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Abstract A recurring issue in any formal model representing agents’ (changing)
informational attitudes is how to account for the fact that the agents are limited in
their access to the available inference steps, possible observations and available mes-
sages. This may be because the agents are not logically omniscient and so do not
have unlimited reasoning ability. But it can also be because the agents are following a
predefined protocol that explicitly limits statements available for observation and/or
communication. Within the broad literature on epistemic logic, there are a variety
of accounts that make precise a notion of an agent’s “limited access” (for example,
Awareness Logics, Justification Logics, and Inference Logics). This paper interprets
the agents’ access set of formulas as a constraint on the agents’ information gathering
process limiting which formulas can be observed.

Keywords Dynamic epistemic logic · Logics of awareness ·
Epistemic temporal logic

1 Introduction and motivation

Reasoning about rational agents interacting over time is a central topic in many areas of
philosophy, computer science and economics. An important challenge for the logician
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is to account for the many dynamic processes that govern the agents’ interaction over
time. Inference, observation and communication are all examples of such processes
that are the focus of current logics of informational update and belief revision (see
for example, van Benthem 1996; van Ditmarsch et al. 2007; Parikh and Ramanujam
2003).1 A recurring issue in any formal model representing agents’ (changing) infor-
mational attitudes is how to account for the fact that the agents are limited in their
access to the available inference steps, possible observations and available messages.
This may be because the agents are not logically omniscient and so do not have unlim-
ited reasoning ability. But it can also be because the agents are following a predefined
protocol that explicitly limits statements available for observation and/or communi-
cation.

Within the broad literature on epistemic logic, there are a variety of accounts that
make precise a notion of an agent’s “limited access”. An early approach of Fagin
and Halpern (1988)2 extends standard epistemic logic with an awareness operator Aϕ
intended to mean “the agent is aware of the sentence ϕ”. More recently, work building
on Artemov’s Logic of Proofs (Artemov 2001) labels epistemic modal operators with
proof terms that explicitly keep track of the agent’s “justification” for (the truth of)
a formula (see Fitting 2005; Artemov and Nogina 2005; Renne 2008, and references
therein). Other logics focus on explicitly modeling inferential steps that individual
agents can make while interacting with other agents and the environment (see for
example, Eberle 1974; Ågotnes and Alechina 2007; van Benthem 2008; Velazquez-
Quesada 2009). Finally, van Benthem et al. (2009) develop logics for reasoning about
situations where the facts that agents can observe are limited by a predefined protocol
(cf. Parikh and Ramanujam 2003). Although the logical frameworks referenced above
do differ in both “implementation details” and some underlying intuitions, there is a
common thought that represents “what an agent currently has access to” as a set of
formulas. We call this set of formulas the agent’s access set.

There are two interpretations of this access set that can be found in the literature.
The first views the access set as the (current) outcome of some information gathering
process. That is, agents only have direct access to formulas that they have explicitly
added to the access set (typically as a result of a logical inference step or observation,
but other—trusted—agents may contribute to the access set through communication).
This is the interpretation of the access sets found in the awareness logics (Halpern and
Rego 2005), justification logics (Artemov and Nogina 2005; Fitting 2005), inference
logics (Ågotnes and Alechina 2007; van Benthem 2008; Velazquez-Quesada 2009)
and other epistemic logics with “explicit” knowledge operators. The second interpre-
tation, found in van Benthem et al. (2009), uses the access set to constrain the current
information gathering process. That is, the access set consists of the sentences that an
agent can3 observe or infer.

1 Of course, one may argue that (logical) inference is the central topic of any logic. What we have in mind
here is reasoning about agents that make inferences.
2 See also (Halpern and Rego 2005; Halpern 2001) for a recent discussion and references to relevant
literature on the notion of awareness in game theory.
3 We may also say “is permitted to” or “has the ability to” (cf. Balbiani et al. forthcoming).
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Formally, the access set is a new parameter that is added to standard epistemic
models.4 This suggests a number of technical and conceptual questions (especially in
social situations involving many agents):

1. How should we extend the basic modal language to reason about epistemic models
with access sets? Of course, the answer here depends on the intended interpretation
of the access sets and the type of properties that need to be expressed. To give just
two examples: Halpern and Rego (2009) use a propositional modal language with
quantifiers over propositions and Artemov and others use a modal language with
labeled modalities where each label refers to a different access set (cf. Artemov
and Nogina 2005; Fitting 2005).

2. What do the agents “know” about the other agents’ access sets? Again concrete
answers to this question depend on the intended interpretation of the access sets.
For example, if the access set represents the set of formulas an agent is “aware
of”, then certainly an agent cannot know that another agent is aware of a specific
formula ϕ without that agent being aware of ϕ. On the other hand, when access
sets are “generated” by some underlying protocol or social convention it is natural
to study situations where that underlying protocol may or may not be commonly
known among the agents.

3. What dynamic operations change the access sets over time? A common assump-
tion in the literature is that formulas are added to the access sets as a result of some
logical inference (cf. Ågotnes and Alechina 2007). However, access sets may also
change as a result of observation and/or communication. There is now an extensive
literature on so-called dynamic epistemic logics describing different “epistemic
actions” changing the agents’ (implicit) information (both van Ditmarsch et al.
(2007), and van Benthem (2010), are recent textbook presentations of this litera-
ture). Building on this literature, van Benthem (2008) studies logics with epistemic
actions such as “becoming informed that…” or “seeing that…” which change the
access sets (Velazquez-Quesada 2009; van Ditmarsch and French 2010; Hill 2010).

Much of the epistemic logic literature incorporating some version of an access
set has focused on the first interpretation where access sets represent the agents’ cur-
rent stock of “available formulas”. And so, each of the above questions have been
addressed with this interpretation in mind. In this paper, we focus on the second
interpretation where the access sets constrain the agents’ social interactions and infor-
mation gathering processes due to some underlying protocol or social convention.
This continues a line of research initiated in (van Benthem et al. 2009, Sect. 4). There
a constrained public announcement logic, where the formulas that can be observed
(or announced) are restricted by some predefined protocol, is axiomatized.

We have two main goals in this paper. The first is to investigate the above questions
(especially questions 1 and 2) in contexts where the agents’ access sets are given by
some underlying protocol. As mentioned above, this leads to interesting new tech-
nical results building on the work in van Benthem et al. (2009). Our main technical

4 Typically, a set of formulas is assigned to each agent at each state in an epistemic model. There is often
additional structure placed on these sets (cf. Halpern 2001 and Fitting 2005). Such technical details are not
important for the discussion in this section, though they will play a role in Sect. 3.5.
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contribution is an axiomatization where semi-private announcements are constrained
by a predefined protocol (Sect. 3.3). Our second goal is to formally relate the log-
ical framework that we investigate in this paper with similar frameworks found in
the literature. In some cases, this leads to technical results showing our models are
specific cases of more general “temporal dynamic epistemic models” as discussed in
van Benthem et al. (2009); Hoshi (2009). We discuss this in Sect. 3.2. Comparisons
with frameworks where the access sets are interpreted as outcomes of some informa-
tion gathering processes (e.g., Awareness Logics and Justifications Logics) are not as
direct. Nonetheless, Sect. 4 points to a number of conceptual issues suggested by our
logical framework.

