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Abstract

History based models, introduced by Parikh and Ramanujam, provide a natural mathematical model of social interactive situa-
tions. These models offer a “low level” description of a social situation—describing the situation in terms of events, sequences of
events, and the agents‘ view of these events. A multi-agent epistemic temporal modal logic can be used to reason about these struc-
tures. A number of other models have been proposed in the literature which can be used as a semantics for such a logical language.
Most notably, the interpreted systems discussed by Fagin et al. In this paper, we will discuss the differences and similarities between
these two mathematical models. In particular, it is shown that these two semantics are modally equivalent. We will conclude with a
discussion of a number of questions that are raised when history based models are used to reason about game-theoretic situations.
©Ó 2006 Published by Elsevier B.V.
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1. Introduction

History based models, introduced by Parikh and Ramanujam [24,25], provide a natural model of social interactive
situations relevant for the analysis of social software. The key idea behind social software is that a systematic and
rigorous analysis of social procedures can help us understand social interactions and may lead to a more “efficient”
society. This idea was put forward by Rohit Parikh [18], and has recently gained the attention of a wide range of
research communities, including computer scientists, game theorists and philosophers. Starting with [18] and more
recently in [20–22], Parikh defines social software by way of various illustrative examples. Essentially, there are two
ways in which a procedure can fit into the social software paradigm. First of all, a procedure may be truly social in
that several agents are required even in the execution of the procedure. Standard examples are voting procedures, such
as plurality voting or approval voting, or fair division algorithms, such as adjusted winner or the many cake-cutting
algorithms. Secondly, even if a procedure does not require a group for its execution, it may still fit into the social
software paradigm. These are procedures set up by society and intended to be performed by single agents within the
context of a group of agents. Examples include procedures that universities set up that students must follow in order to
drop a class or the procedures hospitals set up to ensure the necessary flow of information from a patient to a doctor.
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From the point of view of someone designing a social procedure, as soon as beliefs and utilities can be attributed to
the agent(s) executing the procedure, the procedure should be thought of as social software. After all, when designing
computer software, programmers do not worry that the computer may suddenly not “feel like” performing the next
step of the algorithm. But in a setting where agents have individual preferences, such considerations must be taken into
account. In fact, this suggests a third way in which procedures can be analyzed within the social software paradigm—
individual agents executing procedures in isolation. For example, an agent following a recipe in order to make peanut-
butter chocolate chip cookies. However, from this point of view, certain philosophical questions about the nature of
procedures, or algorithms, and human knowledge and beliefs become much more important. In this paper, the fact
that a group of agents is somehow involved in the execution of a social procedure will play an essential role.

So far we have only explained the type of situations we have in mind and have not yet provided an adequate
definition of social software. We will now attempt to rectify this situation. Social software is an interdisciplinary
research program that combines mathematical tools and techniques from game theory and computer science in order
to analyze and design social procedures. Research in social software can be divided into three different but related
categories: modeling social situations, developing a theory of correctness of social procedures and designing social
procedures. In this paper, we will focus only of the first category—mathematical models of social situations. The
recent work of Marc Pauly [26] discusses issues relevant to the second category (a theory of correctness of social
procedures). There has been a wealth of literature devoted to designing social procedures. In particular, fair division
algorithms and voting procedures (see [5] for more information).

The objective of this paper is to discuss a mathematical model of multi-agent social interactive situations appropri-
ate for the analysis of social software. If one wants a careful and rigorous analysis of social procedures, one needs to
begin with a realistic model of multi-agent interaction. The search for such models has occupied researchers in a num-
ber of different disciplines including (but not limited to) game theory, philosophy, artificial intelligence and distributed
computing. What is needed from the social software point of view are formal models in which our intuitions about
social procedures can be refined and tested. It is important to be clear about exactly what is being proposed. Perhaps
it is too much to ask for a general theory which explains all social interactions, i.e., a “theory of everything” for the
social sciences. If at all possible, such a theory would require collaboration among a vast array of research commu-
nities including psychologists, biologists, cognitive scientists and so on. What is being developed is a collection of
logical systems intended to be used to formalize multi-agent interactive situations relevant for the analysis of social
procedures. These frameworks are developed from different points of view and are governed by different assumptions
about the agents involved.

Suppose we fix a social interactive situation involving a (finite) set of agents A. What aspects are relevant for the
analysis of social procedures? First of all, since the intended application of our models is to study agents executing a

procedure, it is natural to assume the existence of a global discrete clock (whether the agents have access to this clock
is another issue that will be discussed shortly). The natural numbers N will be used to denote clock ticks. Note that
this implies that we are assuming a finite past with a possibly infinite future. The basic ideas is that at each clock tick,
or moment, some event

2 takes place.
This leads us to our second basic assumption. Typically, no agent will have all the information about a situation.

For one thing agents are computationally limited and can only process a bounded amount of information. Thus if a
social situation can only be described using more bits of information than an agent can process, then that agent can
only maintain a portion of the total information describing the situation. Also, the observational power of an agent is
limited. For example, suppose that the exact size of a piece of wood is the only relevant piece of information about
some situation. While an agent may have enough memory to remember this single piece of information, measuring
devices are subject to error. Furthermore, some agents may not see, or be aware of, many of the events that take
place. Therefore it is fair to assume that two different agents may have different views, or interpretations, of the same
situation.

