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Abstract. This paper adds evidence structure to standard models of belief, in the form

of families of sets of worlds. We show how these more fine-grained models support natural

actions of “evidence management”, ranging from update with external new information to

internal rearrangement. We show how this perspective leads to new richer languages for ex-

isting neighborhood semantics for modal logic. Our main results are relative completeness

theorems for the resulting dynamic logic of evidence.
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1. Introduction and Motivation

A rational belief must be grounded in the evidence available to an agent.
However, this relation is delicate, and it raises interesting philosophical and
technical issues. Modeling evidence requires richer structures than found in
standard epistemic semantics where the accessible worlds aggregate all reli-
able evidence gathered so far. Even recent more finely-grained plausibility
models ordering the epistemic ranges identify too much: belief is indistin-
guishable from aggregated best evidence. At the opposite extreme, one might
model evidence syntactically as “formulas received”, but this seems overly
detailed, and we we lose the intuition that evidence can be semantic in na-
ture, zooming in on some actual world.

In this paper, we explore an intermediate semantic level, viz. that of
neighborhood semantics, where evidence is recorded as a family of sets of
worlds. Neighborhood models have long been a technical tool for studying
weak modal logics. But here, we show how they support a notion of evidence
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with matching languages for attitudes based on it, as well as an array of
natural actions that transform evidence.1

Our paper is a pilot study. We develop the basics of neighborhood models
for evidence and belief, and the logics that they support. Then we move to
the main theme of the paper, showing how these models support natural
actions of “evidence management”, ranging from external new information
to internal rearrangement, which provide a richer picture of evidence than
current dynamic logics of information. This dynamic analysis then feeds
back into the design of new static neighborhood logics beyond those explored
in the literature. All this is just the start of a larger project, and we indicate
some further directions at the end.

2. Evidence in Neighbourhood Models

The semantics of evidence that we will use in this paper is based on neighbor-
hood models (cf. [4, Chapter 7] and [18, 10], for modern introductions). For
convenience, we will stick with finite models, though most of our results are
easily generalized to infinite settings. Likewise, we will discuss single-agent
models only, again, mainly for convenience.

2.1. The basic models

Let W be a set of possible worlds one of which represents the “actual”
situation. An agent gathers evidence about this situation from a variety of
sources. To simplify things, we assume these sources provide binary evidence,
i.e., subsets of W , which may, but need not, contain the actual world. In
line with our evidence interpretation, we impose some constraints:

• No evidence set is empty (evidence per se is never contradictory),

• The whole universe W is an evidence set (agents know their ‘space’).

An additional, often-found property is “monotonicity”:

If an agent i has evidence X and X ⊆ Y , then i has evidence Y .

To us, this is a property of propositions supported by evidence, not of evidence
itself. We will model this feature differently later on.

1Precursors to our semantics are found in the study of belief revision [23, 13, 8], sci-
entific theories [29], topological models for knowledge [17], and sensor-based models of
information-driven agency in AI [27].
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Definition 2.1 (Evidence Model). An evidence model is a tuple M =
⟨W,E, V ⟩ with W a non-empty set of worlds, E ⊆ W × ℘(W ) an evidence
relation, and V : At → ℘(W ) a valuation function. A pointed evidence
model is a pairM, w with “actual world” w. When E is a constant function,
we get a uniform evidence model M = ⟨W, E , V ⟩, w with E the fixed
family of subsets of W related to each state by E. ▹

We write E(w) for the set {X | wEX}. The above two constraints on
the evidence function then become:

(Cons) For each state w, ∅ ̸∈ E(w).
(Triv) For each state w, W ∈ E(w).

In what follows, we shall mainly work with uniform evidence models.
While this may seem very restrictive, the reader will soon see how much
relevant structure can be found even at this level.