2 Background

Many logical systems today describe some form of “information dynamics”. However,
two main approaches can be singled out. The first is exemplified by epistemic tempo-
ral logic (ETL, Fagin et al. 1995; Parikh and Ramanujam 2003) which uses linear or
branching time models with added epistemic structure induced by the agents’ different
capabilities for observing events. These models provide a “grand stage” where histo-
ries (i.e., sequences of events) of some social situation are constrained by a protocol.
Here a protocol is intended to represent the rules or conventions that govern many
of our social interactions. Imposing such rules restricts the legitimate sequences of
possible events (e.g., messages or observations). The other approach is exemplified by
dynamic epistemic logic (DEL, Gerbrandy 1999; Baltag et al. 1998; van Ditmarsch
et al. 2007) which describes social interactions in terms of epistemic event models
(which may occur inside modalities of the language). Similar to the way epistemic
models are used to capture the (hard) information the agents’ have about a fixed social
situation, an event model describes the agents’ information about which actual event
is currently taking place. The temporal evolution of the situation is then computed
from some initial epistemic model through a process of successive “product updates”.
Consult van Benthem et al. (2009); Kooi and Pacuit (2010) for an extensive discussion
of these two perspectives on rational interaction.

We assume the reader is familiar with standard epistemic logic and the various
dynamic versions mentioned above. Indeed, there are now a number of textbooks and
survey papers that have thorough introductions to these topics (see for example, Fagin
et al. 1995; van Ditmarsch et al. 2007; van Benthem 2010; Pacuit forthcoming; and
references therein). In this Section, we discuss some key definitions used in this paper.
We start with the familiar definition of an epistemic model:

Definition 1 Let At be a set of atomic propositions. An epistemic model is a tuple
〈W, {Ri }i∈A, V 〉 where W is a nonempty set (whose elements are called worlds or
states), for each i ∈ A, Ri ⊆ W × W is a relation5 and V is a valuation function
(V : At → 2W ).

5 Typically, it is assumed that these relations are equivalence relations, but this is not necessary.
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An ETL model is a special case of an epistemic model where the states
are sequences of primitive events. That is, given a finite nonempty set � (whose
elements are called events), an ETL model (based on �) is a tuple 〈H, {Ri }i∈A, V 〉
where {Ri }i∈A and V are as in the above definition and H ⊆ �∗ is closed under
non-empty prefixes. Elements of H are called histories and are intended to represent
a possible way that a social situation may unfold. So, ETL models are forests (in gen-
eral, there need not be a unique initial state) with relations for each agent on the set
of histories (for this reason we often refer to ETL models as ETL forests). Different
modal languages describe ETL models (see for example, Hodkinson and Reynolds
2006; Fagin et al. 1995), with ‘branching’ or ‘linear’ variants. As an example, the
language LET L contains both knowledge and “event” modalities:

p | ¬ϕ | ϕ ∧ ψ | Kiϕ | 〈e〉ϕ

where i ∈ A, e ∈ � and p ∈ At (the set of atomic propositions). The boolean con-
nectives (∨,→,↔) and the dual modal operators (Li , [e]) are defined as usual. The
intended interpretation of ‘〈e〉ϕ’ is “after event e (does) take place, ϕ is true”. Formulas
are interpreted at histories: let H = 〈H, {Ri }i∈A, V 〉 be an ETL model, ϕ ∈ LET L and
h ∈ H, define H, h |� ϕ inductively as follows (we only give the modal definitions as
the boolean connectives and atomic propositions are as usual),

1. H, h |� Kiϕ iff for each h′ ∈ H, if h Ri h′ then H, h′ |� ϕ

2. H, h |� 〈e〉ϕ iff he ∈ H and H, he |� ϕ

The epistemic language, denoted LE L , is the sublanguage of LET L without the
event modalities. Natural extensions of LET L include group operators (e.g., common
or distributed knowledge) and more expressive temporal operators (e.g., arbitrary
future or past modalities).

A key observation from van Benthem et al. (2009) is that we can generate ETL
models from an initial epistemic model using the machinery of DEL. This opens the
door to rigorously comparing and merging the two main logical accounts of the dynam-
ics of information in social interactive situations. Formally, a DEL protocol is a tree
of event models (representing the complex informative events that are available at
each moment). Given an epistemic model M = 〈W, {Ri }i∈A, V 〉 and a DEL protocol
P,Forest(M,P) is the ETL model representing all possible evolutions of the system
obtained by updating M with sequences from P. We do not include the details of
this general construction here (see van Benthem et al. 2009, Definitions 8 and 10).
Instead we briefly discuss constrained public announcement logic which reexamines
public announcement logic (PAL, Gerbrandy 1999; Plaza 1989) in situations where
the availability of formulas for observation is constrained by a predefined protocol.

A public announcement is an event where some (epistemic) formula ϕ is made
publicly available. That is, it is completely open and all agents not only observe the
event but also observe everyone else observing the event, and so on ad infinitum. Fur-
thermore, all agents treat the source as infallible. Thus the effect of such an event on
an epistemic model should be clear: remove all states that do not satisfy ϕ. Formally,

Definition 2 Suppose M = 〈W, {Ri }i∈A, V 〉 is an epistemic model and ϕ is a
(epistemic) formula. The model updated by the public announcement of ϕ is the
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structure Mϕ = 〈Wϕ, {Rϕi }i∈A, , V ϕ〉 where Wϕ = {w ∈ W | M, w |� ϕ}, for each
i ∈ A, Rϕi = Ri ∩ Wϕ×Wϕ , and for all atomic proposition p, V ϕ(p) = V (p)∩Wϕ .

The language of PAL extends LE L with dynamic modal operators, 〈ϕ〉ψ , meaning
“after ϕ is publicly announced, ψ is true”. These modal operators are interpreted on
epistemic models as follows:

M, w |� 〈ϕ〉ψ iff M, w |� ϕ and Mϕ,w |� ψ.

A PAL protocol is a tree of (epistemic) formulas. Given an epistemic model M
and PAL protocol P, an ETL model Forest(M,P) can be generated by performing
public announcements of formulas permitted by P. 6 More concretely, a sequence of
epistemic formulas σ = ϕ1 · · ·ϕn with an initial epistemic model generates a sequence
of epistemic models

M,Mϕ1 , (Mϕ1)ϕ2 , . . . , (((Mϕ1)ϕ2)···)ϕn

This can be turned into an ETL model with histories of the form wϕ1ϕ2 · · ·ϕ j where
w is a state in M and M, w |� ∧

1≤i≤ j ϕi . Then Forest(M,P) consists of all such
histories consistent with P.

In this new setting the PAL formula 〈ϕ〉� not only expresses that the current model
is updated by the public announcement of ϕ but also that ϕ is permitted according to
the predefined PAL protocol. Taking into account this new interpretation of the PAL
language, van Benthem et al. (2009) give a sound and complete axiomatization of the
class of all ETL models generated by some epistemic model and PAL protocol. 7

A public announcement is one specific type of event model, what about clas-
ses of ETL models generated by other types of event models? That is, given a
set of DEL protocols X, can we axiomatize the class F(X) = {Forest(M,P) |
M an epistemic model and P ∈ X}? Three parameters are crucial for such a logical
analysis:

1. The type of epistemic events in the protocol(s). Examples range from public
announcements (Definition 2) where everyone witnesses the same event to private
communications between a group of agents with the other agents not even being
aware of the event.