2 We should be careful about the word ‘event’. Indeed there is a large philosophical literature that attempts to make the notion of an event precise.
However, for this paper we take the notion of event as primitive. The relevant fact about an event that we need is that if an event takes place at
time t , then the fact that the event took place can be observed by the relevant agents at the moment t . This should be compared with the notion
of an event from probability theory. If we assume that at each clock tick a coin is flipped exactly once, then “the coin landed heads” is a possible
event. However, “the coin landed head more than tails” would not be an event, since it cannot be observed at any one moment. As we will see, the
second statement will be considered a property of histories, or sequences of events.
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Starting with Hintikka’s seminal book, Knowledge and Beliefs [15], there has been a lot of research devoted to
the use of modal logic to formalize this uncertainty faced by a group of agents in a social situation. These formal
models are intended to capture both uncertainty about ground facts and uncertainty about other agents’ uncertainty.
Formal models of knowledge and beliefs have been employed by a wide range of communities, including computer
scientists [8,34], economists [1,3,4] and philosophers [10]. Arguably the most successful of these frameworks are
Kripke structures. Kripke structures provide a simple and well-behaved semantics for multi-agent modal logic. Despite
their simplicity, there has been much discussion about whether Kripke structures are appropriate formal models of
social situations. Much of the discussion centers around the so-called logical omniscience problem. See [19] and [8]
Chapter 9 for more information. From the social software point of view, the major drawback to using Kripke structures
is the fact that they represent a static view of a situation. In fact, as soon as one tries representing the dynamic nature
of many social situations, one of the major benefits of using Kripke structures—their simplicity—is lost.

This paper presents a mathematical model in which the uncertainty of agents about a social situation can be rep-
resented. The next section presents the formal details of the basic model. Section 3 shows how this basic framework
can be extended to provide a model for multi-agent epistemic temporal logics. Section 4 contains the main technical
result of this paper. Finally, we conclude with an extended discussion of future work.

2. History based structures

The history based structures described in this section have been used by a number of different communities (per-
haps with additional assumptions) to reason about multi-agent interactive situations. The framework described in this
chapter is based on that of Parikh and Ramanujam [24,25].

Let E be a fixed set of events. As discussed in the previous section, it is natural to assume that different agents are
aware of different events. To that end, assume for each agent i ∈A, a set Ei ⊆ E of events “seen” by agent i. We need
some notation: Given any set X (of events), X∗ is the set of finite strings over X and X!ω the set of infinite strings
over X. A global history is any sequence, or string, of events, i.e., an element of E∗ ∪ E!ω. Let h,h�, . . . range over
E∗ and H,H�, . . . range over E∗ ∪ E!ω. A local history for agent i is any element h ∈ E∗

i . Notice that local histories
are always assumed to be finite.

Given two histories H�and H , write H � H�to mean H is a finite prefix of H�. Let hH denote the concatenation
of finite history h with possibly infinite history H . If H is infinite or length greater than or equal to t ∈ N, let Ht

denote the finite prefix of H of length t . For a history H , let len(H) denote the length of H (i.e., the number of
events in H ). For any set of histories H, we denote the set of all histories (from H) of length k by Hk . Finally, define
FinPre(H) = {h | h ∈ E∗, h � H, and H ∈H}. So FinPre(H) is the set of finite prefixes of elements of H.

A set H ⊆ E∗ ∪ E!ω is called a protocol provided H is closed under the FinPre function, i.e., FinPre(H) ⊆ H.
Intuitively, the protocol is the set of possible histories that could arise in a particular social situation. Notice that
for a protocol H, the set of finite histories in H is equal to FinPre(H). Following [24,25], no structure is placed
on the set H. I.e., the protocol can be any set of histories closed under finite prefixes. Notice that this differs from
standard usage of the term protocol which is taken to mean a procedure executed by a group of agents. Certainly
any procedure will generate a set of histories, but not every set of histories will be generated by some procedure.
For example,3 suppose we consider a protocols that satisfy a fairness property. That is every history that contains a
request event (say er ) always contains an answer (say ea) in some finite amount of time. It is not hard to see that
if we take a protocol generated by a procedure to be the set of all possible generated histories, then H = {H | H =
H1erH2eaH3 where H1 and H2 are finite histories} cannot be generated by any procedure. For if a procedure can
generate all histories of the form H1erH2eaH3 where the length of H2 can be any finite number, then the procedure
can also procedure a string of the form H1erH2 where H2 does not contain ea .

Definition 1. Given a set of events E and a finite set of agents A, a history based multi-agent structure based on E is
a tuple �H,E1, . . . ,En�, where H ⊆ E∗ ∪ E!ω is a protocol and Ei ⊆ E for each i ∈A.

Single agent history based structures have been successfully used by computer scientists to reason about com-
putational procedures and reactive systems. The main idea is that given a computational procedure, which can be

3 I thank Rohit Parikh for pointing out this example.
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represented by a finite state transition system, a history represents a possible sequence of states that can be generated
as the program executes. This has led to the development of modal logics which can be used to reason about these
structures. For example, the language of LTL, linear temporal logic, includes formulas of the form � Áφ, which is
intended to mean that Áφ holds at the next moment. Notice that this assumes that there is a unique next event to take
place, hence the name linear temporal logic. The next section contains the formal details about LTL. Other languages
such as CTL, CTL

∗, ATL and ATL

∗ can be used to reason about situations where there may not be a unique next event.
The reader is referred to [11,33] for information on temporal logic and [7] for its uses in computer science.

From the social software point of view, multi-agent history based structures provide means by which we can
describe and study many important aspects of social interactions. The main idea is that each i ∈ A is only “aware”
of the events e ∈ Ei . A global history H represents a sequence of events that have taken place and each agent i may
or may not be aware of the entire sequence H . This will be made more formal below. There are two things that are
important to realize about multi-agent history based structures at this point. The first is that if an agent is aware of
event e, this does not necessarily mean that the agent performed an action which caused the event to take place. In
general, there may be a subset Ai ⊆ Ei of events, called actions, that an agent can cause. This is discussed in the
Conclusion. The second thing which is important to realize at this point is that a history based multi-agent structure
is a very low-level description of a social situation. It is similar to describing a computation using machine code.
Thus, it should not be surprising that many features of social situations relevant for the analysis of social procedures
can be captured by these models. Whether these aspects of social situations can be captured with elegant formalisms
amenable to human and/or computer analysis is another issue all together.