As stated before, E(w) need not be closed under supersets. Also, even
though evidence pieces are non-empty, their combination through the ob-
vious operation of taking intersections need not yield consistent evidence:
combining disjoint sets will lead to trouble. But importantly, even though
an agent may not be able to consistently combine all of her evidence, there
will be maximal collections that she can safely put together:

Definition 2.2 (Maximal consistent evidence). A family X of subsets of W
has the finite intersection property (f.i.p.) if

�
X ≠ ∅. We say X has

the maximal f.i.p. if X has the f.i.p. but no proper extension of X does. ▹

We will now develop the logic of this framework. Clearly, families of sets
give more detail than information states as single sets of worlds.

2.2. A static logic of evidence and belief

We first introduce a basic logic for reasoning about evidence and beliefs.

Language We start with a modal language close to the literature.

Definition 2.3 (Evidence and Belief Language). Let At be a set of atomic
propositions. L0 is the smallest set of formulas generated by the grammar

p | ¬ϕ | ϕ ∧ ψ | Bϕ | �ϕ | Aϕ

where p ∈ At . Additional propositional connectives (∧,→,↔) are defined as
usual, and the existential modality Eϕ is defined as ¬A¬ϕ. ▹
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The interpretation of �ϕ is “the agent has evidence that implies ϕ” (the
agent has “evidence for” ϕ”) and Bϕ says that “the agents believes that
ϕ”. We include the universal modality (Aϕ: “ϕ is true in all states”) for
convenience. One can also think of this as a form of knowledge.

Having evidence for ϕ need not imply belief. In order to believe a propo-
sition ϕ, an agent must consider all her evidence for or against ϕ. To model
the latter scenario, we make use of Definition 2.2.2

Semantics We now interpret this language on neighborhood models.

Definition 2.4 (Truth). Let M = ⟨W,E, V ⟩ be an evidence model. Truth
of a formula ϕ ∈ L0 is defined inductively as follows:

• M, w |= p iff w ∈ V (p) (for all p ∈ At)

• M, w |= ¬ϕ iff M, w ̸|= ϕ

• M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

• M, w |= �ϕ iff there is an X with wEX and for all v ∈ X, M, v |= ϕ

• M, w |= Bϕ iff for each maximal f.i.p. family X ⊆ E(w) and for all
v ∈

�
X , M, v |= ϕ

• M, w |= Aϕ iff for all v ∈ W , M, v |= ϕ

The truth set of ϕ is the set of worlds [[ϕ]]M = {w | M, w |= ϕ}. Standard
logical notions of satisfiability and validity are defined as usual. ▹

Various extensions to the above modal language make sense. For in-
stance, our notion of belief is cautious, quantifying over all maximal f.i.p’s.
But we might also say that an agent “boldly believes ϕ” if there is some
maximal f.i.p. X in the current evidence set with

�
X ⊆ [[ϕ]]. We will

discuss such extensions below.

2.3. Conditional belief and conditional evidence

Our language still lacks some basic features of many logics of belief. An-
ticipating the evidence dynamics of Section 4, we now introduce conditional
belief and evidence: Bϕψ and � ϕψ to obtain the language L1.3

2Analogous ideas occur with conditionals ([12, 37]) and belief revision ([7, 21]).
3As usual, we define absolute belief and evidence: Bϕ := B� ϕ and � ϕ := � � ϕ .
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Conditional evidence The interpretation of � ϕψ is “the agent has evi-
dence that ψ is true conditional on ϕ being true”. Now, when conditioning
on ϕ one may have evidence X inconsistent with ϕ. Thus, we cannot simply
intersect each piece of evidence with the truth set of ϕ. We say that X ⊆ W
is consistent with ϕ if X ∩ [[ϕ]]M ̸= ∅. Then we define:

• M, w |= � ϕψ iff there is an evidence set X ∈ E(w) which is consistent
with ϕ such that for all worlds v ∈ X ∩ [[ϕ]]M , M, v |= ϕ.

It is easy to see that � ϕψ is not equivalent to � (ϕ → ψ). No definition
with absolute evidence modalities can work, by the results of Section 3.2.