2. Structural properties of the protocol(s). Examples range from restricting trees to
a fixed length to “fairness properties” such as if the agent can observe ϕ, then the
agent can observe ¬ϕ.

3. Expressivity of the formal language used to describe these DEL generated ETL
models.

6 Actually the most general situation is where there are different PAL protocols at each state. We return to
this issue in Sect. 3.3.
7 Note that the usual method for proving completeness via reduction axioms will not work here. In par-
ticular, since ϕ being true does not necessarily imply that ϕ can be announced and so the PAL validity
ϕ ↔ 〈ϕ〉� is not valid (of course, 〈ϕ〉� → ϕ is valid since we are working with true announcements).
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There is a growing literature providing logical analyses along these lines although
the general situation is not yet fully understood. It is beyond the scope of this paper
to provide a complete survey of this literature: see van Benthem et al. (2009) for a
discussion. This paper contributes to this literature in two ways. First, we axiomatize
F(X) where X is the class of semi-private announcements satisfying various struc-
tural properties. Second, we suggest that the formal language used to describe ETL
models of the from Forest(M,P) should contain three different types of operators:
(1) operators describing the agents’ informational attitudes (knowledge, beliefs, group
notions), (2) temporal and/or dynamic operators and (3) operators that can describe
the protocol.

3 Protocols of semi-private announcements

We assume that at each moment different pieces of information are made publicly
available. However, as opposed to public announcements where all agents have access
to this information, we assume that different agents have access to different pieces of
information. Thus we are interested in ETL models generated by protocols consisting
of the following type of event model:

where A is the (finite) set of agents, ϕ is a formula (in the language defined below) and

ϕ is the “negation” of ϕ (i.e., ϕ = ψ if ϕ = ¬ψ and ϕ = ¬ϕ otherwise). This event
model represents situations where (the truth of) ϕ is made available only to the agents
A − G. Of course, the event itself is public so which agents actually have access to
which pieces of information is commonly known (i.e., the agents in G know that the
agents in A − G know whether ϕ is true).

The logical framework discussed in the previous section based on van Benthem
et al. (2009) is very general focusing on ETL models generated by arbitrary event
models. Note that when working with a specific type of event model (e.g., public
announcement or semi-private announcement), many of the definitions can be sim-
plified (cf. the constrained public announcement logic from Sect. 4 of van Benthem
et al. 2009). These simplified versions also facilitate a more direct comparison with
various awareness logics discussed in Sect. 1. The precise relationship with the more
general framework of van Benthem et al. (2009) is given in Sect. 3.2.

3.1 A dynamic logic of knowledge and access

The Language. The language of the Dynamic Logic of Knowledge and Access
(DKA) includes standard epistemic and dynamic modalities plus operators intended
to describe each agent’s access set, or protocol (i.e., which formulas the agent has
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access to). Fix a finite set A of agents and a (countable) set of atomic propositions At.
The language LDK A is defined inductively:

ϕ ::= � | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | 〈ϕ〉ϕ | Aiϕ

where p ∈ At and i ∈ A. The dual operators, Li and [ϕ], and other boolean operators
are defined as usual. The epistemic fragment of LDK A without the ‘〈ϕ〉’ and ‘Ai ’ oper-
ators is denoted LE L . The intended meaning of the modal operators is summarized
below:

− Kiϕ is intended to mean “according to i’s current informationϕ is true” (following
the standard convention we may also say “agent i knows that ϕ”).

− 〈ϕ〉ψ is intended to mean “after ϕ is made publicly available, ψ is true” (we may
also say “after ϕ is announced ψ is true”, but this should not be confused with the
public announcement of ϕ discussed in the previous section.

− Aiϕ is “agent i has access to ϕ” (alternatively we may say “agent i can observe
ϕ” or “agent i has the ability to observe ϕ”).

For later use, we define the complexity c(ϕ) of a formula ϕ:

Definition 3 The complexity ofϕ, denoted c(ϕ) is defined as follows: c(p) = 0 where
p ∈ At, c(α∧β) = c(α)+c(β)+1, c(¬α) = 1+c(α), c(Kiα) = 1+c(α), c(Aiα) =
1 + c(α) and c(〈α〉β) = c(α)+ c(β)+ 1.

The Semantics. Our models extend epistemic models with a description of what the
agents can observe. Note that “being able to observe ϕ” is an event type which we
take to mean that in situations where ϕ is true, the agent observes that ϕ and when ϕ is
false the agent observes that ¬ϕ. This explains the closure condition in the following
definition:

Definition 4 A protocol is a function p : A × N → ℘(LDK A) such that, for every
n ∈ N, i ∈ A, and ϕ ∈ LDK A, ϕ ∈ p(i, n) iff ϕ ∈ p(i, n). We denote the set of
protocols by Ptcl. For brevity, we write pn

i for p(i, n) where p ∈ Ptcl, i ∈ A, and
n ∈ N.

Using the terminology from Sect. 1, a protocol describes for each agent and each
moment which formulas that agent can access. So, in this setting, the agents’ access
sets consist of sequences of formulas representing which observations are available
now and in the future (and in what order). The closure condition states that agents have
access to a formula iff they have access to its “negation”. Of course, this is only one
of many different properties that may be assumed about the protocol. For example, it
may be natural to assume that if an agent has access to both ϕ and ψ then the agent
must also have access to ϕ ∧ψ . Using the access modality Ai such properties will be
expressible in our language. This will be discussed in more detail in Sect. 3.5.

Definition 5 An epistemic model with a protocol is a quadruple 〈W, {Ri }i∈A, V,p〉,
where 〈W, {Ri }i∈A, V 〉 is an epistemic model (Definition 1) and p is a protocol
(Definition 4).
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We are restricting attention to one type of dynamic epistemic action: “making ϕ
publicly available where only some of the agents have access to (the observation of)
ϕ”. Here “having access to ϕ” means that the agent can incorporate the observation
of ϕ into the agent’s current information. Formally, “making ϕ publicly available”
amounts to performing a product update (Baltag et al. 1998) with the semi-private
announcement of ϕ using the event model given above (where G is the set of agents
who do not have ϕ in their protocol). In this simplified setting, we can define this
update as a restriction on the agents’ current accessibility relations. Intuitively, if an
agent incorporates the observation of ϕ, she should consider possible only states where
ϕ is true. But in order to do this, the agent must have access to both ϕ and ϕ (this also
explains the closure condition placed on protocols in Definition 4). So, the accessibil-
ity relation does not change for agents without access to ϕ. For agents with access to
ϕ, all connections between ϕ and ¬ϕ worlds are dropped.