3. Logics of knowledge and time

In this section, we show how history based structures defined in the previous section can be used to generate models
for temporal epistemic logics. As discussed above, given a particular finite global history H and an agent i, i will only
“see” the events in H that are from Ei . In other words, from agent i’s point of view at any time t , the initial segment
Ht of H looks as if it is some sequence in E∗

i . Formally, we define a local view function ¸λi for each agent i, where
¸λi (H) ∈ E∗

i is agent i’s view of history H .

Definition 2. Let H be a protocol. For each i ∈ A call any function ¸λi :FinPre(H)→ E∗
i a local view function of

agent i.

Note that in the above definition, ¸λi is any function from finite strings of events to the set of i’s local histories.
However, we may want to place some conditions on the local view functions that we consider. The first condition
assumes that an agent’s local clock is “consistent” with the global clock.

• For all H ∈H if t � m, then ¸λi (Ht ) � ¸λi (Hm).

This is a very natural assumption and for this paper we will assume that all local view functions satisfy this condition.
A second condition that we may want to place on the local view functions is that ¸λi (H) is embeddable

4 in H .
Informally, this means that the agents are not wrong about the events that they witness. Finally, note that the domain
of the local view functions are the finite strings of H. This is in line with the assumption that at any moment only a
finite number of events have already taken place. This assumption can be dropped and the definitions can be modified
to allow agents the ability to remember an infinite number of events, but since our intended application is the analysis
of social procedures and procedures typically have a starting point, we will stay with this more realistic assumption.

Let H and H� be two global histories in some protocol H. We write H ∼ i H� if according to agent i, H is
‘equivalent’ to H�. Formally, this equivalence relation is defined in terms of the local view functions:

Definition 3. Let H be a protocol. Given finite global histories, H,H�∈H, we say that H and H�are equivalent for
agent i, written H ∼ i H�, iff ¸λi (H) = ¸λi (H

�).

4 A string w is embeddable in v if each character from w appears in v in the same order. For a formal definition of embeddable refer to [23]. For
example, the string abc is embeddable in aabbaaca, but abc is not embeddable in bbaac.
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It is easy to see that for each i ∈ A, ∼ i is an equivalence relation. Thus by using local view functions to represent
agent uncertainty, we are assuming an S5n logic of knowledge.5 Alternatively, if weaker multi-modal logics such
as S4n or KD45n are6 used to formalize the agents’ knowledge or beliefs, then instead of starting with local view
functions and deriving the relation ∼ i , one can assume a relation ∼ i on H with the appropriate properties. Adding
local view functions to a history based multi-agent structures gives us a history based multi-agent frame.

Definition 4. Given a history based multi-agent structure for a set of agents A, FH = �H,E1, . . . ,En�based on E,
a history based frame based on FH is a tuple FK = �H,E1, . . . ,En,¸λ1, . . . ,¸λn�, where each ¸λi is a local view
function.

Additional assumptions about the agents’ local view functions allows us to model agents with different capabilities.
Two assumptions which have been discussed in the literature are perfect recall and its dual no learning. Intuitively,
an agent is said to have perfect recall if it remembers every event that it sees. Informally, this implies that as time
increases, the set of histories that an agent considers possible stays the same or decreases. We will only consider the
assumption of perfect recall.7 In [12], perfect recall is defined as follows:

Definition 5. Let FK be a multi-agent history based knowledge frame. Agent i is said to have perfect recall provided
for each finite H,H�,H��∈ H, if ¸λi (H) = ¸λi (H

�) and H��� H , then there is a global history H���∈ H such that
H���� H�and ¸λi (H

��) = ¸λi (H
���).

Suppose H is a protocol. Let H ∈H and define Hi,t = {H�| ∃m ∈ N, Ht ∼ i H�
m}. Then it is easy to see that agent

i has perfect recall iff for all t ∈ N and H ∈H, Hi,t+ 1 ⊆ Hi,t . For example, consider the following recursive definition
of a local view function for agent i. Let ¸λi (e) = e if e ∈ Ei and the empty string otherwise. For each He ∈H,

¸λi (He) =
�

¸λi (H)e e ∈ Ei

¸λi (H) otherwise
Then it is easy to see that this function satisfies the property in Definition 5. Notice that when an agent has perfect
recall, then the agent’s local view function is derivable from the set Ei . That is, we can assume that ¸λi is defined as
above. Let Fpr

K denote a history based knowledge frame in which each agent has perfect recall and Fpr

K the class of
history based knowledge frames with perfect recall.

Finally, a few comments about whether agents have access to the global clock. We say that a history based knowl-
edge frame FK is synchronous if all agents have access to the global clock. Formally, FK is synchronous iff for each
i ∈A and for each H,H�∈H, if ¸λi (Ht ) = ¸λi (H

�
u), then t = u. This property can be achieved by assuming there exists

a special event c ∈ E with c ∈ Ei for each i ∈ A. This event represents a clock tick. In synchronous history based
models with perfect recall, the local view function maps each event seen by agent i in some finite history H to itself,
and all other events to the clock tick c. We write F sync

K if FK is synchronous and Fsync

K for the class of synchronous
history based knowledge frames. We say that FK is asynchronous if FK is not synchronous. Another assumption
which has been considered is a unique initial state. A history based knowledge frame has a unique initial state if each
global history begins with the same event. Formally, a protocol has a unique initial state if there is an event e ∈ E such
that for each H ∈H, the first event in H is e.

