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Abstract. Many different approaches to describing the players’ knowledge and beliefs

can be found in the literature on the epistemic foundations of game theory. We focus

here on non-probabilistic approaches. The two most prominent are the so-called Kripke-

or Aumann- structures and knowledge structures (non-probabilistic variants of Harsanyi

type spaces). Much of the recent work on Kripke structures has focused on dynamic

extensions and simple ways of incorporating these. We argue that many of these ideas

can be applied to knowledge structures as well. Our main result characterizes precisely

when one type can be transformed into another type by a specific type of information

update. Our work in this paper suggest that it would be interesting to pursue a theory of

“information dynamics” for knowledge structures (and eventually Harsanyi type spaces).
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1. Introduction

The1 central thesis of the epistemic program in game theory is that the basic
mathematical model of a game situation should include an explicit parame-
ter describing the players’ informational attitudes.2 See [7] for the relevant
references and a discussion of the key results, and [23] for an introduction to
this literature. Games are played in specific informational contexts, in which
players have specific knowledge and beliefs about each other.3 Many differ-

Presented by Name of Editor; Received December 1, 2005
1This research was funded by the NWO Vidi project 016.094.345. The authors would

like to thank the anonymous referees for their extremely thorough comments which greatly
improved this paper.

2This is, of course, something of a truism regarding games of incomplete or imperfect
information. But, the thesis is intended to apply to all game situations. See [8, Section
5] for a precise description about the crucial differences between an epistemic model of a
game and a Bayesian game.

3This is nicely explained by Adam Brandenburger and Amanda Friedenberg ([9, pg.
801]): “In any particular structure, certain beliefs, beliefs about beliefs, ..., will be present
and others won’t be. So, there is an important implicit assumption behind the choice of
a structure. This is that it is “transparent” to the players that the beliefs in the [type]
structure — and only those beliefs — are possible....The idea is that there is a “context”
to the strategic situation (eg., history, conventions, etc.) and this “context” causes the
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ent formal models have been used to represent such informational contexts
of a game (see [6, 20, 5], and references therein, for a discussion). In this pa-
per, we are not only interested in structures that describe the informational
context of a game, but how these structures can change in response to the
players’ observations, communicatory acts or other dynamic operations of
information change (cf. [3]).

We focus our attention on the players’ hard information about the game
(which we refer to as knowledge following standard terminology in the game
theory and epistemic logic literature) and its dynamics. Broadly speaking,
there are two different types of models that have been used to describe the
players’ knowledge (and beliefs) in a game situation. Both types of models
include a nonempty set S of states of nature (elements of S are intended to
represent possible outcomes of a game situation).4 The first type of models
are the so-called Aumann- or Kripke-structures [2, 18]. These structures
describe the players’ knowledge in terms of an epistemic indistinguishability
relation over a (finite) set of states W . The second type of models are
the knowledge structures of [16, 15], which are non-probabilistic variants of
Harsanyi type spaces [19]. 5 The key concept here is a type which describes
the players’ infinite hierarchy of knowledge (i.e., what the players know about
the ground facts, what the players know about each others knowledge of the
ground facts, what players know about what each other know about each
others knowledge of the ground facts, and so on.) The precise relationship
between these two types of models was clarified in [16, 15].

Our goal in this paper is to show how to adapt recent work modeling
information change on Kripke structures as a product update with an event
model [12] to the more general setting where the players’ knowledge is rep-
resented using knowledge structures. To the best of our knowledge, this is
the first attempt to develop a theory of information change for knowledge
structures in the style of recent work on dynamic epistemic logic. Our main
result (Theorem 3.17) characterizes precisely when a type in a fixed knowl-
edge structure can be transformed into another type in that structure using
the product update operation.

There are two main motivations for this technical study. The first is
to explore generalizations of the product update operation. This is done

players to rule out certain beliefs.”
4Often, it is assumed that the elements of S can be described by some logical language

(for example, propositional logic), but this is not crucial for us in this paper.
5See [25] for a modern introduction to type spaces as models of beliefs and [22] for a

discussion of Harsanyi’s classic paper.
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in Section 3.1 where we also generalize a result of [10] characterizing when
a Kripke structure can be transformed into another Kripke structure by a
product update. The second motivation for this work is to initiate a study
of information dynamics for epistemic models of games. The players’ infor-
mation in a game can change in two ways. First, the players’ knowledge and
beliefs change during the play of a sequential game (for example, they learn
about the choices of the other players as the game is played). The second
way that the players’ information can change is in response to some exoge-
nous event. For example, during a poker game, a player may accidentally
drop his cards or a gust of wind may allow a subset of the players to see
certain cards. Of course, one may argue that game-theoretic models should
abstract away from these payoff irrelevant events. We agree that the type
of events we have in mind here are irrelevant to a game-theoretic analysis.
But, these events do change the context6 of a game by revealing or hiding
important information to all or some of the players. This paper is a first
step towards a more general project that uses the dynamic epistemic logic
framework to represent changes in the informational context of a game.

Our paper is organized as follows. Section 2 provides the necessary back-
ground on (dynamic) epistemic logic and knowledge structures. Note that
this Section was written for a reader already familiar with the key concepts
and definitions. Consult [3] and [15] for motivations and a broader discussion
of the literature. Our main result is in Section 3.2 with the technical pre-
liminaries found in Section 3.1. We conclude in Section 4 with a discussion
of topics for future research.

2. Background

2.1. A Primer on Dynamic Epistemic Logic

We assume the reader is familiar with the basics of (dynamic) epistemic
logic, and so, we only give the key definitions here (see the textbooks [18, 3]
for an introduction to the subsequent definitions). Let I be the finite set of
players and At a (finite or infinite) set of atomic propositions.7

Definition 2.1 (Epistemic Language). The epistemic language, denoted
LEL, is the smallest set of formulas generated by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

6Here, we take the “context” of a game to be all events that influence the players’
beliefs in the game situation.

7Atomic propositions are intended to represent properties of states of nature.
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where p ∈ At and i ∈ I. Define Liϕ as the dual of Ki (i.e., Liϕ := ¬Ki¬ϕ)
and the other boolean connectives (e.g., ∨,→) as usual. /

The intended interpretation of Kiϕ is “agent i knows that ϕ (is true)”.
The standard semantics for LEL are Kripke structures.