Definition 6 Let P = 〈W, {Ri }i∈A, V,p〉 be an epistemic model with a protocol. The
truth of a formula ϕ in LDK A is defined as follows:

P, w |� p iff w ∈ V (p) (with p ∈ P)
P, w |� ¬ϕ iff P, w �|� ϕ

P, w |� ϕ ∧ ψ iff P, w |� ϕ and P, w |� ψ

P, w |� Kiϕ iff ∀v ∈ W : if wRiv then P, v |� ϕ

P, w |� 〈ϕ〉ψ iff P, w |� ϕ and P ⊗ ϕ,w |� ψ

P, w |� Aiϕ iff ϕ ∈ p(i, 0)

where P ⊗ ϕ = 〈W ′, {R′}i∈A, V ′,p′〉 is defined by:

W ′ := W

R′
i :=

{
Ri if ϕ �∈ p(i, 0)
{(w, v) ∈ Ri | P, w |� ϕ iff P, v |� ϕ} if ϕ ∈ p(i, 0)

V ′(p) := V (p)
p′(i, n) := p(i, n + 1)

3.2 Comparison with other systems

We stress that there is nothing new in the definition of the above epistemic action.
Indeed, it is a simple exercise to check that for any epistemic model M and formula
ϕ,M⊗ϕ is isomorphic to the model resulting from the product update of M and the
event model:
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where G = {i | ϕ �∈ p0
i }. In this section, we are more precise about the relationship

between our framework and the logical systems discussed in Sect. 2.
It is easy to see that our framework generalizes public announcement logic (PAL).

Let LP AL be the set of PAL-formulas. Also let PP AL = 〈W, {Ri }i∈A, V,p〉 be a
model where for each i ∈ A and n ∈ N,p(i, n) = LP AL . It is a simple exercise to
check that for each ϕ ∈ LP AL :

PP AL , w |� ϕ in DKA iff 〈W, {Ri }i∈A, V 〉, w |� ϕ in PAL.

So, in a PAL model, agents always have access to all formulas. Given this it should not
be surprising that there are PAL validities that are falsifiable over the class of epistemic
models with protocols:

Observation 1 The following are falsifiable:

1. 〈α〉〈β〉ϕ → 〈〈α〉β〉ϕ
2. [p]Ki p where p ∈ At
3. 〈θ〉Kiϕ ↔ 〈θ〉� ∧ Ki (θ → 〈θ〉ϕ)
Proof The first two formulas illustrate the role that the protocols play in our frame-
work.

1. Formula 1 can be falsified by putting α = β := p and ϕ := Ki p. Let P =
〈W, {Ri }i∈A, V,p〉be a model whereP, w |� p∧¬Ki p for somew. If p ∈ p(i, 1)
and p ∈ p(i, 2), but 〈p〉p �∈ p(i, 1), we have P, w |� 〈p〉〈p〉Ki p ∧¬〈〈p〉p〉Ki p.

2. Formula 2 can be falsified at any state w in P = 〈W, {Ri }i∈A, V,p〉 where
P, w |� p ∧ ¬Ki p and p �∈ p(i, 0).

3. Formula 3 is a critical formula for the reduction analysis in PAL, which can be
falsified by putting θ = ϕ := p. Consider a model P = 〈W, {Ri }i∈A, V,p〉 and
state w where P, w |� p ∧ ¬Ki p but p �∈ p(i, 0). Then the left-hand-side of the
bi-conditional is false while the right-hand-side is true.

��
However, there is an embedding from the language of PAL to LDK A that preserves

validity: let sub(ϕ) be the set of subformulas of ϕ,

Proposition 1 For every formula ϕ of PAL,

ϕ is valid in PAL iff

⎛

⎝
∧

i∈A

∧

ψ∈sub(ϕ)

Aiψ

⎞

⎠ → ϕ is valid in DKA

The simple but instructive proof is left to the reader (but the intuition is clear: the
dynamic operation “make ϕ public” from Definition 6 behaves like a public announce-
ment of ϕ provided all agents have access to all subformulas of ϕ).

We conclude this section with a precise comparison with temporal dynamic episte-
mic logic as discussed in Sect. 2 (cf. also Hoshi 2009; Hoshi and Yap 2009). In DKA,
when ϕ is made publicly available, the agents may or may not obtain the information
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that ϕ, depending on whether they have access to ϕ. As discussed above, this situation
can be modeled by an event model that consists of two events, whose preconditions
are ϕ and ¬ϕ, respectively. Only agents who have access to ϕ (and ¬ϕ) can distinguish
these two events. We give a formal translation below.

Let p be a protocol and ϕ a formula in LDK A. Define an event model8 E(ϕ,p, n) =
〈E, {→i }i∈A,pre〉 as follows:

1. E = {1, 2}
2. →i=

{ {(1, 1), (1, 2), (2, 1), (2, 2)} if ϕ ∈ p(i, n)
{(1, 1), (2, 2)} if ϕ �∈ p(i, n).

3. pre(1) = ϕ,pre(2) = ¬ϕ
Given a protocol model P = 〈W, {Ri }i∈A, V,p〉, we define a DEL generated ETL
model tr(P) = Forest(MP ,pP ) as follows:

1. MP = 〈W, {Ri }i∈A, V 〉 and
2. pP is a state-dependent protocol9 on MP such that, for every w ∈ W,pP (w)

consists of all sequences of the form σ = σ0 · · · σn where σk(0 ≤ k ≤ n) is of the
form 〈E(ϕ,p, k), e〉 with e in E(ϕ,p, k).

Let L−
DK A be the fragment of LDK A without the operator Ai . We are now ready

to give a formal translation from our language to the language of temporal dynamic
epistemic logic. For each k ∈ N define trk as follows: trk(p) = p, trk commutes with
the boolean connectives and the Ki operators and

trk(〈ϕ〉ψ) = 〈E(trk(ϕ),p, k), 1〉trk+1(ψ)

Unpacking the above definitions gives us the following result: let |�ET L denote the
truth relation for ETL models (see Sect. 2),

Proposition 2 For any epistemic model with a protocol and formula ϕ ∈ LDK A,

P, w |� ϕ iff tr(P), w |�ET L tr0(ϕ).

3.3 Axiomatization

There are two main categories of axiom schemes. The first contains reduction axioms
describing the effect of “making a formula publicly available” on an epistemic model:

R1 〈θ〉p ↔ θ ∧ p where p ∈ At
R2 〈θ〉¬ϕ ↔ θ ∧ ¬〈θ〉ϕ
R3 〈θ〉(ϕ ∧ ψ) ↔ 〈θ〉ϕ ∧ 〈θ〉ψ

8 An event model is a tuple 〈E, {→i }i∈A, pre〉 where E is a set of primitive events, for each i ∈ A,→i
is a relation on E and pre : E → LE L . We assume the reader is familiar with this notion, the definition
of product update and the language of DEL (Baltag et al. 1998; van Ditmarsch et al. 2007; van Benthem
2010).
9 A state-dependent protocol on an epistemic model M assigns a possible different protocol to each state
in the model.
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R4 〈θ〉Kiϕ ↔ θ ∧ (Aiθ → Ki [θ ]ϕ) ∧ (¬Aiθ → Ki ([θ ]ϕ ∧ [θ ]ϕ))
Two key observations about these axiom schemes are in order. First of all, note

that 〈θ〉� ↔ θ is a consequence of R1. This means that any true formula can always
be made publicly available. Of course, whether agents have access to this formula
depends on their protocols. This distinguishes our framework from the one found
in Sect. 4 of van Benthem et al. (2009) where 〈θ〉� means both that θ is publicly
announced and θ can be observed according to the protocol. Here 〈θ〉� simply means
that θ is made publicly available. We use the Ai operator to express when agents have
access to specific formula (i.e., Aiϕ means that ϕ is in agent i’s current protocol).