Properties of history based knowledge frames can be described by a multi-modal logic. Let At be a countable set
of propositional variables. A formula of multi-agent knowledge and time (denoted LKT

n (At) or LKT

n if At is given) has
the following syntactic form

Áφ := p | ¬Áφ | Áφ ∧ Áφ |KiÁφ | � Áφ | ÁφUÁφ

5 The definition of the logical system S5n will be given below.
6 The modal logic S4n contains Modus Ponens, an axiomatization of propositional calculus, the rule of necessitation (from Áφ infer KiÁφ), and the

following axiom schemes: Ki(Áφ→ Ãψ)→ (KiÁφ→ KiÃψ), KiÁφ→ Áφ and KiÁφ→ KiKiÁφ.
The modal logic KD45n contains Modus Ponens, an axiomatization of propositional calculus, the rule of necessitation (from Áφ infer KiÁφ),

and the following axiom schemes: Ki(Áφ → Ãψ)→ (KiÁφ → KiÃψ), K i⊥ → ⊥ , KiÁφ → KiKiÁφ and ¬KiÁφ → Ki¬KiÁφ. More information can be
found in [6].

7 The intuitive interpretation of no learning is that as time increases the set of histories that an agent considers possible stays the same or increases.
The interested reader is referred to [12] for more information.
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where p ∈ At and i ∈ A. Let ∨,→,Li be defined as usual, ⊥ denote p ∧ ¬p and � denote ¬� . KiÁφ is intended to
mean that i “knows Áφ”. � Áφ is intended to mean “Áφ is true after the next event” and Áφ UÃψ is intended to mean that “Áφ
is true until Ãψ becomes true”. Other temporal operators can be defined as usual. For example, FÁφ which is intended
to mean that “Áφ will be true sometime in the future” is definable using the U operator: define FÁφ to be � U Áφ. Then
“Áφ is true at every moment in the future”, denoted GÁφ, is defined to be ¬F¬Áφ.

Definition 6. Suppose that A is a set of agents and

FK = �H,E1, . . . ,En,¸λ1, . . . ,¸λn�

is a history based frame. A history based model of knowledge and time based on FK is a tuple MH =
�H,E1, . . . ,En,¸λ1, . . . ,¸λn,V�, where V :FinPre(H)→ 2At is a valuation function.

For simplicity we begin by defining truth in models based on synchronous history based frames. Formulas are
interpreted at pair H, t where H ∈H is an infinite global history and t ∈ N. That is, for H ∈H, H, t |= Áφ is intended
to mean that in history H at time t , Áφ is true. Truth is defined recursively on the structure of a formula Áφ. Let
MH = �H,E1, . . . ,En,¸λ1, . . . ,¸λn,V�be a history based model, H an infinite global history and t ∈ N.

(1) H, t |= p iff p ∈ V (Ht)

(2) H, t |= Áφ ∧ Ãψ iff H, t |= Áφ and H, t |= Ãψ

(3) H, t |= � Áφ iff H, t + 1 |= Áφ

(4) H, t |= Áφ UÃψ iff there exists m � t such that H,m |= Ãψ and for all l such that t � l < m, H, l |= Áφ

(5) H, t |= KiÁφ iff for all H�∈H such that Ht ∼ i H�
t , H�, t |= Áφ.

We have two remarks about the above definitions. The first is that in the above definition of truth of the Ki modality
(item (5) above), it is assumed that the agents all share a global clock. Thus only histories of the same length need to
be considered. This assumption is made in order to simplify the presentation. If the agents do not share a global clock,
then item (5) should be replaced with the following definition:

(5�) H, t |= KiÁφ iff for all m � 0, for all H�∈H such that Ht ∼ i H�
m, H�,m |= Áφ.

The second remark concerns the definition of the U operator. It is well known that if we replace (4) with the more
general (4�) below, then we can define � Áφ as ⊥UÁφ.

(4�) H, t |= Áφ UÃψ iff there exists m > t such that H,m |= Ãψ and for all l such that t < l < m, H, l |= Áφ.

However, we have opted to stick with the less general definition of U (4) to ease exposition.
Given a history based knowledge model MH , we say Áφ is valid in MH , denoted MH |= Áφ, if for each H ∈H and

t ∈ N, H, t |= Áφ. We say Áφ is valid in a history based knowledge frame FK , written FK |= Áφ, if Áφ is valid in every
model based on FK .

Notice that we are only interpreting formulas at infinite global histories. This is because the definition of truth of
� Áφ may not make sense if the global history is finite. That is if len(H) = k, then how should we interpret H,k |= � Áφ?
It is easy to see that specifying that � Áφ is always true (or always false) conflicts with axiom T2 below.

A sound and complete axiomatization for knowledge and time under various assumptions can be found in [12],
using a slightly different framework. The precise connection between the two frameworks will be discussed below.
We first report the relevant results from [12]. For reasoning about knowledge alone at a fixed moment in time, the
following axiom system is well known to be sound and complete with respect to the class of all history based frames
(see [8] for a proof).

PC. All tautologies of propositional logic
K2. Ki(Áφ→ Ãψ)→ (KiÁφ→ KiÃψ)

K3. KiÁφ→ Áφ

K4. KiÁφ→ KiKiÁφ
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K5. ¬KiÁφ→ Ki¬KiÁφ

MP. From Áφ and Áφ→ Ãψ infer Ãψ

N. From Áφ infer KiÁφ

Call this axiom system S5n. The following axiom system is from [12] is used to reason about (linear) time.