Definition 2.2 (Kripke Structure). A Kripke structure (for a set of
atomic propositions At) is a tuple 〈W, {Ri}i∈I , V 〉 where W is a set of states,
Ri ⊆W ×W is an equivalence relation8, and V : At→ ℘(W ) is a valuation
function. To simplify notation, we may write w ∈M when w ∈W . /

Formulas of LEL are interpreted at states in a Kripke model in the standard
way, we only remind the reader of the definition for the knowledge modality:

M, w |= Kiϕ iff for all v ∈W if wRiv then M, v |= ϕ

The central idea of dynamic epistemic logic is to describe events that
change a situation and the (uncertain) perceptions of these events by the
agents’ as a so-called event model.

Definition 2.3 (Event Model). An event model is a tuple 〈E, {Qi}i∈I , pre〉
where E is a set of basic events, Qi ⊆ E ×E is an equivalence relation9 and
pre : E → LEL assigns to each primitive event a formula that serves as a
precondition for that event. We write e ∈ E if e is an event in E . /

The primitive events represent the basic observations available to the
agents in a dynamic situation. Similar to Kripke structures, uncertainty
about which events are taking place is represented by relations Qi. Given
our assumptions that each Qi is an equivalence relation, the intended inter-
pretation of eQif is that agent i cannot distinguish between events e and
f . The key operation of product update describes how to incorporate into a
Kripke structure M (describing an epistemic situation) the epistemic event
described by an event model E .

Definition 2.4 (Product Update). The product update of a Kripke model
M = 〈W, {Ri}i∈I , V 〉 and an event model E = 〈E, {Qi}i∈I , pre〉 is a Kripke
model M⊕E = 〈W ′, {R′i}i∈I , V ′〉 defined as follows:

• W ′ = {(w, e) ∈W × E | M, w |= pre(e)}

8In this paper, we restrict attention structures where the epistemic relations are equiva-
lence relations. These are known in the literature as S5-structures or Aumann structures.

9To keep things manageable for this initial study, we restrict attention to event models
with equivalence relations. For much of what follows, this assumption is not crucial.
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• (w, e)R′i(w
′, e′) iff wRiw

′ and eQie
′

• (w, e) ∈ V ′(p) iff w ∈ V (p) /

This operation (together with variants appropriate for modeling belief
and preference change) has been extensively studied in the literature. We
do not provide an overview of this literature here: See [12, 3] for an extensive
analysis. Rather, the focus is on how to understand this theory of informa-
tion dynamics in the context of models of knowledge (and beliefs) typically
found in the game theory literature. We need one additional notion from
the general theory of modal logic.

Definition 2.5 (Bisimulation). Suppose thatM1 = 〈W1, R1, V1〉 andM2 =
〈W2, R2, V2〉 are Kripke structures. A nonempty relation Z ⊆W1 ×W2 is a
bisimulation provided for all w1 ∈W1 and w2 ∈W2, if w1Zw2 then:

(atomic harmony) For all p ∈ At, w1 ∈ V1(p) iff w2 ∈ V2(p).

(zig) If w1R1v1 then there is a v2 ∈W2 such that w2R2v2 and v1Zv2.

(zag) If w2R2v2 then there is a v1 ∈W1 such that w1R1v1 and v1Zv2.

We write M1, w1 ↔ M2, w2 if there is a bisimulation relating w1 with w2.
We writeM1 ↔M2 if there is a bitotal bisimulation betweenM1 andM2,
that is a bisimulation Z such that for every v ∈M1 there is some W ∈M2

with vZw and vice versa. The relation Z is called a simulation from M1

to M2, denoted M1, w1 → M2, w2, if Z satisfies the atomic harmony
and zig properties. Z is called total provided for each w1 ∈ W1 there is a
w2 ∈W2 such that w1Zw2. Finally, Z is called functional if it is total and
a function from W1 to W2 (i.e. for every w1 ∈W1 and w2, w̃2 ∈W2 it is the
case that w1Zw2 and w1Zw̃2 implies w2 = w̃2). /

2.2. Knowledge Structures

Knowledge structures were introduced in [15] as an alternative semantics for
the basic epistemic language LEL.10 They are non-probabilistic versions of
Harsanyi type spaces which are the predominant model of knowledge and
beliefs in the literature on the epistemic foundations of game theory ([8]
offers some explanation about why this is the case).

The key concept is a κ-world (also called a type in the game theory
literature) describing the players’ infinite hierarchy of knowledge (belief) of
a given state of affairs.

10See [15] for an extended discussion of knowledge structures aimed at game theorists.
Fagin [14] and Fagin and Vardi [17] show how variants of knowledge structures can provide
an elegant semantics for many modal logics.
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Definition 2.6 (κ-world). Let S be a (finite or infinite) nonempty set
(whose elements are called states). A κ-world is a vector of functions
f = 〈f0, f1, f2 . . .〉 of length κ (a possibly infinite ordinal) defined induc-
tively as follows.

• A 1-world is a vector 〈f0〉 where f0 is a state of nature (i.e., f0 ∈ S).11

• For κ > 1 of the form κ = λ+1 (i.e. κ is a successor ordinal) a κ-world is
a vector 〈f0 . . . fλ〉 such that 〈fi | i < λ〉 is a λ-world and fλ is a function
from the set of agents I to the power set of the set of λ-worlds over S
(i.e., fλ : I → ℘(Fλ(S)), where Fλ(S) denotes the set of all λ-worlds
over S) that satisfies the following conditions. Let f<β denote the initial
segment of f of length β.

Extendability If 0 < α < λ, then g ∈ fα(i) iff there is some h ∈ fλ(i)
such that g = h<α (i.e., higher-order worlds are extensions of lower-
order worlds and every lower-order world has at least one higher-order
extension).

In addition, since we intend κ-worlds to represent the knowledge of the
players, we impose two additional conditions:

Correctness For each agent i ∈ I, f<λ ∈ fλ(i) (i.e., every agent must
consider the actual state of the world possible).

Introspection For all i ∈ I, if 〈g0, g1, . . .〉 ∈ fκ(i), then gλ(i) = fλ(i),
for all λ with 0 < λ < κ (i.e., players cannot consider states possible
that differ in their description of their own lower-order beliefs). /

• Finally, for κ a limit ordinal a κ-world is a vector of functions 〈fi | i < κ〉
such that for every λ < κ the vector 〈fi | i < λ〉 is a λ-world.