Second, strictly speaking, R4 may not be properly called a reduction axiom since
the right-hand side of the biconditional increases the complexity (according to Def-
inition 3) of the formula inside the announcement modality. Nonetheless, following
the usual reduction axiom methodology, the right-hand side does describe what agents
know after θ is made publicly available in terms of the agent’s current information.
When θ is made publicly available, there are two array to consider. The first is when
agent i does have access to θ , so Aiθ is true. This case is covered by the second con-
junct. When an agent has access to θ , the links between θ -worlds and ¬θ -worlds are
removed after the announcement of θ . Thus, 〈θ〉Kiϕ is the same as Ki [θ ]ϕ following
typical reduction axiom reasoning. The third conjunct describes the situation in which
the agent does not have access to θ (so ¬Aiθ is true). In this case, the agent’s accessibil-
ity relation will not change, so any links between θ -worlds and ¬θ -worlds will not be
removed. Thus, agents will know the formulas that survive both an announcement of θ
and an announcement of θ̄ . This situation is described by the formula Ki ([θ ]ϕ∧[θ̄]ϕ).

To introduce the second category of axiom schemes, we need some notation. Let σ
be a (possibly empty) finite sequence of LDK A-formulas (we write this as σ ∈ L∗

DK A).
We denote the length of σ by len(σ ). Also, we denote by σn and σ(n) the n-th element
of σ and the initial segment of σ of the length n, respectively. When n is greater
than the length of σ , the former denotes the empty sequence λ. Finally, we write σ ,
〈σ 〉 and [σ ] for σ1 . . . σlen(σ ), 〈σ1〉 . . . 〈σlen(σ )〉 and [σ1] . . . [σlen(σ )], respectively. The
following axiom schemes describe our assumptions about the protocols:

P-neg Aiϕ ↔ Aiϕ

Ptcl1 Aiϕ ↔ K j Aiϕ

Ptcl2 ¬Aiϕ ↔ K j¬Aiϕ

Uni 〈σ 〉Aiϕ → [τ ]Aiϕ where σ, τ ∈ L∗
DK A and len(σ ) = len(τ )

The first axiom scheme encodes the closure condition on protocols that agents have
access to ϕ iff they have access to ϕ. The last three axiom schemes encode the
fact that protocols are “common knowledge”10 and uniform. Ptcl1 & Ptcl2 guarantee
that every agent knows the access sets, and by standard modal reasoning, all agents
know all agents know it,…, up to an arbitrary depth.11 Uni adds the additional con-
straint that the formulas an agent has access to do not depend on earlier observations.

10 Of course, since we do not have a common knowledge operator in our language it is only an informal
statement that the protocol is common knowledge.
11 This is also guaranteed for the future access sets as well as the current access set, as will be shown in
the proof of Lemma 2.
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That is, each agent’s access set is determined only by the temporal point and not
the history of previous observations. This assumption is built into our definition of a
protocol as a function assigning sets of formulas to agent-moment pairs.12

3.4 Completeness

Our main technical contribution is a sound and complete axiomatization of the class
of all epistemic models with protocols (cf. Definition 5) in the language LDK A. We
first gather the axioms from the previous section in one definition:

Definition 7 (Axiomatization) The logic DKA is the smallest set containing all
instances of the following axiom schemes:13

K1 Ki (ϕ → ψ) → (Kiϕ → Kiψ)

K2 [θ ](ϕ → ψ) → ([θ ]ϕ → [θ ]ψ)
R1 〈θ〉p ↔ θ ∧ p where p ∈ At
R2 〈θ〉¬ϕ ↔ θ ∧ ¬〈θ〉ϕ
R3 〈θ〉(ϕ ∧ ψ) ↔ 〈θ〉ϕ ∧ 〈θ〉ψ
R4 〈θ〉Kiϕ ↔ θ ∧ (Aiθ → Ki [θ ]ϕ) ∧ (¬Aiθ → Ki ([θ ]ϕ ∧ [θ]ϕ))
P-neg Aiϕ ↔ Aiϕ

Ptcl1 Aiϕ ↔ K j Aiϕ

Ptcl2 ¬Aiϕ ↔ K j¬Aiϕ

Uni 〈σ 〉Aiϕ → [τ ]Aiϕ where σ, τ ∈ L∗
DK A and len(σ ) = len(τ )

and is closed under necessitation for Ki and [θ ]. We write �DKA ϕ if ϕ ∈ DKA.

Our goal in this section is to prove the following result:

Theorem 1 DKA is sound and strongly complete with respect to the class of epistemic
models with protocols.

Soundness is a simple (and instructive) exercise. The proof of completeness is a
variant of the one found in Section 4 of van Benthem et al. (2009) which itself is a
variant of the standard Henkin construction (cf. Section 4.2, Blackburn et al. 2002).
We construct a canonical model from the set of DKA maximal consistent sets (MCS).
A key observation is that each MCS contains a description of a protocol:

Definition 8 Given a maximally consistent set �, we define the �-protocol p� as
follows:

p�(i, n) =
{ {ϕ | Aiϕ ∈ �} if n = 0

{ϕ | ∃ψ1 . . . ψn : 〈ψ1〉 . . . 〈ψn〉Aiϕ ∈ �} if n ≥ 1

12 We also note that in van Benthem et al. (2009) the existential modality is needed to express this unifor-
mity property. We do not need it here given our definition of a model (Definition 5) and the more expressive
language.
13 For concreteness, we only include the axiom schema Ki (ϕ → ψ) → (Kiϕ → Kiψ), but other modal
logics will work as well such as S5.
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That p� is in fact a protocol according to Definition 4 is an immediate consequence
of axiom P-neg and standard modal reasoning. Next we define the base canonical
model that will serve as the initial epistemic model.

Definition 9 Let� be a maximally consistent set. The�-generated canonical model
P� = 〈W�, {R�i }i∈A, V �,p�〉 is defined as follows:

1. W� = { | p = p� and  is an MCS.}
2. For all ,′ ∈ W�,R�i 

′ iff {ϕ | Kiϕ ∈ } ⊆ ′
3. V �(p) = { ∈ W� | p ∈ }
(and p� is defined according to Definition 8).

So, P� is the canonical model constructed from the set of MCSs that agree with
the protocol information in �. When there is no confusion, we omit the superscript
� in the defn of a canonical model. Now, given a maximally consistent set � and a
LDK A-formula ϕ, if 〈ϕ〉� ∈ �, we define �ϕ to be the set {θ | 〈ϕ〉θ ∈ �}. This can be
lifted to sequences of formulas σ as follows: �σ = (. . . (�σ1)σ2) . . . ). We then have:

Lemma 1 For every maximally consistent set � and sequence σ of LDK A-formulas,
�σ (if defined) is a maximally consistent set.