T1. � Áφ ∧ � (Áφ→ Ãψ)→ � Ãψ

T2. � (¬Áφ)↔ ¬ � Áφ

T3. Áφ UÃψ ↔ Ãψ ∨ (Áφ ∧ � (Áφ UÃψ))

RT1. From Áφ infer � Áφ

RT2. From Áφ�→ ¬Ãψ ∧ � Áφ�infer Áφ�→ ¬ (Áφ UÃψ)

A few remarks about the rule RT 2. This rule is equivalent to the following simpler two rules:

RT21. From Áφ1 → Ãψ1 and Áφ2 → Ãψ2 infer (Áφ1UÃψ2)→ (Áφ2UÃψ2)

RT22. From � Áφ→ Áφ infer FÁφ→ Áφ

To see that RT2 follows from these rules, suppose that we have derived Áφ�→ ¬Ãψ and Áφ�→ � Áφ�. Then, using
standard propositional reasoning and T2 we can infer � ¬Áφ�→ ¬Áφ�. Hence using RT22 we can infer F¬Áφ�→ ¬Áφ�,
i.e., (�U¬Áφ�)→ ¬Áφ�. Now notice that for any formula Áφ, we can derive Áφ → � and using propositional reasoning
we can infer Ãψ → ¬Áφ�. Thus using RT21, we can infer (ÁφUÃψ)→ (�U¬Áφ�); and so using propositional reasoning
we can conclude ¬ (ÁφUÃψ). Showing RT21 and RT22 follow form RT2 is straightforward exercise in Hilbert style
derivations and so will be omitted.

Call the axiom system that contains the rules and axiom schemes from S5n and the rules and axiom schemes above
S5U

n . Again it is well-known that S5U
n is sound and complete with respect to the class of all history based knowledge

frames. It becomes much more interesting when axiom schemes connecting the knowledge and time modalities are
added. The two axiom schemes from [12] that will be of interest are:

KT1. Ki � Áφ→ � KiÁφ

KT2. KiÁφ1 ∧ � (KiÁφ2 ∧ ¬KiÁφ3)→ Li

�
(KiÁφ1)U

�
(KiÁφ2)U¬Áφ3

��

These axiom schemes characterize systems in which all agents are assumed to have perfect recall. Axiom KT1 is
easily seen to be valid in synchronous history based knowledge frames with perfect recall. For if agent i knows (at the
current moment) that Áφ will be true at the next moment, then since i has perfect recall, i cannot lose this knowledge.
Therefore, at the next moment agent i will know Áφ. Using similar reasoning, the formula KiGÁφ → GKiÁφ – if i

knows Áφ is true at the current moment and that it will always be true, then it will always be the case that agent i

knows Áφ – is easily seen to be valid. Interestingly, van der Meyden showed that adding only this axiom to S5U
n is

not complete for frames with perfect recall [29]. In [12], a series of completeness proofs are offered under a variety
of assumptions (perfect recall, no learning, synchronous, unique initial state). In particular, they show that the more
complicated axiom KT2 is what is needed to characterize frames in which the agents are assumed to have perfect
recall, i.e., the axiom system S5U

n + KT2 is sound and complete with respect to frames with perfect recall. For a proof
of these results (with respect to the semantics in [12]) refer to [12].

At this point the reader may have noticed that we have omitted discussion of a topic widely discussed in the
epistemic logic literature—common knowledge. In part, this is due to an early result of Halpern and Vardi [13] who
show that the complexity of reasoning about the validity problem of languages with common knowledge in frames
with perfect recall is 51

1 complete. Hence, no recursive axiomatization is possible when common knowledge is added
to our language. The result is true regardless of whether agents have access to the global clock. Only if we drop all
assumptions on the reasoning abilities of the agents do we get the possibility of a finite axiomatization (or make the
drastic assumptions of no learning, perfect recall, synchronous and a unique initial state). In fact, when more than
one agent is involved, then reasoning about the validity problem of the axiom systems discussed in this chapter is in
nonelementary time (consult [13] for proofs of this and related results).

Another point worth mentioning is that the language LKT

n is not expressive enough to capture the synchronous
property (nor the unique initial state property). The completeness proof for S5U

n holds regardless of whether the
history based knowledge frames are assumed to be synchronous. These properties can be captured in languages with
past-time operators. Completeness results for such systems have recently been established in [9]. Other interesting
properties of history based frames cannot be captured in our language, such as that Áφ is true at the next moment in all
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possible extensions of the current history. In [30], van der Meyden and Wong prove a series of completeness results
for logics of knowledge with branching time operators.

4. Histories or runs?

The section discusses the similarities and differences between the Parikh and Ramanujam framework described in
this chapter and the Halpern et al. [8,12,13] interpreted systems.

We begin by formally defining interpreted systems. The reader is referred to [8] and [12] for more details. Let
L be a set of local states. A system for n agents is a set R of runs, where a run r ∈ R is a function r : N→ Ln+ 1

r(t) has the form �le, l1, . . . , ln�, where le is the state of the environment, li for i = 1, . . . , n is the local state of each
agent. A point, or global state, is an element (r, t) ∈R × N. An interpreted system I = (R,¼π), where R is a system
and ¼π : (R × N) × At→ {true, false}, that is ¼π(r, t) is a truth assignment, where At is the set of atomic propositions.
The uncertainty of the agents is defined as follows: agent i cannot distinguish two points if it is in the same state in
both: (r, t) ∼ i (r�, t�) iff r(t)i = r�(t�)i . Formulas are interpreted at pairs (r, t) where r ∈R and t ∈ N, i.e., r, t |= Áφ is
intended to mean that in run r at time t Áφ is true. The formal definition of truth is very similar the definition above, and
so we will only give the definition of the modal operators (see [12] for more details). Let I = (R,¼π) be an interpreted
system, r ∈R and t ∈ N. Then

(1) r, t |= KiÁφ iff r�, t�|= Áφ for all (r�, t�) such that (r, t) ∼ i (r�, t�)
(2) r, t |= � Áφ iff r, t + 1 |= Áφ

(3) r, t |= ÁφUÃψ iff there is some t�� t such that r, t�|= Ãψ , and for all l with t � l < t�, we have r, l |= Áφ.