We denote the set of all κ-worlds over S by Fκ(S).

The intended interpretation is that fκ(i) ⊆ Fκ(S) is the set of all κ-
worlds player i considers possible. Then, κ-worlds f are descriptions of the
state of affairs and the players higher-order knowledge (up to level κ). Thus,
we can interpret the basic epistemic language at κ-worlds. For simplicity,
we assume there is an atomic proposition E for every subset of the set of

11For the comparison with epistemic logic, it is useful to think of the set of states S
as the set of propositional valuations on a set At of atomic propositions. In this case f0
would be a propositional valuation function.
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states S (i.e., At = ℘(S)). This language is interpreted as follows:

f |= E ⇔ f0 ∈ E
f |= ¬ϕ⇔ f 6|= ϕ

f |= ϕ ∧ ψ ⇔ f |= ϕ and f |= ψ

f |= Kiϕ⇔ for each g ∈ fl(i) : g |= ϕ

where l is the quantifier depth12 of ϕ.

There is an alternative way of defining truth of the knowledge modality by
defining an accessibility relation on Fκ(S), which transforms Fκ(S) into a
Kripke model. We can then use the standard definition of a modal operator.
For a κ-world f = 〈f0, f1, . . .〉, let f i = 〈f1(i), f2(i), . . .〉 (note that the state
of nature is not part of f i) and define a relation ∼i on the Fκ(S) as follows:
f ∼i g iff f i = gi (equality is defined component-wise). If f ∼i g then we
say f and g are equivalent according to agent i. It is easy to see that these
relations are equivalence relations. They turn Fκ(S) into a Kripke structure
(with At = ℘(S) and the valuation function V defined by w ∈ V (E) iff
w ∈ E). Fagin et al. show ([16, Theorem 2.4]) that the interpretation of
the epistemic language given above coincides with the interpretation of the
epistemic language obtained by interpreting 〈Fκ(S), {∼i}i∈I , V 〉 as a Kripke
structure. So, there are two equivalent ways to interpret the basic epistemic
language on the set Fκ(S) of κ-worlds. In the remainder of the paper, we
will use whichever definition is most convenient.

We are interested in general maps between Kripke structures and knowl-
edge structures. To this end, we fix a set of atomic propositions At and
assume that the state space S is the set of propositional valuations of
At, i.e., S = ℘(At). To simplify our exposition, we identify p ∈ At with
{e ∈ S | p ∈ e} ⊆ S, i.e. the set of valuations containing p.

The key observation is that every Kripke structure can be naturally as-
sociated with a substructure of 〈Fω(S), {∼i}i∈I , V 〉. The mapping is defined
as follows.13

Definition 2.7 (Embedding from Kripke structures to knowledge struc-
tures). Let M = 〈W, {Ri}i∈N , V 〉 be a Kripke structure. We associate with

12Quantifier depth is defined as usual by induction on the structure of ϕ ∈ LEL: For-
mally, qd(p) = 0, qd(¬ϕ) = qd(ϕ), qd(ϕ ∧ ψ) = max(qd(ϕ), qd(ψ)), and qd(Kiϕ) =
1 + qd(ϕ).

13The mapping is a functional simulation but in general not a bisimulation onto its
image. Nonetheless, it is a natural mapping in the sense that when applied to connected
components K of 〈Fω(S), {∼i}i∈I , V 〉 it is simply the embedding of K into 〈Fω(S), {∼i
}i∈I , V 〉
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each state w ∈ W in M an ω-world fM,w = 〈fw0 , fw1 , fw2 , . . .〉 where the fwα
are defined by synchronous induction on all worlds w ∈W :

• fw0 = {p | w ∈ V (p)}.
• To define the function fwk+1 assume inductively that fx0 , fx1 , fx2 , . . ., fxk

have been defined for all worlds x ∈ W (k a natural number). Then,
fwk+1(i) = {〈fx0 , fx1 , . . . fxk 〉 | wRix}.

Define the map r : W → Fω(℘(At)) as r(w) = fM,w. /

For every ordinal λ we can continue the construction to get a vector
〈fxi | i < λ〉. Thus this map naturally generalizes to maps rλ : W →
Fλ(℘(At)) for every ordinal λ. To simplify notation, assume for the rest
of the paper that S = ℘(At) and that S is finite. The map rκ gives a
precise way to connect the class of all Kripke structures to a single structure
Mκ = 〈Fκ(S), {∼i}i∈I , V 〉 for any κ. The following observation is immediate
from the relevant definitions.

Observation 2.8. Let M = 〈W, {Ri}i∈I , V 〉 be a Kripke structure and Mκ

be the structure 〈Fκ(S), {∼i}i∈I , V 〉.

1. The relation wZf iff rκ(w) = f is a functional simulation from M into
Mκ, but, in general, is not a bisimulation.

2. There is an ordinal λ, depending on M such that Z is a bisimulation if
κ ≥ λ.14

3. In particular, if M is finite, then there is a bisimulation between M and
r(M) = 〈r[W ], {∼i}, V 〉. Moreover, r(M) is the minimal bisimulation
contraction of M, i.e. the Kripke model of minimal cardinality that
allows for a total bisimulation to M.

Proof. i) The functionality of Z is obvious, since rκ is a function. Atomic
harmony holds by definition of fw0 . To see that zig holds let v0, v1 ∈M with
v0Riv1 and w ∈ Mκ with v0Zw. Since Z is functional we have w = fM,v0

An induction shows that fv0i = fv1i for every i ≤ κ, thus fM,v0(i) = fM,v1(i).
Thus by definition of ∼i we have fM,v0 ∼i fM,v1 . By definition of Z we also
have v1ZfM,v1 , thus zig holds. Example 3.10 of [15] shows that that Z is in
general not a bisimulation.