Conditional belief Defining conditional belief (Bϕψ) involves “relativiz-
ing” an evidence model to some formula ϕ. Some of the agent’s current
evidence may be inconsistent with ϕ (i.e., disjoint with [[ϕ]]M ). Such incon-
sistent evidence must be “ignored”:

Definition 2.5 (Relativized maximal overlapping evidence). Let X ⊆ W .
Given a family X of subsets of W , the relativization X X is the set {Y ∩
X | Y ∈ X}. We say that a family X has the finite intersection property
relative to X (X-f.i.p.) if

�
X X ̸= ∅. X has the maximal X-f.i.p. if X

has X-f.i.p. and no proper extension X �of X has the X-f.i.p. ▹

When X is the truth set of formula ϕ, we write “maximal ϕ-f.i.p.” for “max-
imal [[ϕ]]M -f.i.p.” and so on. Now we define conditional belief:

• M, w |= Bϕψ iff for each maximal ϕ-f.i.p. family X ⊆ E(w),
for each world v ∈

�
X ϕ , M, v |= ψ

While this base language of evidence models looks rich already, it follows
familiar patterns. However, there are further natural evidence modalities,
and they will come to light through our later analysis of operations that
change current evidence. The latter dynamics is in fact the main topic of
this paper, but we first explore its static base logic a bit further.

3. Some Logical Theory: Axiomatization and Definability

Axiomatizing valid inference While complete logics for reasoning about
evidence are not our main concern, we do note a few facts.

Fact 3.1. (i) A satisfies all laws of modal S5, B satisfies all laws of KD, and
� satisfies only the principles of the minimal “classical” modal logic: the rule



66 J. van Benthem and E. Pacuit

of upward monotonicity holds (“from a theorem ϕ → ψ, infer �ϕ → �ψ”.),
but conjunction under the modality: (�ϕ ∧ �ψ) → � (ϕ ∧ ψ) fails. (ii) The
following operator connections are valid, but no other implications hold:

Aϕ

Bϕ

�ϕ

Eϕ

Verifying part (i) is straightforward. In particular, the point about �
is typical for neighborhood semantics: the basic evidence modality does
not allow of automatic “aggregation by conjunction”. For aggregation to
happen, an agent must do work – as we will see later on. Part (ii) follows
directly using our two basic assumptions (Cons) and (Triv) on evidence.

Over our special class of uniform evidence models, we can say much more.
First note that the following are valid:

Bϕ → ABϕ and �ϕ → A�ϕ.

It follows easily that belief introspection is trivially true, as reflected in:

�ϕ ↔ B�ϕ and ¬�ϕ ↔ B¬�ϕ

These observations suggest the following more general observation:

Proposition 3.2. On uniform evidence models, each formula of L0 is equiv-
alent to a formula with modal operator depth 1.

The proof is essentially as for modal S5. Axiomatizing the complete logic
of our models seems quite feasible, though the combination of a standard
modality B and a neighborhood modality � poses some interesting problems.
We do not pursue this theme here.

Basic model theory and bisimulation Moving from deductive to ex-
pressive power, analyzing definability in our logic requires a notion of bisim-
ulation. Here are a few steps, illustrating our semantics further.

We did not close the set of evidence accepted by an agent at a world
under supersets, though our truth definition made the set of propositions
that the agent has evidence for is closed under weakening. As a concrete
illustration, consider the three evidential states pictured below:
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Y

ZX

E1 = {X}

Y

ZX

E2 = {X,Y }

Y

ZX

E3 = {X,Y, Z}

The agent has evidence for X, Y and Z (and all that they entail) in all three
cases. Of particular interest is the model E2, where the agent not only has
evidence for Y (because of the accepted evidence X), but also has accepted
Y itself as evidence. However, in general, an agent can have evidence for X
without accepting the set X as evidence.