At first glance, the difference between an interpreted system and a history based model seems to be purely linguistic.
A run is a function that specifies the local state of each agent (including the environment), but can just as easily be
understood as a sequence of events, where each event is a tuple of local states. For Parikh and Ramanujam, an event is
a primitive object, whereas for Halpern et al. events are tuples of local states. We make this observation more formal
below.

We first discuss the translation from history based models to interpreted systems. Let FK = �H,E1, . . . ,En,¸λ1, . . . ,

¸λn�be a history based knowledge frame based on E and MH = �H,E1, . . . ,En,¸λ1, . . . ,¸λn,V�a model based on
FK . We define an interpreted system ¶ι(MH ) = (RH ,¼π) as follows.

Let L =
�

i∈A {¸λi (Ht ) | H ∈H, t ∈ N}. Let e denote the environment agent and assume that for each finite history
H ∈ H, ¸λe(H) = H . That is, the environment agent is aware of every event (this is only for convenience). For each
infinite H ∈ H define a run rH : N→ Ln+ 1 as follows: rH (t) = �¸λe(Ht ),¸λ1(Ht ), . . . ,¸λn(Ht )�. Then the following
observation is a straightforward application of the definition.

Lemma 7. For each infinite history H,H�∈H, for each t,m ∈ N, Ht ∼ i H�
m iff (rH , t) ∼ i (rH�,m).

Proof. Straightforward. �

Finally, interpret the valuation function in the obvious way. That is, for each p ∈ At, define ¼π(rH , t)(p) = true
provided p ∈ V (Ht).

Theorem 8. Let MH = �H,E1, . . . ,En,¸λ1, . . . ,¸λn,V�be a history based model and Áφ ∈ LKT

n an arbitrary formula.

Then for each H ∈H and t ∈ N

H, t |= Áφ iff rH , t |= Áφ

Proof. Let MH = �H,E1, . . . ,En,¸λ1, . . . ,¸λn,V�be a history based model of knowledge and time, Áφ ∈ LKT

n , H ∈H
and t ∈ N. We will show H, t |= Áφ iff rH , t |= Áφ. The proof is by induction on Áφ. The base case is true by definition.
The boolean cases are obvious which leaves the modal cases.

• Suppose that H, t |= KiÁφ, then for each m � 0 and H�∈ H with Ht ∼ i H�
m, H�,m |= Áφ. We must show

that rH , t |= KiÁφ. Let rH�∈ RH be any arbitrary run such that (rH , t) ∼ i (rH�,m). By the above observation,
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Ht ∼ i H�
m. Since H, t |= KiÁφ, H�,m |= Áφ. Hence by the induction hypothesis, rH�,m |= Áφ. Therefore, rH , t |=

KiÁφ. The other direction is analogous.
• H, t |= � Áφ iff H, t + 1 |= Áφ iff (induction hypothesis) rH , t + 1 |= Áφ iff rH , t |= � Áφ.
• H, t |= Áφ UÃψ iff ∃t�> t such that H, t�|= Ãψ and for each m with t < m < t�, H,m |= Áφ iff (induction hypothesis)
∃t�> t such that rH , t�|= Ãψ and for each m with t < m < t�, rH ,m |= Áφ iff rH , t |= Áφ UÃψ . �

This lemma shows that the soundness results from [12] can be applied to history based frames. For example,
suppose that Áφ is a theorem of S5U

n + KT1 but FK �|= Áφ. Then there is a model MH based on FK in which there is
a global history H and moment t ∈ N such that H, t �|= Áφ. But then using the above lemma in the interpreted system
¶ι(MH ), rH , t �|= Áφ which contradicts the soundness proof for interpreted systems.

What about the completeness results? I.e., do the completeness results from [12] apply to history based frames?
The answer is yes if we can show that for each interpreted system, there is a modally equivalent8 history based frame.

Let (R,¼π) be an interpreted system with local states L. Given a run r ∈R we show how to construct a history Hr .
First let Ei = L for each agent i (or Ei = Li if the agents do not share local states). Then let E =

�
i Ei ∪Ln+ 1. So the

events are the local states and the global states. For each r ∈R, let Hr = r(0)r(1)r(2) . . .. Let H�= (
�

i Ei)
∗∪ {Hr |

r ∈R} and HR = H�∪ FinPre(H�). Notice that in HR the only infinite histories are histories of the form Hr for some
r ∈R. Thus these are the only histories in which we interpret our formulas. We need only define the agents local view
function. Since the domain of the local view function is the set of all finite prefixes of a protocol, we have two cases
the consider. The first is if H ∈ E∗

i for some i ∈ A. Then simply define ¸λi (H) = H (as this situation will not arise
when interpreting formulas, the actual value of ¸λi (H) does not matter). If H is Hr for some r ∈ H and t ∈ N, then
define ¸λi (H

r
t ) = (last(Hr

t ))i , where given a finite history H , last(H) is the last event of H . Thus ¸λi (H
r
t ) is the ith

component of the last event of Hr
t . Then the following observation is obvious.

Lemma 9. Let R be any set of runs, then for each r, r�∈R and t,m ∈ N, r(t)i = r�(m)i iff Hr
t ∼ i H r�

m .

Proof. Straightforward. �

Finally, we define a valuation function V :FinPre(H)→ 2At as follows. If H ∈ Ei for some i ∈A, then V (H) = ∅.
If H is Hr for some r ∈ R, then let p ∈ V (Hr

t ) iff ¼π(r, t)(p) = true. The proof of the following theorem which
shows that our translation works as intended is similar to the above theorem and so is omitted.