14In fact, for M = Fκ(S) we have λ = κ. Moreover the model Mκ is a terminal object
in the category of Kripke models over At with total simulations as morphisms. Though
Fκ(S) and Fλ(S) are not bisimilar for κ 6= λ.
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ii) Choose λ′ such that for all v, w ∈M holds: If there is some µ such that
rµ(v) 6= rµ(w), then rλ′(v) 6= rλ′(w) and let λ := λ′ + ω. We have to show
that zag holds: Let vZw with Z defined as above and let w ∼i w′. We
have to show that there is some v′ ∈ M with rλ(v′) = w′. Indeed, since
w ∼i w′ we have for all µ < λ that w′ � µ ∈ wµ(i). By the construction
of rλ this implies that for every µ < λ there is some v′ ∈ M such that
w′ � µ = rµ(v′). By the choice of λ′ and the extendability condtion, we have
that ∃µ ∈ [λ′;λ] : rµ(v′) ∈ wµ(i) implies ∀µ ∈ [λ′;λ] : rµ(v′) ∈ wµ(i). In
particular we have by the limit condition that rλ(v′) = w′ as desired. See
chapter 3 of [15] for more details.
iii) Obvious from ii) and the definition of rω.

3. Information Dynamics on Knowledge Structures

Our aim is to examine natural transitions between types in a knowledge
structure. These transitions are intended to represent some type of rea-
soning process or information update. For this initial study, we focus on
the operation of product update (restricted to equivalence relations as in
Definition 2.4).

3.1. Technical Preliminaries: Generalized Product Update

Our first contribution is to define a sequence of products×Nn between Kripke
structures. The idea to apply product update between Kripke structures
(rather than Kripke structures and event models) was initially proposed by
Jan van Eijck and colleagues [13]. We follow the same basic idea, although
our approach differs in a technical, but crucial, way.

In order to generalize the product update operation so that it applies be-
tween two Kripke structures, we must replace the precondition function with
something appropriate for merging two Kripke structures. Our approach is
to explicitly mark which of the formulas we are interested in, and treat these
formulas as atomic propositions. 15 Fix a set I of players and At of atomic
propositions (for simplicity assume both are finite).

Definition 3.1 (Language extension). 1. Let T ⊆ LEL with At ⊆ T . For
every ϕ ∈ T we introduce a new constant ϕ̌ called the name of ϕ. Let

15In general, this type of language extension can be used to model agents with limited
memory. For instance, this is needed for an analysis of situations such as the sum and
product riddle involving the dialogues: A: I don’t know ϕ. B: I knew you didn’t know
before you said that (cf. [24] for an analysis of this puzzle in Public Announcement Logic).
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Ť := {ϕ̌|ϕ ∈ T }. The language extension with T , denoted by LTEL,
is the epistemic language with Ť as atomic propositions. By a slight
abuse of notation we write p instead of p̌ for p ∈ At ⊆ T . We denote the
valuation function over the language LTEL by VT . As usual, we omit the
subscript when it is clear from the context.

2. Let M = 〈W, {Ri}i∈I , V 〉 be a Kripke model with atomic propositions
At and let T ⊆ LEL with At ⊆ T . ThenM can naturally be interpreted
as a Kripke model over LTEL by defining VT as: w ∈ VT (ϕ̌) iffM, w � ϕ.
We denote M viewed over LTEL by MT . /

In ⊕-updates every state v in the event model comes with a (generally
complex) formula ϕ that is the precondition for v to occur. That is (w, v)
is only defined if M, w � pre(v). This is exactly the idea of the ×T update
defined below: pairs of states are in the new model only if they agree on the
formulas in T .

Definition 3.2 (Product update). i) Let T ⊆ LEL with At ⊆ T . Let
M = 〈W, {Ri}i∈I , V 〉 and M′ = 〈W ′, {R′i}i∈I , V ′〉 be two Kripke models
over LTEL. The product model M×M′ = 〈W ′′, {R′′i }i∈I , V ′′〉 over LTEL is
defined as follows:

• W ′′ = {(w,w′) | w ∈ W,w′ ∈ W ′ and for all ϕ̌ ∈ Ť : w ∈ VMŤ (ϕ̌) iff

w′ ∈ VM′Ť (ϕ̌);

• (w,w′)R′′i (v, v′) iff wRiv and w′R′iv
′; and

• (w,w′) ∈ V ′′Ť (ϕ̌) iff w ∈ VMŤ (ϕ̌) (and thus also w′ ∈ V ′Ť (ϕ̌) ).

ii) The generalized product update of M and M′ over T , denoted by
M×T M′ is the model M×M′ as defined above interpreted as a model
over LEL. (That is: removing all atoms ϕ̌ with ϕ ∈ T \ At and identifying
p̌ with p for all p ∈ At.) /

We write M ×T M′ where M and M′ are Kripke models over LEL,
meaning that we interpret M and M′ as being models over Ť and do the
×T -update as defined above. The procedure that we follow to compute this
product runs as follows:

1. Pick a set T of statements to keep track of,

2. Build the Product in LTEL, and

3. Remove the additional information, i.e., restrict the valuation function
from Ť to At.
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The following example demonstrates this procedure.

Example 3.3. Let T = {p,K1p,K2p,K1¬p,K2¬p}. Then the product of
the two models is calculated as follows.

M

p

w1

¬p

w2

2 ×T

M′

p

v1

¬p

v2

¬p

v4

p

v3

2

1
2

M×T M′

p

(w1; v1)

¬p

(w2; v4)

=

Note that the reflexive and transitive arrows are not drawn in the above
picture for simplicity. The set T is rich enough to uniquely describe all
knowledge assignments of level at most one. Thus, the product reflects a
merging of models taking into account the agents’ first-order information.
The fragments of T true at the individual worlds are:

M, w1 � {p,K1p} M, w2 � {K1¬p} M′, v1 � {p,K1p}
M′, v2 � ∅ M′, v3 � p M′, v4 � {K1¬p}

The only pairs satisfying the same fragment of T are (w1, v1) and (w2, v4).
Observe that in the model M×T M′ we have:

M×T M′, (w1; v1) � {p,K1p,K2p}

which is different from the fragment of T satisfied by M, w1.

In general, taking a generalized product update consists of two steps:
The first is picking a set of statements T ⊇ At that one wants to keep track
of and extending the language to LTEL. The second is to do generalized
product update ×T , that is the normal product × over LTEL followed by
omitting all the information about the valuation of Ť \ At, i.e., making the
newly created model an LEL model again. The above example shows that
the ×T product does not preserve higher order information.