Proof The proof is a simpleinduction on the length of σ . The key step uses standard
modal reasoning to show from R2 and R3 that for any formula ϕ, (if defined) ϕ is a
maximally consistent set.

As usual, the key step is to prove a Truth Lemma. Much of the reasoning here is
typical for modal completeness proofs.14 Nonetheless, our framework does raise some
interesting issues which we focus on in this Section (leaving more standard arguments
to the reader). The first stems from the fact that we restrict attention to maximally con-
sistent sets that agree on the protocol information. Prima facie, this poses a problem
for the “existence step” showing that if Kiϕ �∈ � then there is an accessible state in
the canonical model where ϕ is false (i.e., ϕ is not in the MCS). As usual, this state
is constructed by showing that the set ′ = {ψ | Kiψ ∈ �} ∪ {¬ϕ} is consistent and
using Lindenbaum’s Lemma to extend to a maximally consistent set . But how can
we guarantee that  is in W� (i.e., p� = p)? This is a direct consequence of Ptcl1
(Aiϕ ↔ K j Aiϕ) and Ptcl2 (¬Aiϕ ↔ K j¬Aiϕ), as shown in the following lemma.
��
Lemma 2 Let � be a maximally consistent set. Suppose  is a MCS such that
{ψ | Kiψ ∈ �} ⊆ . Then p� = p.

Proof Given Definition 8, it suffices to show that, for any sequence σ of formulas in
LDK A, 〈σ 〉Aiϕ ∈ � implies 〈τ 〉Aiϕ ∈ , and 〈σ 〉¬Aiϕ ∈ � implies 〈τ 〉¬Aiϕ ∈ �,
where τ is a sequence in L∗

DK A such that len(τ ) = len(σ ) and τi = � for all
i(1 ≤ i ≤ len(σ )). The proof of the first implication appeals to Ptcl1, and the proof

14 We assume the reader is familiar with modal completeness proofs. For an excellent textbook presentation,
see Section 4.2 of Blackburn et al. (2002).
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of the second appeals to Ptcl2. We only prove the first, since the proof of the second
is similar.

By Uni, 〈σ 〉Aiϕ → [τ ]Aiϕ. Note here that, by standard DEL reasoning, [α]β ↔
(α → 〈α〉β) for any α, β ∈ LDK A. Since � is a tautology, it follows that
[τ ]Aiϕ ↔ 〈τ 〉Aiϕ. Therefore, 〈σ 〉Aiϕ ∈ � implies 〈τ 〉Aiϕ ∈ �. Next, by stan-
dard modal reasoning, Ptcl1 implies 〈τ 〉Aiϕ ↔ 〈τ 〉K j Aiϕ and R4 implies that
〈τ 〉K j Aiϕ → K j [τ ]Aiϕ. Therefore, 〈σ 〉Aiϕ ∈ � implies K j [τ ]Aiϕ ∈ �. Given
that � is a tautology again, this also yields K j 〈τ 〉Aiϕ ∈ �. Given the current assump-
tion, we have 〈τ 〉Aiϕ ∈  as desired.

The second issue concerns the dynamic modalities ‘〈ϕ〉’ and how to build an appro-
priate canonical model. This requires more thought since we must move from a single
canonical model to the universe of all models generated from the initial canonical
model by sequences of “makingψ publicly available” events. In other words, we need
to make use of models of the form (· · · ((P� ⊗ψ1)⊗ψ2) · · · ⊗ψn). To ease exposi-
tion, denote these models by P�σ where σ = ψ1 · · ·ψn . The key idea is that since all
necessary information is already available in the initial canonical model (as suggested
by Lemma 1), we can simply use the update operation (Definition 6) to construct the
additional models. To that end, we define the canonical models after a sequence of
announcements:

Definition 10 (Canonical Model after σ ) Given a (possibly empty) sequence σ
of LDK A-formulas and a �-generated canonical model P� , we define Pσ =
〈W σ , {Rσi }i∈A, V σ ,pσ 〉 inductively as follows:

1. Pλ = P�(λis the empty string)
2. W σ(n) = {σn | Pσ(n−1) ,  |� σn} ∪ {σ n | Pσ(n−1) ,  |� σn}
3. For all χ,′χ ′ ∈ W σ(n) , χR

σ(n)
i ′χ ′ iff

a) R
σ(n−1)
i ′ and

b) either of the following array hold:
− χ = χ ′, or
− χ = χ ′ and χ, χ ′ �∈ pσ(n−1) (i, 0)

4. For all p ∈ At and χ ∈ W σ(n) , χ ∈ V σ(n) (p) iff  ∈ V σ(n−1) (p)
5. pσ(n) (i, n) := pσ(n−1) (i, n + 1)

A few comments are in order about the above definition. First of all, note that for
any σ and canonical model P,Pσ is an epistemic model with a protocol according
to Definition 5. Therefore, for any formula ϕ, we can use Definition 6 to interpret
Pσ ,σ |� ϕ. Second, note also that Pσ = Pσ by the condition 2 above. Finally,
recall that σ is only defined provided 〈σ 〉� ∈ . Now, if 〈σ 〉ϕ ∈  then (by stan-
dard modal reasoning using R1 & R3) 〈σ 〉� ∈  and soσ is defined. However, for
an arbitrary sequence of DKA formulas σ , if Pσ ,σ |� χ , we cannot conclude that
σχ is defined (this would require a Truth Lemma which we have not yet proved!).
Thus in item 2 in the above Definition, there is an implicit assumption that each ele-
ment of W σ(n) is actually defined. It is important to keep this in mind in the remainder
of this section.

Let us take stock of where we stand in the proof of completeness (Theorem 1).
We need to show that any consistent set �0 of DKA formulas has a model. Now,
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given a consistent set �0 of DKA formulas, Lindenbaum’s Lemma can be used to
construct a maximally consistent set � extending �0. This MCS gives us a canonical
model P� = 〈W�, {R�i }i∈A, V �,p�〉 (Definition 9). Following the usual method for
proving completeness, we must prove a Truth Lemma:

for all ϕ ∈ LDK A, for each  ∈ W�, ϕ ∈  iff P�, |� ϕ.

Much of the proof is a simple adaptation of the usual argument (some details are
provided below). The difficulty comes when considering formulas of the form 〈σ 〉ψ
where σ is sequence of DKA formulas. We prove this by a (sub)induction on structure
ofψ . The strategy is to use the canonical model after σ (Definition 10). The following
prop contains the key steps needed to complete the proof of the Truth Lemma:

Proposition 3 Let � be a MCS and P� = 〈W�, {Ri }i∈A, V �,p�〉 be a �-generated
canonical model. For any sequence σ ∈ L∗

DK A:

1. For all  ∈ W� (such that σ is defined) and all ϕ ∈ LDK A,Pσ ,σ |� ϕ iff
P� ⊗ σ, |� ϕ.

2. For all  ∈ W� (such that σ is defined) and all ϕ ∈ LDK A, 〈σ 〉ϕ ∈  iff
Pσ ,σ |� ϕ.

We prove this prop in a series of Lemmas. The first item follows from the following
Lemma:

Lemma 3 SupposeP� is a �-generated canonical model and σ is a sequence of
DKA formulas. For any  in Pσ and formula χ ∈ LDK A where χ is defined and
Pσ , |� χ ,

for all ϕ ∈ LDK A, Pσχ ,χ |� ϕ iff Pσ ⊗ χ, |� ϕ.