Fact 3.3. Let the models M = ⟨W,E, V ⟩ and M�= ⟨W,E�, V ⟩ differ only
in their evidence functions. Suppose that, for all w ∈ W , (1) E(w) ⊆ E�(w),
and (2) if X�∈ E�(w), there is a X ∈ E(w) with X ⊆ X�. Then, for all
w ∈ W and all formulas ϕ ∈ L0, M�, w |= ϕ iff M�, w |= ϕ.

The proof is an easy induction on formulas. A natural generalization
here is the “monotonic bisimulation” familiar from the literature on neigh-
bourhood semantics [10] and game logics [19].

Definition 3.4 (Monotonic bisimulation). Let M1 = ⟨W1, E1, V1⟩ and
M2 = ⟨W2, E2, V2⟩ be two evidence models. A non-empty relation Z ⊆
W1 ×W2 is a bisimulation if, for all worlds w1 ∈ W1 and w2 ∈ W2:

Prop If w1Zw2, then for all p ∈ At , p ∈ V1(w1) iff p ∈ V2(w2).

Forth If w1Zw2, then for each X ∈ Esup
1 (w1) there is a X�∈ Esup

2 (w2) such
that for all x�∈ X�, there is a x ∈ X such that xZx�.

Back If w1Zw2, then for each X ∈ Esup
2 (w2) there is a X�∈ Esup

1 (w1) such
that for all x�∈ X�, there is a x ∈ X such that xZx�.

We write M1, w1 ↔ M2, w2 if there is a bisimulation Z between M1 and
M2 with w1Zw2. A bisimulation Z is total if every world in W1 is related
to at least one world in W2, and vice versa. ▹

It is a standard fact that the sublanguage of L0 without belief modalities
is invariant under total bisimulations (totality is needed for the universal
modality). Thus, with respect to statements about evidential states, two
evidence models are the “same” if they are neighborhood bisimilar. But
interestingly, beliefs are not invariant under this notion of bisimulation.
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Fact 3.5. The belief modality is not definable with only evidence modalities.

Proof. Consider the following two evidence models:

X Y

q p q

E1 = {X,Y }
Z

p q

E1 = {X}

The dashed line is a total bisimulation between the two models. Still, note
that Bp is true in the model on the left, but not in that on the right.

Finding a notion of bisimulation respecting the whole language of evidence
and belief (and their conditionalized variants) is a natural open problem.

4. Evidence Dynamics

Evidence is not a static substance. It is continually affected by new incoming
information, and also by processes of internal re-evaluation. Our main point
in this paper is to show how this dynamics can be naturally made visible on
the neighborhood models that we have introduced.

Our methodology in doing so comes from recent dynamic logics of knowl-
edge update [35, 31] and belief revision [28, 2], which model informational ac-
tions driving agency. Formally, these actions change current models, viewed
as snapshots of an agent’s information and attitudes in some relevant pro-
cess over time. Examples range from “hard” information change provided by
public announcements or public observations [20] to softer signals encoding
different policies of belief revision (cf. [22]) by radical or more conservative
upgrades of plausibility orderings. Other dynamic logics describe acts of
inference or introspection that raise “awareness” [36, 34], and of questions
that modify the focus of a current process of inquiry [32].

While most of these systems work on standard possible worlds models,
our neighborhood models of evidence and belief suggest a new scope for
these methods in dealing with more finely-structured evidence dynamics.4

4Dynamic neighborhood methods have been used in game scenarios: [5, 38].
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Deconstructing public announcement For a start, consider the well-
known operation of “public announcement” for a formula ϕ in a model
M = ⟨W,E, V ⟩. Defining this is straightforward: remove all ¬ϕ-worlds,
and intersect the old evidence sets with [[ϕ]]M when consistently possible.
But from the more fine-grained perspective of evidence, the event !ϕ can be
naturally “deconstructed” into a combination of three distinct actions:

1. Evidence addition: the agent accepts that ϕ is an “admissible” piece
of evidence (perhaps on par with the other available evidence).

2. Evidence removal: the agent removes any evidence for ¬ϕ.

3. Evidence modification: the agent incorporates ϕ into each piece of
evidence gathered so far, making ϕ the most important piece of evidence.