Remark 3.4. There are epistemic models K, w and L, v over LEL a fragment
T of LEL and some ϕ ∈ T \ At such that (v, w) ∈ K × L (the product over
LTEL) and K × L, (v, w) � ϕ̌, but K × L, (v, w) 6� ϕ. (Where in the last
formula ϕ is evaluated as a formula of LEL.)
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There is a close connection between generalized product update and the
⊕-update. In both cases, the result is not the complete cartesian product
between the two state spaces, but a subset that is characterized by a certain
set of formulae. The precise connection between the two concepts is clarified
by the following lemma.

Lemma 3.5. For every event model E there is some fragment T ⊆ LEL and
a Kripke model M′ (for the language LTEL) such that ⊕E is the same as
×TM′ (i.e., for all Kripke models M, M⊕E is isomorphic to M×T M′).

Proof. Let E = 〈E, {Qi}i∈I , pre〉 be an event model. Let T be the set
{pre(e) | e ∈ E} ∪ At. Construct the model M′ = 〈W ′, {R′i}, V ′〉 as follows:
Let W ′ be the set of pairs (e, Le) where e ∈ E and Le ⊆ T is a maximally
consistent subset of T containing pre(e). The relations R′i are defined as
(e, Le)Ri(e

′, L′e) iff eQie
′, and the valuation V ′ is defined by Le (i.e., (e, Le) ∈

V (ϕ̌) provided ϕ̌ ∈ Le). It is easy to check that this M′ has the desired
properties.

Corollary 3.6. If there is an upper bound for the quantifier depths of the
preconditions in the event model E (i.e., the set {qd(pre(e)) | e ∈ E} has an
upper bound) then the set T in the above lemma can be chosen finite. This
holds in particular if E is finite.

Proof. Let n be an upper bound for the quantifier depths of {pre(e) | e ∈
E}. Recall that Fn(℘(At)) is finite, and so, there are characteristic formulae
ϕt for every t ∈ Fn(℘(At)) (that is, Fn(℘(At)), s � ϕt ⇔ s = t). Let
T := {ϕe | e ∈ Fn(℘(At))} ∪ At and construct the model M′ as follows:

W ′ := {(e, t)|e ∈ E, t ∈ Fn(℘(At)) and Fn(℘(At)), t |= pre(e)},

let (e, t)R′i(e
′, s) if eQie

′, and define V ′ as:

(e, t) ∈ V ′(ϕ̌) iff Fn(℘(At), t � ϕ

The sets S = {ϕt | t ∈ Fn(℘(At))} chosen above are special in that these
sets reflect all possible knowledge assignments up to depth n. We denote
the resulting set of formulas by Nn (i.e., Nn = {ϕt | t ∈ Fn(℘(At))} ∪ At).

Remark 3.7. i) In the above proof, we can turn M′ into an event model
E ′ by letting pre(e, t) = ϕt. In this case we have M×Nn M′ = M⊕
E ′ for all M. In particular the model E ′ is a special event model that
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only has preconditions from Nn. This follows a general pattern: The
initial strength of arbitrary event models is that they allow for a very
intuitive description of events in a multi-agent setting. However, from a
technical point of view arbitrary event models can be difficult to handle.
Therefore it sometimes proves useful to translate arbitrary event models
into a certain subclass of event models which are easier to work with. For
instance, [11] defined a class of canonical event models that are useful for
studying when two event models are equivalent.

ii) The translation of an event model into a Kripke model blurs the distinc-
tion between static descriptions of situations and descriptions of events.

There is an interesting peculiarity of the ×T -products. Obviously, ×T is
commutative, but the following example shows that it is not associative.16

Example 3.8. This example is similar to Example 3.3. Suppose that T =
{p,K1p,K2p,K1¬p,K2¬p}. Consider the following LEL-models which we
interpret as LTEL-models.

M1

p

w1

¬p

w2

2 ×T

M2

p

v1

¬p

v2

¬p

v4

p

v3

2

1
2

M3

p

u1

¬p

u2

×T

We now show that (M1×T M2)×T M3 6=M1×T (M2×T M3). As we
already noted in the previous example (Example 3.3), M1 ×T M2 = M3.
In particular, (M1 ×T M2) ×T M3 = M3 ×T M3 = M3 where the last
equivalence holds since u1 and u2 satisfy different formulas from T .

On the other hand, note that the following formulas from T are true at
states in M3:

M3, u1 � {p,K1p,K2p} M3, u2 � {K1¬p,K2¬p}

16In general, it is clear that the process of consecutive learning is not commutative. One’s
actions in some event B can depend on having learned A before. In our formalization, the
non-associativity captures this intuition: (A×SB)×S C is to be read as being in situation
A and learning B, then C, whereas A ×S (B ×S C) = A ×S (C ×S B) corresponds to
learning B and C at a time. A similar phenomena has been noticed in the belief merging
literature (cf. [21, Section 5.1]).
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However, there are no states in M2 satisfying precisely these formulas, so
M2×T M3 = ∅ and consequentlyM1×T (M2×T M3) = ∅. Thus, we have
(M1 ×T M2)×T M3 6=M1 ×T (M2 ×T M3). 17

The interpretation of this statement is that first learning E and then
learning E ′ is different to learning E and E ′ at the same time. To be more
precise, we have (E ×T F) ×T G 6= E ×T (F ×T G) 6= E ×T F ×T G18 This
non-associativity shows that our framework is rich enough to distinguish
between consecutive learning and receiving all information at once.

These observations should be contrasted with the theory developed in
[13]. The authors of [13] are concerned with updates where all preconditions
are boolean combinations of the ground variables (describing non-epistemic
facts about the state of the world). Learning facts about the world is as-
sociative (cf. [13, Theorem 1]), whereas learning facts about the players’
previous knowledge is not!

Van Eijck et al. [13] study the monoid generated by ×At products. Our
primary goal in this paper is to understand how the ⊕-update works in type
spaces. To that end, we first generalize a result from [10].

Theorem 3.9. Let M1 be a Kripke structure such that for any v, w ∈ M
there is an epistemic formula ϕ distinguishing v and w (i.e. M, w � ϕ and
M, v � ¬ϕ). Let M2 be an arbitrary Kripke structures. Then there is a set
of formulas T and LTEL-Kripke structure M′ such that M1 ×T M′ ↔ M2

if and only if there is a total simulation from M2 to M1. Furthermore, if
the model M1 is finite the set T can be chosen finite.

Proof. The direction from left to right is easy: LetM′ and T be such that
M1×T M′ =M2. It is easy to see that the mapM1×T M′ →M1 sending
every pair (w,w′) to w is a functional, hence total, simulation.