Theorem 10. Let (R,¼π) be an interpreted system. Then for each r ∈R and each Áφ ∈ LKT

n

r, t |= Áφ iff Hr, t |= Áφ

The only case that may cause some trouble is when Áφ is of the form KiÃψ . In this case, the results follows imme-
diately once one notices that formulas are only interpreted at infinite histories, i.e., histories of the form Hr for some
r ∈ R. Thus if Hr, t |= KiÃψ . Then if Hr ∼ i H�, H�must be of the form Hr� for some r�∈ R (these are the only
possible infinite histories). And the proof of the lemma follows immediately.

The above lemma shows that the completeness proofs from [12] carry over to history based frames. However,
the above construction seems like somewhat of a cheat. In particular, notice that the local view functions are not

embeddable in a infinite global history Hr . A better solution would be for a given interpreted system (R,¼π) to find
a set of events E and protocol H based on E and embeddable local view functions such that the history based model
based on this frame is modally equivalent to (R,¼π). However, answering this question is analogous to constructing a
program written in a high level language (such as C) from some machine code. In fact, the real question we are asking
is where does a particular interpreted system come from? For more on this topic the reader is referred to [8, Chapter 5].

This section shows that the answer to the question posed in the title of this section is that it does not really matter
which semantics one chooses from the point of view of soundness and completeness of axiom systems. So, is the
difference between the two semantics only linguistic? Technically, perhaps the answer is yes. However, there is a
difference from the modeler’s point of view. From a social software point of view, the situations we are interested in

8 That is, the two structures satisfy the same modal formulas.
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typically include a group of agents following the rules of some procedure. Each agent (including nature) may cause
certain events to take place. From this we can derive what the agents’ know about the situation. That is, we need only
determine which events the agent is aware of in order to define the local view functions. In an interpreted system, an
event is anything that causes a change in the internal state of the agents. However, we typically do not have access to
such information when modeling situations relevant for the analysis of social software. So the difference lies in the
intended application in the models. For interpreted systems, the intended application is an analysis of distributed com-
putational procedures whereas for history based structures the intended application is social interactive situations. For
example, in [25], Parikh and Ramanujam argue that this framework very naturally formalizes many social situations
by providing a semantics of messages in which notions such as Gricean implicature can be represented.

5. Conclusion and future work

This paper discusses a formal framework intended to be used to represent social interactive situations relevant for
the analysis of social procedures. We view a social interactive situation as consisting of a collection of sequences
of “events” (called histories), where the exact interpretation of an event depends on the application. Intuitively, each
global history (infinite sequence of events) is a possible way the situation could have evolved. At any moment t ∈ N
there is a finite history and a possibly infinite future. In general, some of the events may be caused by an agent, i.e.,
an agent can perform a particular action, and others may be caused by nature (which can be viewed as a special type
of agent). See [17] for more information about using this framework for studying social software.

We have shown that the history based models of Parikh and Ramanujam are modally equivalent (with respect
to the language LKT

n ) to the interpreted systems of Fagin et al. The proof is technically straightforward; however it
does contain some insights. Namely, it shows a real difference from the modeler’s point of view between these two
semantics. The history based structures of Parikh and Ramanujam are appropriate for formalizing many of the issues
relevant for the analysis of social software. We now move on to a discussion of a future research direction.

In the game theory literature, extensive game forms are used to model the decision problems encountered by agents
in strategic situations [16]. These structures have much in common with history based structures. In fact, as will be
shown below, with some additional assumption, a history based structure can be turned into an extensive game form.

Let �H,E1, . . . ,En�be a history based structure based on a set of events E. In a general game-theoretic situation
the events are “caused” by the agents. As such, we assume for each agent a set Ai ⊆ Ei of actions i can perform.
Notice that we are blurring the distinction between the action that agent i chooses to cause event e and the event e

itself.
In this section we will assume that the agents are aware of all possible events, i.e., for each i ∈ A, Ei = E. This

assumption is called perfect information is the game theory literature. Actually, the assumption of perfect information
says something slightly stronger, namely that each agent knows which actions have taken place. Essentially, this
means that we are we are working with synchronous history based frames with local view functions that satisfy
perfect recall. Thus to make this assumption of perfect information formal, we must bring in the machinery from
Section 3. Reasoning about extensive games from this is point of view is explored in a recent paper of Bonanno [2]
(cf. [28]). In order not to overburden the reader with notation at this point, we will not make any attempt to bring in
the local view functions from Section 3 and assume that we are working under the assumption of perfect information.
Therefore, in this section, we will denote a history based structure as �H,A1, . . . ,An�and assume Ei = E for all i

where E is the set of all possible events.
A few structural assumptions about the protocol H are needed. The first assumption amounts to saying that at

any moment only one agent can perform an action. Given a global history H (possibly infinite) and time t ∈ N, let
F(Ht ) = {H�∈H | Ht � H�}, i.e., F(Ht ) is the set of all global histories from H that extend Ht . Also, suppose that
for each finite global history H , last(H) denotes the last event of H .

Definition 11. A protocol is said to satisfy the single agent property if for each H ∈ H and each t ∈ N, there is a
unique i ∈A such that for each H�∈ F(Ht ), last(H�

t+ 1) ∈ Ai .

Notice that this implies that at every moment there always is an agent who performs some action. If necessary, we
can assume that nature is an agent which can always perform a special action c interpreted as a clock tick. One more
technical assumption is needed in order to deal with infinite histories.
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Definition 12. A protocol H is said to be closed provided for each infinite history H , if for each t ∈ N, Ht � H and
Ht ∈H, then H ∈H. I.e., H is closed upwards under the � relation.

These additional structural assumptions about the protocol H is all that is needed to define an extensive game form.

Definition 13. A history based game form is a structure

FG = �H,A1, . . . ,An�
where H is a protocol that is closed and satisfies the single agent property.

