2) ∈ R2π2

. Hence we have (u, X1) ∈ R2π1∪π2
or

(u, X2) ∈ R2π1∪π2
.

• π = π1; π2: By axiom (A8), û∧〈π1〉2〈π2〉2 X̃ is consistent. Hence û∧〈π1〉2(
∨

(ŵ∧
〈π2〉2 X̃)) is consistent, where the join is taken over all w ∈ Y = {w | w ∧
〈π2〉2 X̃ is consistent}. So û ∧ 〈π1〉2Ỹ is consistent. By induction hypothesis, there
exists Y ′ ⊆ Y such that (u, Y ′) ∈ R2π1

. We also have that for all w ∈ Y , ŵ ∧ 〈π2〉2 X̃
is consistent. Therefore we get for all w j ∈ Y ′ = {w1, . . . , wk}, ŵ j ∧ 〈π2〉2 X̃ is
consistent. By induction hypothesis, there exists X j ⊆ X such that (w j , X j ) ∈ R2π2

.
Let X ′ = ⋃

j=1,...,k Xk ⊆ X , we get (u, X ′) ∈ R2π1;π2
.
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• π = π∗
1 : Let Z be the least set containing X and closed under the condition: for

all w, if ŵ ∧ 〈π1〉2 Z̃ is consistent, then w ∈ Z . By definition of Z and induction
hypothesis, we get for all w ∈ Z , there exists Xw ⊆ X such that (w, Xw) ∈ R2

π∗
1
. It

is also easy to see that � X̃ ⊃ Z̃ . Using standard techniques, it is also easy to show
that � 〈π1〉2 Z̃ ⊃ Z̃ .
Applying the induction rule (IND2), we have � 〈π∗

1 〉2 Z̃ ⊃ Z̃ . By assumption, û ∧
〈π∗

1 〉2 X̃ is consistent. So û ∧ 〈π∗
1 〉2 Z̃ is consistent. Hence û ∧ Z̃ is consistent and

therefore u ∈ Z . Thus we have (u, X ′) ∈ R2
π∗

1
for some X ′ ⊆ X .

�

LEMMA 1.8. For all 〈π〉2α ∈ CL(α0), for all u ∈ W , û ∧ 〈π〉2α is consistent iff there
exists (u, X) ∈ R2π such that ∀w ∈ X, α ∈ w.

Proof. (⇒) Follows from Lemma 1.7 (consider the set Xα = {w ∈ W | α ∈ w}).
(⇐) Suppose ∃(u, X) ∈ R2π such that ∀w ∈ X , α ∈ w. We need to show that û ∧ 〈π〉2α
is consistent, this is done by induction on the structure of π .

• The case when π = t ∈ P(V) follows from Lemma 1.6. For π = π1 ∪ π2 the result
follows from axiom (A7).

• π = π1; π2: Since (u, X) ∈ R2π1;π2
, there exists Y = {v1, . . . , vk}, there exists sets

X1, . . . , Xk ⊆ X such that
⋃

j=1,...,k X j = X , for all j : 1 ≤ j ≤ k, (v j , X j ) ∈ Rπ2

and (u, Y ) ∈ R2π1
. By induction hypothesis, for all j , v̂ j ∧ 〈π2〉2α is consistent.

Since v j is an atom and 〈π2〉2α ∈ CL(α0), we get 〈π2〉2α ∈ v j . Again by induction
hypothesis we have û ∧ 〈π1〉2〈π2〉2α is consistent. Hence from (A8) we have û ∧
〈π1; π2〉2α is consistent.

• π = π∗
1 : If u ∈ X then � û ⊃ X̃ . We have � X̃ ⊃ α and hence we get û ∧ α is

consistent. From axiom (A9) we have û ∧ 〈π∗
1 〉2α is consistent.