For the direction from right to left: Let Z be a total simulation fromM2

to M1. First we define a Kripke model M◦ = 〈WM◦ , {RM◦i }i∈I , VM
◦〉:

• WM◦ = {(t1, t2)|ti ∈Mi, i = 1, 2 and t1Zt2}

• (t1, t2)RM
◦

i (s1, s2) iff t1R
M1
i s1 and t2R

M2
i s2

• (t1, t2) ∈ VM◦(p) iff t2 ∈ VM2(p) (and thus also t1 ∈ VM1(p) )

17There are examples where both (M1 ×T M2)×T M3 and M1 ×T (M2 ×T M3) are
non-empty; however, they are more complicated while making the same point.

18Here E ×T F ×T G is the obvious generalization of ×T where all tuples (e, f) in the
definition are replaced by triples (e, f, g).
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First we show that the model M◦ is bisimilar to M2. We show that the
projection map π2 mapping every (t1, t2) ∈ M◦ to t2 ∈ M2 is a bitotal
bisimulation (recall Definition 2.5). The atom condition is clear. For forth
assume that (t1, t2)π2t2 and that (t1, t2)RM

◦
i (s1, s2). By the definition of

RM
◦

i we have t2R
M2
i s2 and by definition of π2 we have (s1, s2)π2s2, thus

forth is fulfilled.
Similarly, for back assume that (t1, t2)π2t2 and that t2R

M2
i s2. Since Z is

a total simulation and t1Zt2 holds by the construction ofM◦, there is some
s1 ∈ M1 with s1Zs2 and t1R

M1
i s1. But this means that (s1, s2) ∈ M◦ and

that (t1, t2)RM
◦

i (s1, s2), thus proving the back condition.
SinceM2 ↔M◦, it suffices to show that there is someM′ withM1×T

M′ =M◦.
Note, that the projection π1 :M◦ →M1 sending each pair (t1, t2) to t1

is a functional left simulation. The atom condition is clear, and the rest can
be shown with arguments similar to ones given above.

Now, pick a set T ∗ ⊆ LEL that contains a distinguishing formula for
any v, w ∈ M1 and let T := T ∗ ∪ At. Turn M◦ into an LTEL-model M′
by defining: (t1, t2) ∈ V T (ϕ̌) iff M1, t1 � ϕ. Since T ∗ is separating, s1 ∈
M1 and (t1, t2) ∈ M◦ satisfy the same Ť -formulae iff s1 = t1. Therefore
M1 ×T M′ =M◦ as desired. Furthermore, if M1 is finite, then the set T ∗
can be chosen finite, thus proving the last statement.

Remark 3.10. [10] contains a proof for a similar statement about ⊕-updates
in the finite case. However, the generalization to infinite Kripke models does
not hold for the ⊕-update.

Remark 3.11. Note that the modelM′ constructed in the right-to-left direc-
tion of the prove of Lemma 3.5 is in general not a LEL model that is simply
interpreted as an LTEL model. That is: There is in general some ϕ ∈ T and
some w ∈ M′ such that M′, w � ϕ̌ but M′, w 6� ϕ (where ϕ̌ is an atom and
ϕ is a formula evaluated in M′ interpreted as a Kripke model over At (i.e.
only containing atoms from {p̌ | p ∈ At}). That is: to gain the expressive
power of updating with an arbitrary event model, one needs the class of all
LTEL-models. Interestingly enough, this is no longer true when we restrict
ourselves to the class of finite Kripke structures. There, the full expressive
power of the class of all ⊕-updates is already given by the class of all fi-
nite Kripke models over LEL together with the set of all ×Nn products for
n ∈ ω. More formally, we have the following fact (whose straightforward,
but tedious, proof we leave out).

Fact 3.12. Let K = 〈W, (Ri)i, V 〉 be a finite Kripke model without bisimilar
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points and let L = 〈W ′, R′i, V ′〉 be a finite Kripke model such that L is ob-
tainable from K by a product update. Then, there is some T ⊇ At and some
Kripke model M over LEL such that K ×T M = L.

3.2. Characterization Result

As discussed in the previous section, every ⊕-update can be written as a
×T -update over a language in which the formulas in T are treated as atomic
propositions. This will help us represent the product update in knowledge
structures.

First, we need an equivalent to the extension of atomic propositions
on types: For n ∈ N let Sn denote the set of all possible n-worlds, thus
Sn = Fn(S) and S0 = S). Technically, this is redundant, though it helps
conceptually to distinguish Fn(S) as a type space generated by S and Sn
which is the same type space reinterpreted as new set of atoms. By switching
between those interpretations, every n + k world over S can be seen as a
k-world over Sn and thus there is a canonical embedding Fω(S)→ Fω(Sn).19

For any two Kripke models K, v and L, w we have defined the product
update (K × L, (v, w)) over the unextended language LEL above. Further-
more, we have seen that there is some κ such that rκ is a bisimulation of
K onto its image. Since rκ(v) is obviously in the image of rκ this implies
that parts of K are somehow coded in rκ(v). The idea of the following defi-
nition is that we can unravel enough information about K and L from rκ(v)
and rκ(w) to determine rκ((v, w)). We define a product ×0 below and we
will show later (lemma 3.15) that rκ((v, w)) = rκ(v)×0 rκ(w). As with the
original definition of a κ-world (see 2.6), the definition is by induction.

Definition 3.13. Suppose that n ∈ N and f ,g ∈ Fω(S). Then the ×0-
product (f ×0 g) ∈ Fω(S) ∪ {∅} is defined as follows:

• (f ×0 g)0 = 〈f0〉 iff f0 = g0 and ∅ otherwise.

• (f ×0 g)m(i) = {(f ′ ×0 g
′)m−1 | f ′ ∈ fm(i),g′ ∈ gm(i)}

This definition can be lifted to an analogue of the generalized product up-
date: The operator ×n will correspond to a product update with T = Nn.
First observe that the above definition of ×0 works equally well if all S are
replaced by Sn. As in the case of the generalized product update, the ×n
update implicitly consists of two steps: First a product update between two

19Note that this map is not surjective for n ≥ 1: For instance the introspection conditions
of Fk+1(S) gives some limitations on which elements of F2(Sk) can come from Fk+1(S).
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elements of Fκ(Sn) followed by a removal of information, i.e. a projection
from Sn to S. As with general product updates, the definition contracts
these two steps into one:

Definition 3.14. Let π̄ : Sn → S be the projection map sending the tuple
〈f0 . . . fn−1〉 to f0. Define ×n : Fω(Sn)×Fω(Sn)→ Fω(S) as follows:

• (f ×n g)0 = 〈s0〉 iff π̄(f0)) = π̄(g0) = s0, and ∅ otherwise.