Proof It suffices to show that, for all sequences σ ∈ L∗
DK A, the two models, Pσ and

(· · · (P ⊗ σ1) · · · ⊗ σlen(σ )), are isomorphic, i.e. there is one to one map between the
domains of the two models that preserves the accessibility relations {Ri }i∈A and valu-
ation V . (The protocols in the two models are clearly identical, given the condition 5 in
Definition 10 and the defn of ⊗ operation in Definition 6.) We prove this by induction
on len(σ ). The base case follows from Definition 10 (and the assumption that χ is
defined). Suppose that the claim holds for an arbitrary σ . Then consider the models
Pσ ⊗χ and Pσχ . For the inductive step, it suffices to show that there is an isomorphic
map between Pσ ⊗ χ and Pσχ . (By IH, Pσ and P ⊗ σ are isomorphic.) Here, take a
map f from Pσ ⊗ χ to Pσχ so that f () = χ , if Pσ ⊗ χ, |� χ; f () = χ if
Pσ ⊗χ, |� χ . Clearly ∈ V (p) iffχ ∈ V (p) by the condition 5 in Definition 10
and the defn of the ⊗ operation in Definition 6. For the accessibility relation, suppose
Ri

′ in Pσ ⊗ χ . This implies that Ri
′ in Pσ . There are two array to consider.

Case 1 The truth values of χ at  and ′ are the same in Pσ . In this case, we have
f () = f (′). This implies χRiχ in Pσχ by the condition 2 and the first con-
dition of 3b in Definition 10.
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Case 2 The truth values of χ at  and ′ are different in Pσ . In this case, by Def-
inition 6, we have to have χ �∈ p(i, 0). This implies f ()Ri f (′) in Pσχ by the
condition 2 and the second condition of 3b in Definition 10.

Therefore, Ri
′ in Pσ ⊗ χ implies Ri

′ in Pσχ . The other direction of the
implication is similar.

We need two more lemmas. These lemmas confirm that the canonical models after a
sequence of updates (Definition 10) “keeps” enough structure to prove a truth lemma.

Lemma 4 For any σ ∈ L∗
DK A, if σ Ri

′σ ′ in Pσ then

{ϕ | Kiϕ ∈ σ } ⊆ ′σ ′.

Proof We prove the claim by induction on len(σ ). The base case is clear by Defini-
tion 9. Suppose that the claim holds of an arbitrary σ . Suppose σχRi

′σ ′χ ′. For
any Kiϕ ∈ σχ , we have 〈χ〉Kiϕ ∈ σ by definition. By R4, we have Aiχ →
Ki [χ ]ϕ,¬Aiχ → Ki ([χ ]ϕ ∧ [χ]ϕ) ∈ σ . We go by array.

Suppose Aiχ ∈ σ . By Definition 10 (the condition 3b), we have χ = χ ′. This
implies that χ ∈ ′σ ′ (the presence of ′σ ′χ ′ in the model implies χ ′ ∈ ′σ ′ by
Definition 10). Also we have Ki [χ ]ϕ ∈ σ . By IH, we have [χ ]ϕ ∈ ′σ ′. Given
χ, [χ ]ϕ ∈ ′σ ′, we have 〈χ〉ϕ ∈ ′σ ′, which implies ϕ ∈ ′σ ′χ ′.

Suppose ¬Aiχ ∈ σ . This implies that Ki ([χ ]ϕ ∧ [χ]ϕ) ∈ σχ , which yields
Ki ([χ ]ϕ), Ki [χ]ϕ ∈ σχ by standard modal reasoning. Here, if χ = χ ′, the argu-
ment goes similarly to the above argument. Thus suppose χ �= χ ′, that is, χ = χ ′.
In this case, χ, [χ ]ϕ ∈ ′σ ′ (by the same reasoning as above). This will give us
ϕ ∈ ′σ ′χ ′.

Lemma 5 For any σ ∈ L∗
DK A, if {ϕ | Kiϕ ∈ σ } ∪ {ψ} is consistent, there is a max-

imally consistent set ′σ ′ such that {ϕ | Kiϕ ∈ σ } ∪ {ψ} ⊆ ′σ ′ and σ Ri
′σ ′

in Pσ .

Proof The proof is by induction on len(σ ). The base case is clear by the standard
completeness argument and Lemma 2. The inductive step is given by applications of
R4 that are similar to those given in the proof of Lemma 4.

We are now ready to prove Proposition 3.

Proof (of Proposition 3) Let P� = 〈W�, {Ri }i∈A, V �,p�〉 be a �-generated canon-
ical model (where � is a MCS). For part 1, we must show that for all sequences
σ ∈ L∗

DK A and  ∈ W� (such that σ is defined) and all ϕ ∈ LDK A,Pσ ,σ |� ϕ

iff P� ⊗ σ, |� ϕ. The proof is by induction on the length of the sequence σ with
the key inductive step following from Lemma 3.

For part 2, we must show that for all sequences σ ∈ L∗
DK A and ∈ W� (such

that σ is defined) and all ϕ ∈ LDK A, 〈σ 〉ϕ ∈  iff Pσ ,σ |� ϕ. The proof
is by induction on the complexity of ϕ. The base case is a direct consequence of
Definitions 9 and 10 and axiom R1: 〈σ 〉p ∈  iff σ1, σ2, . . . , σlen(σ ), p ∈  iff
 ∈ V (p),σ1 ∈ V σ1(p), . . . ,σ ∈ V σ (p) iff Pσ ,σ |� p. The boolean array
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are as usual. The knowledge modality case follows by a standard argument using
Lemmas 4 and 5 (cf. van Benthem et al. 2009; Hoshi 2009). Thus, we deal only with
the array for 〈χ〉 and Ai .

Suppose ϕ is of the form 〈χ〉ψ . Assume Pσ ,σ |� 〈χ〉ψ . Then Pσ ,σ |� χ

and Pσ ⊗ χ,σ |� ψ . By Lemma 3, Pσχ ,σχ |� ψ . By the induction hypothesis,
〈σχ〉ψ ∈ . I.e., 〈σ 〉〈χ〉ψ ∈ . For the left-to-right direction, assume 〈σ 〉〈χ〉ψ ∈ .
That is, 〈σχ〉ψ ∈ . Then, by the induction hypothesis, we have Pσχ ,σχ |� ψ .
Also, since 〈σ 〉〈χ〉ψ ∈ , using standard modal reasoning, we have 〈σ 〉〈χ〉� ∈ .
Hence, by R1, 〈σ 〉χ ∈ . This implies that Pσ ,σ |� χ . Applying Lemma 3, we
have Pσ ⊗ χ,σ |� ψ . Therefore, Pσ ,σ |� 〈χ〉ψ , as desired.