We say a history based game form is finite if H is finite and is finite-horizon if each H ∈H is finite. For this point
of view, it is very natural to use these structures to interpret a suitable modal language. Indeed there is a long list of
researchers in both game theory and logic who have noticed this fact (see [2,14,27,28,31,32] for recent contributions).
The focus of future research will be to extend a history based game form with local view functions for each agent. We
can then extend the results of [14] by bringing in epistemic modal operators for each agent.

References

[1] R. Aumann, Interactive epistemology I: Knowledge, International Journal of Game Theory 28 (1999) 263–300.
[2] G. Bonanno, A characterization of von Neumann games in terms of memory, Synthese 139 (2) (2004) 237–256.
[3] G. Bonanno, P. Battigalli, Recent results on belief, knowledge and the epistemic foundations of game theory, Research in Economics 53 (2)

(1999) 149–225.
[4] G. Bonanno, K. Nehring, Agreeing to disagree: a survey, Document prepared of an invited lecture at the Workshop on Bounded Rationality

and Economic Modelling, July 1997.
[5] S.J. Brams, A.D. Taylor, Fair Division: From Cake-Cutting to Dispute Resolution, Cambridge University Press, Cambridge, 1996.
[6] B. Chellas, Modal Logic: An Introduction, Cambridge University Press, Cambridge, 1980.
[7] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT Press, Boston, 1999.
[8] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge, MIT Press, Boston, 1995.
[9] T. French, R. van der Meyden, M. Reynolds, Axioms for logics of knowledge and past time: Synchrony and unique initial states, in: Advances

in Modal Logic, vol. 5, King’s College Publications, 2005, pp. 53–72.
[10] P. Gochet, P. Gribomont, Epistemic logic, in: D.M. Gabbay, J. Woods (Eds.), Handbook of the History and Philosophy of Logic, Elsevier,

Amsterdam, in press.
[11] V. Goranko, Temporal logics of computation, Notes prepared for a course at the 12th European Summer School in Logic, Language and

Information. Available at: http://general.rau.ac.za/maths/goranko/new/papers/esslli2000.pdf.
[12] J. Halpern, R. van der Meyden, M. Vardi, Complete axiomatizations for reasoning about knowledge and time, SIAM Journal of Comput-

ing 33 (2) (2004) 674–703.
[13] J. Halpern, M. Vardi, The complexity of reasoning about knowledge and time, Journal of Computer and System Sciences 38 (1989) 195–237.
[14] P. Harrenstein, W. van der Hoek, J.-J. Meyer, C. Witteveen, A modal characterization of Nash equilibrium, Fundamenta Informaticae 57

(2003) 281–321.
[15] J. Hintikka, Knowledge and Belief: An Introduction to the Logic of the Two Notions, Cornell University Press, Ithaca, 1962.
[16] M. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, Boston, 1994.
[17] E. Pacuit, Topics in social software: Information in strategic situations, PhD thesis, City University of New York Graduate Center, 2005.
[18] R. Parikh, Language as social software (abstract), in: International Congress on Logic, Methodology and Philosophy of Science, 1995, p. 415.
[19] P. Parikh, Logical omniscience, in: D. Leivant (Ed.), Springer Lecture Notes in Computer Science, vol. 960, Springer-Verlag, 1995, pp. 22–29.
[20] R. Parikh, Language as social software, in: S.S.J. Floyd (Ed.), Future Pasts: The Analytic Tradition in Twentieth Century Philosophy, 2001,

pp. 339–350.
[21] R. Parikh, Social software, Synthese 132 (2002) 187–211.
[22] R. Parikh, Towards a theory of social software, in: Proceedings of DEON 2002, September 2002, pp. 187–211.
[23] R. Parikh, P. Krasucki, Levels of knowledge in distributed computing, Sadhana—Proc. Ind. Acad. Sci. 17 (1992) 167–191.
[24] R. Parikh, R. Ramanujam, Distributed processes and the logic of knowledge, in: Logic of Programs, in: Lecture Notes in Computer Science,

vol. 193, Springer, 1985, pp. 256–268.
[25] R. Parikh, R. Ramanujam, A knowledge based semantics of messages, Journal of Logic, Language and Information 12 (2003) 453–467.
[26] M. Pauly, Programming and verifying subgame perfect mechanisms, Journal of Logic and Computation 15 (3) (2005) 295–316.
[27] J. van Benthem, Extensive games as process models, Journal of Logic, Language and Information 11 (2001) 289–313.
[28] J. van Benthem, Games in dynamic epistemic logic, Bulletin of Economic Research 53 (2001) 216–248.
[29] R. van der Meyden, Axioms for knowledge and time in distributed systems with perfect recall, in: Proc. IEEE Symposium on Logic in

Computer Science, July 1994, pp. 448–457.
[30] R. van der Meyden, K. Wong, Complete axiomatizations for reasoning about knowledge and branching time, Studia Logica 75 (1) (2003)

93–123.



624 E. Pacuit / Journal of Applied Logic 5 (2007) 613–624

[31] S. van Otterloo, A strategic analysis of multi-agent protocols, PhD thesis, University of Liverpool, 2005.
[32] S. van Otterloo, W. van der Hoek, M. Wooldridge, Preferences in game logics, in: Proceedings of the International Joint Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS), New York, July 2004.
[33] Y. Venema, Temporal logic, in: L. Goble (Ed.), The Blackwell Guide to Philosophical Logic, Blackwell Philosophy Guides, 2001.
[34] A.M. Zanaboni, Reasoning about knowledge: Notes of Rohit Parikh’s lectures, Cassa di Risparmio di Padova e Rovigo, Italy, June 1991.

Based on lectures given at the 3rd International School for Computer Science Researchers, Acireale, June 1991.