• (f ×n g)m(i) = {(f ′ ×n g′)m−1 | f ′ ∈ fm(i),g′ ∈ gm(i)}. /

The following lemma describes the relationship between the ×Nn-product
and the×n-product. Basically, the×Nn product of two Kripke models (K, w)
and (L, v) carries the same information as the ×n-product on the types r(v)
and r(w).

For technical convenience we need a definition before we state the lemma:
Recall thatNn\At was chosen to be a set of characteristic formulae for Fn(S).
In particular, every state w in a Kripke structure K over LEL satisfies exactly
one formula of Nn \ At. In particular for any Kripke model L over LNnEL we
have that (v, w) ∈ K ×Nn L implies that there is exactly one ϕ̌ ∈ Nn \ At
with w ∈ V (ϕ̌). We call Kripke models over LNnEL satisfying this property
admissible. Since every e ∈ Fn(S) satisfies exactly one formula from Nn\At
we have that every state of nature in an admissible Kripke model corresponds
to exactly one e ∈ Fn(S) and we can define a map r′ from admissible Kripke
models to Fω(Sn) in the same way as we defined r.

Lemma 3.15. Let n ∈ ω and let K,L, be Kripke models over LNnEL. Let v ∈ K,
w ∈ L satisfaying the same Nn-formulae. Let (v, w) ∈ K ×Nn L denote the
product of v and w in K ×Nn L. Then we have r((v, w)) = r′(v) ×n r′(w),
i.e., the following diagram commutes:

K,L

r′,r′

��

×Nn // K ×Nn L

r

��
Fω(Sn),Fω(Sn),

×n // Fω(S)

Proof. Let n ∈ N and v ∈ K, w ∈ L satisfying the same Nn-formulae.
We inductively show that (r′(v) ×n r′(w))k = r(v, w)k. for k = 0 this is
trival: If v and w satisfy the same atomic propostions over Ňn we have
(r′(v) ×n r′(w))0 = r((v, w))0 = {p ∈ At : v ∈ V K(p)}. If they satisfy
different atomic propositions we have (v, w) 6∈ K×NnL and r′(v)×nr′(w) = ∅.
Now assume the statement holds for k − 1 and let i ∈ I (the set of agents).
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First, we show r(v, w)k(i) ⊆ (r′(v) ×n r′(w))k(i). Let x ∈ r((v, w))k(i),
thus x is a k − 1-world. By construction of the map r there is some x̃ in
K ×Nn L such that x̃Ri(v, w) and r(x̃)k−1 = x. Thus there are x1 ∈ K and
x2 ∈ L such that the product of x1 and x2 in K ×Nn L is x̃ - in particular
x1Riv and x2Riw and x1 and x2 satisfy the same Nn-formulae. In particular,
r′(x1)×nr′(x2) 6= ∅ and by induction we have that (r(x1, x2))k−1 = (r′(x1)×n
r′(x2))k−1. On the other hand, we have r′(x1)k−1 ∈ r′(v)k(i) and similarly
for x2 and w by the construction of r′. In particular, we have x = (r′(x1)×n
r′(x2))k−1 ∈ (r′(v)×n r′(w))k(i) as desired, thus proving the first direction.

The argument for the reverse inclusion r(v, w)k(i) ⊇ (r′(v)×n r′(w))k)(i)
is similar: Let x ∈ (r(′v) ×n r′(w))k(i). Then there are x̃1 ∈ r′(v) and
x̃2 ∈ r′(w) such that (r′(x̃1) ×n r′(x̃2))k−1 = x and such that there are
x1 ∈ K, x2 ∈ L such that r′(xi) = x̃i and x1Riv and x2Riw hold. Since
x̃1×n x̃2 exists, x1 and x2 satisfy the same Nn-formulae. In particular there
is some (x1, x2) in K ×Nn L with (x1, x2)Ri(v, w). By construction of r we
have r((x1, x2))k−1 ∈ r((v, w))k and by induction we have r((x1, x2))k−1 = x,
thus proving the reverse direction.

Note that the calculation of f×ng from types f and g is computationally
efficient: In order to calculate the k-th level of f ×n g only the first n + k
levels of f and g are required.

The above definition of ×n updates gives a way of modeling dynamics on
a type space—thus, opening up the field of epistemic game theory to belief
dynamics. Event models were designed as a very intuitive and natural tool
for representing epistemic events in a multiagent setting. The translation of
event models into the corresponding pair of Kripke models and a product
relation ×Nn , and further into a type and a relation ×n allows us to calculate
the change of epistemic status brought about by an event model E .

On the other hand, every product update with a finite event model can
be written as a ×n-update, thus it suffices to understand the structure of ×n
to study product updates. Thus, Fω(℘(S)) is not only a universal Kripke
model in the static sense, together with the products ×n is also universal in
that it incorporates all potential updates.

On Kripke structures, translating event models into types allows us to
study updating events as separate entities without any reference to a ground
type. Furthermore, the translation blurs the distinction between types as
static descriptions of epistemic states and knowledge changing events.

One natural and important question is: Given two types f and g, is there
a possible piece of incoming information that transforms f into g?

The intuition behind the answer given by the following theorem is: In the
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entire model, the agents are assumed to be omniscient and non-forgetting.
Thus, an event cannot add any uncertainty about the state of nature, it can
only remove some states from the sets of possible states. In contrast, for
the higher order information, essentially anything is possible as long as it
is compatible with individuals gaining new information about the state of
nature. In particular, an epistemic event may increase the uncertainty about
other agents’ types. This idea is captured by the following definition.

Definition 3.16 (Admissibility of Types). For a type f ∈ Fα(S) we say
that a type g is admissible for f iff

• f0 = g0;

• for all agents i: g1(i) ⊆ f1(i); and

• for α > 1: If h ∈ gα(i) then there is some h′ ∈ fα(i) such that h is
admissible for h′. /

Our characterization theorem is similar to Theorem 3.9.