Suppose ϕ is of the form Aiψ . First, assume Aiψ ∈ σ . By defn, this means that
〈σn〉 · · · 〈σ1〉Aiψ ∈ . By Definition 4,ψ ∈ p(i, n). Recall that � is the initial MCS
used to construct the initial canonical model and that p� = p. By Definition 10
part 5, ψ ∈ pσ (i, 0). Hence, Pσ ,σ |� Aiψ . Now assume Pσ ,σ |� Aiψ . Then
ψ ∈ pσ (i, 0). By Definition 10 part 5, this impliesψ ∈ p(i, n) where n is the length
of σ . Also, by Definition 8, there are α1, . . . , αn such that 〈α1〉 · · · 〈αn〉Aiψ ∈ .
Then repeated applications of Uni and R2 gives us 〈σ 〉Aiψ ∈ .

Putting everything together, we now prove the main Truth Lemma:

Truth Lemma 6 For each formula ϕ ∈ LDK A, for each  ∈ W� ,
ϕ ∈  iff P�, |� ϕ.

Proof The proof is by strong induction on the complexity of ϕ, c(ϕ). If c(ϕ) = 0 then
ϕ is an atomic prop and we have p ∈  iff  ∈ V �(p) iff P� |� p. Suppose the
statement holds for all ψ such that c(ψ) < c(ϕ). There are four array:

1. ϕ is of the form ψ1 ∧ ψ2. The argument is completely standard.
2. ϕ is of the form ¬ψ . The argument is completely standard.
3. ϕ is of the form Kiψ . The standard proof works given Lemma 2.
4. ϕ is of the form Aiϕ. We have Aiϕ ∈  iff ϕ ∈ p�(i, 0) iff P�, |� Aiϕ.
5. ϕ is of the form 〈σ 〉ψ where σ is a sequence of DKA formulas. There are two

array:
A. 〈σ 〉� ∈ . Then σ is defined and the result follows from Proposition 3.
B. 〈σ 〉� �∈ . Then 〈σ 〉ψ �∈ . Hence the left-to-right direction is trivially true.

Thus we need only show P�, �|� 〈σ 〉ψ . We show that for any sequence of
formulas σ with 〈σ 〉� �∈ , there is some i ≤ len(σ ) such that P�, �|�
〈σ(i)〉σi+1. If σ = χ , we have 〈χ〉� �∈ . This means χ �∈ . Since c(χ) <
c(ϕ) we have P�, �|� χ . Suppose σ = σ ′χ . If there is some i ≤ len(σ ′)
with P�, �|� 〈σ ′

(i)〉σ ′
i+1 then we are done. Suppose no such i exists. Then,

since 〈σ ′χ〉� �∈ , we have 〈σ ′〉χ �∈ . Since c(〈σ ′〉χ) < c(ϕ), we have
P�, �|� 〈σ ′〉χ , as desired. Since 〈σ 〉� �∈ ,P�, �|� 〈σ(i)〉σi+1 but this
means that for any ψ,P� ⊗ σ(i), �|� 〈σi+1 · · · σlen(σ )〉ψ and so P�, �|�
〈σ 〉ψ .

As discussed above, the usual argument shows that every DKA-consistent set is satis-
fiable. This completes the proof of Theorem 1.
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3.5 Describing protocols

According to Definition 4, the notion of protocols is quite general. Indeed the only
constraint on a protocol p is that ϕ ∈p(i, n) iff ϕ ∈p(i, n) for each i and n. Of course,
other properties may be relevant. Many of these additional properties can be expressed
using our language. For example, consider the following properties:

ptcl-A Aiϕ ∧ Aiψ → Ai (ϕ ∧ ψ)
ptcl-K Ai (ϕ → ψ) → (Aiϕ → Aiψ)

Ref Aiϕ → Ai Aiϕ

F-Mon Aiϕ → [α]Aiϕ

P-Mon [α]Aiϕ → Aiϕ

Exp Kiϕ → Aiϕ

The first three properties are examples of structural properties of protocols. The
first two (ptcl-A and ptcl-K) say that the protocol is closed under conjunction and
consequence, respectively. The third property (Ref) says that if an agent has access to
a formula ϕ, then the agent has access to that fact (i.e., Aiϕ). Of course, these are only
three examples of closure principles that may be of interest and many properties will
be expressible using the Ai modality. The next two properties (F-Mon and P-Mon)
express monotonicity conditions of protocols toward future and past, respectively. That
is, the axiom scheme F-Mon says that if a formula ϕ is currently accessible, then it will
be accessible after a future step. The converse (P-Mon) expresses a similar property
looking into the past. Finally, the last axiom scheme (Exp) connects the agent’s current
information and access set. This can be understood as restricting to a type of explicit
knowledge where agents must have access to what they (implicitly) know.

It is straightforward to show that the above sentences correspond to the mentioned
properties. Given such correspondence results, adding these axiom schemes to the axi-
omatization DKA yields completeness proofs for classes of models based on protocols
with the corresponding properties. Details are left to the reader.

4 Discussion

This paper has focused primarily on access sets interpreted as constraints on the agents’
information gathering processes. That is, it is assumed there is some underlying pro-
tocol, or social convention, limiting the observations of the agents. We have discussed
a logical framework for reasoning about such social interactive situations. Our main
technical result is a sound and complete axiomatization, but we have also noted paral-
lels between our frameworks and similar work found in the literature. Concrete trans-
lations from our logic to similar dynamic epistemic logics can be found in Sect. 3.2.

Perhaps more interesting are the broader themes discussed in Sect. 1. There we
discussed a number of logical systems where access sets represent the set of formulas
that are currently available to the agent. That is, access sets are the current outcome
of some information gathering process rather than constraining the process. Despite
similarities between the different formal frameworks, these two perspectives on the
access sets are conceptually quite different. Nonetheless, merging the two perspectives
may lead to new insights. We end by briefly discussing one such issue: dynamics.
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Much of the work on so-called inference logics (for example, see Ågotnes and
Alechina 2007; van Benthem 2008; Velazquez-Quesada 2009, and references therein)
is centered around the dynamic processes that change an agent’s access set. The focus
in much of the literature is on the modeling of agents that use logical inference rules
to extend their access sets. However, the recent work of van Benthem (2008) and
Velazquez-Quesada (2009) also use of DEL-style epistemic events to model change
in the agents’ access sets. But these dynamic operations also make sense in our context
where the access sets are generated by some underlying protocol. While our protocols
(Definition 4) do explicitly represent temporal shifts in the agents’ access sets, we do
not explicitly represent the dynamic events that cause these changes.

There are two levels where epistemic events can enter. The first is to think of the
protocols as being generated by specific types of epistemic and/or “awareness” events.
For example, use the “become informed” events of van Benthem (2008) to construct
protocols where successive access sets are formed by execution of these events. This
amounts to restricting attention to protocols satisfying specific structural properties
(such as forwards monotonicity of access sets). Indeed, it would be interesting to ana-
lyze various structural properties on protocols (such as the ones discussed in Sect. 3.5)
in terms of the type of events that generate protocols with those properties. But the
protocols themselves may change as well. This is the second level where dynamic
epistemic events can enter our analysis. Such dynamic operations are not as well-
studied (though see Renne et al. (2009); Icard et al. (2010) for some first steps in this
direction) and we leave this for future work.
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