Else we have (u, X) ∈ R2
π1;π∗

1
. Let Z0 = X and Zn+1 = Zn ∪ {w | (w, Z ′) ∈

R2π1
, Z ′ ⊆ Zn}. Take the least m such that u ∈ Zm . We have for all w ∈ Zm−1,

� ŵ ⊃ 〈π∗
1 〉2 X̃ ′ for some X ′ ⊆ X . We also have (u, Z ′

m) ∈ R2π1
for some Z ′

m =
{v1, . . . , vk} ⊆ Zm . Let X1, . . . , Xk ⊆ X such that ∀ j : 1 ≤ j ≤ k, we have
(v j , X j ) ∈ R2

π∗
1

and X ′ = ⋃
j=1,...,k X j . By an argument similar to the previous case

we can show that û ∧ 〈π1〉2〈π∗
1 〉2 X̃ ′ is consistent. Hence we get û ∧ 〈π1; π∗

1 〉2α is
consistent. Therefore from axiom (A9) we have û ∧ 〈π∗

1 〉2α is consistent.

�
A routine induction gives us the following lemma from which Theorem 4.13 follows

using the usual argument.

LEMMA 1.9. For all β ∈ CL(α0), for all u ∈ W , M, u |� β iff β ∈ u.

B Proposition 6.3. For technical convenience we assume that the uncertainty relation
; is reflexive. We can also extend the definition of the relation RQπ in the standard manner,
where R∃

π would represent a subjective path in the structure (G, u) |\ t . In particular, for an
“epsilon free” expression π , this would coincide with a deterministic (objective) path in
(G, u) |\ t . Consider the subclass of protocol trees P2ε (V) ⊆ Pε(V) satisfying the following
conditions: t ∈ P2ε (V) iff
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• For all maximal paths ρ : s1z1 . . . zk−1sk ∈ Paths(Tt ) we have

— z1 = zk−1 = ε.
— for all j : 1 ≤ j < k − 1, z j+1 ∈ � if z j = ε and z j+1 = ε if z j ∈ �. That is,

the labels on the path strictly alternate between ε and an action symbol in �.

• for all s ∈ St , if ε ∈ A(s) then A(s) = {ε}. That is, the ε edge is never combined
with � in the branching structure.

We show that if the uncertainty relation is allowed to be specified in the protocol tree
then the modalities 〈π〉2 and 〈π〉3 can be eliminated. Formally, let L′

E P L be the fragment
of the language LE P L (defined in Section §4) which does not include formulas of the form
〈π〉2α and 〈π〉3α. We can show the following translation result.

PROPOSITION 2.1. For all α ∈ LE P L , there exists α′ ∈ L′
E P L such that M, u |� α

iff M, u |� α′.

Proof. We present a proof sketch here. The idea is to translate the constructs 〈π〉2 and
〈π〉3 into 〈π ′〉∀ and 〈π ′〉∃, respectively, where π ′ is a composite tree expression over the
expanded set P2ε (V).

The interesting case is when π is atomic, that is, π = t ∈ P(V). We define a translation
function [[·]] : P(V) → P2ε (V) inductively as follows:

• if t = (x), [[t]] = (y1, ε, (x, ε, y2)). In other words, the single node tree is expanded
to a path which is prefixed and suffixed with an ε edge.

• if t = (x, a1, ta1) + . . . + (x, ak, tak ) we define [[t]] = (y, ε, tx ) where tx =
(x, a1, [[ta1 ]]) + . . . + (x, ak, [[tak ]]).

The translation function [[·]] can be extended to the compositional operators as well as
to formulas in the obvious manner where we have,

• [[〈π〉2α]] = 〈[[π ]]〉∀[[α]].
• [[〈π〉3α]] = 〈[[π ]]〉∃[[α]].

It is then an easy inductive argument to show that the translation preserves the satisfac-
tion relation. In other words, M, u |� α iff M, u |� [[α]].
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Théorique et Applications, 21(2), 99–135.

�
TILBURG INSTITUTE FOR LOGIC AND PHILOSOPHY OF SCIENCE

TILBURG UNIVERSITY
TILBURG, 5000LE, THE NETHERLANDS

E-mail: e.j.pacuit@uvt.nl

CENTRUM FOR WISKUNDE & INFORMATICA
SCIENCE PARK 123

AMSTERDAM, 1098XG, THE NETHERLANDS
E-mail: s.e.simon@cwi.nl