Theorem 3.17. Let f ,g ∈ Fα(S) be types such that g is obtainable by an
update from f , i.e. there is some n and some h ∈ Fα(Sn) such that f ×nh =
g. Then g is admissible for f . If the submodel of Fω(S) generated by f is
finite also the converse holds true.

Before we can prove this theorem, we recall the following result from
infinite combinatorics.

Theorem 3.18. (König’s Lemma) Let T be an infinite, finitely branching
tree. Then, T has an infinite branch.

Proof. Construct an infinite branch 〈x0, x1, . . .〉 as follows: x0 is the root.
For i > 0: If x0, . . . xi are already in the branch, pick a successor xi+1 of xi
that on an infinite path (since the tree is finitely branching such a successor
always exists). Then 〈x0, x1, . . .〉 is an infinite branch.

Proof. of Theorem 3.17 The first statement is straightforward: Let F and
G be the epistemic submodels of Fω(S) induced by f and g, respectively.
Assume that there is some h ∈ Fω(Sn) such that f ×n h = g. By Lemma
3.15, this is equivalent to saying that F ×Nn H = G, where F ,G,H are
the generated Kripke models (over LNnEL) from f ,g, and h. By Theorem
3.9 there is a total simulation S from G to F . We inductively show that
every g′ ∈ G is admissible for every f ′ ∈ F with f ′Sg′. The 0th-level is
clear by definition of a simulation. Now it suffices to show that definition of
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admissibility is fulfilled at the 1st level: Since we do this for all g′ ∈ G the
rest follows from the inductive definition of admissibility and the map r. To
see that admissibility is fulfilled at the 1st level, let h ∈ G with g′ ∼i h. By
definition, there is a h′ ∈ F with f ′ ∼i h′. Thus, every state of nature that
is conceivable for agent i in G via h is also conceivable in F via h′ - this is
exactly the definition of being admissible in the first level.

For the second statement let g be admissible for f and let the submodel
of Fω(℘(S)) generated by g be finite. Again, let F and G be the Kripke
submodels of Fω(S) induced by f and g. Define the Relation Z between F
and G as f ′Zg′ iff g′ ∈ G is admissible for f ′ ∈ F . We will show that Z is
a total simulation from G to F , thus showing that G is obtainable by F via
update (again using Theorem 3.9 and Lemma 3.15).

By assumption, g is admissible for f . We show that whenever g′ ∈ G is
admissible for f ′ ∈ F and g̃ ∼i g′, then there is some f̃ ∼i f ′ such that g̃
is admissible for f̃ . This proves that Z is a left simulation. To see that Z
is total, note that for every g′ in G there is a chain g ∼i1 g1 ∼i2 . . . ∼in g′

connecting g with g′. Let g′ ∈ G be admissible for f ′ ∈ F and g̃ ∼i g′.
We construct an ω-tree (T,≺) as follows: The k-th level consists of all those
types in f ′k+1(i) that enlarge g̃k. The ≺-relation is defined as r ≺ s iff r is an
initial segment of s. By definition of the admissibility relation, every finite
level of T is non-empty. Since the state of nature is considered finite, every
nonempty level is also finite. Thus, by König’s lemma T has an infinite path
P . By construction, f̃ =

⋃
r∈P r is a type and g̃ is admissible for f̃ . Since F

is the substructure of Fω(S) induced by f (and thus by f ′) we have f̃ ∈ F ,
thus the simulation Z relates g̃ to f̃ .

Again, there is an obvious counterpart of Remark 3.11 allowing us to
update with F(S) worlds rather than F(Sn) worlds, provided all the in-
duced Kripke structures involved are finite. To be precise, we can show the
following: Let f ,g ∈ Fω(S) be such that the epistemic submodels of Fω(S)
induced by f and g are finite. Then g is admissible for f if and only if there
is some natural number n and some h ∈ Fω(S) such that f ×n h = g.

4. Conclusion and Future Work

Many different formal models have been used to describe the players knowl-
edge and beliefs in game-theoretic situations. The variety of models reflect
different mathematical conventions used by the various sub-communities, as
well as competing intuitions about how best to describe the players’ beliefs
and reasoning in a game situation. It is important to understand the precise
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relationship between the alternative modeling paradigms. In this paper, we
focused on the two most prominent models found in the literature on the
epistemic foundations of game theory: Kripke- or Aumann- structures and
knowledge structures (non-probabilistic variants of Harsanyi type spaces).

There are two main contributions in this paper. The first is to initiate
a study of “information dynamics” for knowledge structures in the style of
recent work on dynamic epistemic logic (cf. [3]). Such a theory would further
illustrate the subtle relationship between type spaces and Kripke structures
(updating the discussion initiated in [15, 16]). In particular, it allows us to
combine the strengths of both approaches and use event models as a tool to
describe epistemic events. The main technical contribution is the definition
of a product operation ×n on the type space Fω(S). We provide a procedure
that allows us to translate arbitrary event models into types. Furthermore,
we show that the ×n product is powerful enough to simulate all updates by
event models. Furthermore, we prove a characterization theorem (Theorem
3.17) showing when a type can be transformed into another type by updates
with an event model.

This is only an initial study. We see our work here opening up many
different avenues of future research. In particular, we plan on investigating
the following issues in the future.

• What happens if we allow only updating types from a certain subclass
of Fα(Sn) (for example, finite epistemic models 〈Fα(Sn), {∼i}i∈I , V 〉)?

• What are the “behavioral” implications of our main characterization the-
orem (Theorem 3.17)? For example, if a strategy is rational for a type
f in a game G, does that strategy remain rational for all types that are
admissible for f?

• How do we extend the ideas developed in this paper to Harsanyi type
spaces, where the beliefs are represented by probability measures? The
first step is to generalize the dynamic epistemic logic framework to set-
tings where beliefs are represented by probabilities. Fortunately, this has
largely been done (see [4, 1] for details). A very interesting direction for
future research is to explore how to use the probabilistic event models
and product update operation of [4] to prove a result analogous to our
main characterization theorem (Theorem 3.17) for Harsanyi type spaces.

• The relation “obtainable by an update” together with our extended theo-
rem (see Remark 3.11) turns the set of finite induced submodels of FS(w)
into an algebra. Can we characterize this algebra?
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