Our richer evidence models allows us to study these operations individually.

4.1. Public announcements

Definition 4.1 (Public Announcement). LetM = ⟨W,E, V ⟩ be an evidence
model and ϕ a formula. The modelM!ϕ = ⟨W !ϕ , E!ϕ , V !ϕ ⟩ hasW !ϕ = [[ϕ]]M ,
for each p ∈ At , V !ϕ (p) = V (p) ∩W !ϕ , and for all w ∈ W ,

E!ϕ (w) = {X | ∅ ̸= X = Y ∩ [[ϕ]]M for some Y ∈ E(w)}. ▹

There is a natural matching dynamic modality [!ϕ]ψ stating that “ψ is
true after the public announcement of ϕ”:

(PA) M, w |= [!ϕ]ψ iff M, w |= ϕ implies M!ϕ , w |= ψ.

On evidence models, the standard recursion axioms for public announcement
are still valid, yielding dynamic equations for evidence change under hard
information. The relevant result expresses a form of “relative completeness”:

Theorem 4.2. The dynamic logic of evidence and belief under public an-
nouncement is axiomatized completely over the chosen static base logic, given
the usual rulse of Necessitation and Replacement of Provable Equivalents, by
(a) the minimal modal logic for the separate dynamic modalities, (b) the fol-
lowing set of recursion axioms:
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(PA1) [!ϕ]p ↔ (ϕ → p) (p ∈ At)
(PA2) [!ϕ](ψ ∧ χ) ↔ ([!ϕ]ψ ∧ [!ϕ]χ)

(PA3) [!ϕ]¬ψ ↔ (ϕ → ¬[!ϕ]ψ)

(PA4) [!ϕ]�ψ ↔ (ϕ → � ϕ [!ϕ]ψ)

(PA5) [!ϕ]Bψ ↔ (ϕ → Bϕ [!ϕ]ψ)

(PA6) [!ϕ]� αψ ↔ (ϕ → � ϕ∧ [!ϕ ]α [!ϕ]ψ)

(PA7) [!ϕ]Bαψ ↔ (ϕ → Bϕ∧ [!ϕ ]α [!ϕ]ψ)

(PA8) [!ϕ]Aψ ↔ (ϕ → A[!ϕ]ψ)

Table 2: Public Announcement Recursion Axioms

Proof. We only verify PA6 and leave the other axioms to the reader.5

Let M = ⟨W,E, V ⟩ be an evidence model. Suppose for simplicity that
M, w |= ϕ. Then we get

M, w |= [!ϕ]� αϕ iff M!ϕ , w |= � αϕ
iff there is X ∈ E!ϕ (w) compatible with [[α]]M !ϕ

such that X ∩ [[α]]M !ϕ ⊆ [[ψ]]M !ϕ

(note [[ψ]]M !ϕ = [[[!ϕ]ψ]]M and [[α]]M !ϕ = [[[!ϕ]α]]M )

iff there is X ∈ E!ϕ (w) compatible with [[[!ϕ]α]]M
such that X ∩ [[[!ϕ]α]]M ⊆ [[[!ϕ]ψ]]M
(note that X = Y ∩ [[ϕ]]M for some Y ∈ E(w))

iff there is Y ∈ E(w) compatible with [[ϕ ∧ [!ϕ]α]]M
such that X ∩ [[ϕ ∧ [!ϕ]α]]M ⊆ [[[!ϕ]ψ]]M

iff M, w |= � ϕ∧ [!ϕ ]α [!ϕ]ψ.

4.2. Evidence addition

Next consider the first component in our earlier deconstruction.

Definition 4.3 (Evidence Addition). Let M = ⟨W,E, V ⟩ be an evidence
model, and ϕ a formula in L1.6 The model M+ϕ = ⟨W+ϕ , E+ϕ , V +ϕ ⟩ has
W+ϕ = W , V +ϕ = V and for all w ∈ W ,

E+ϕ (w) = E(w) ∪ {[[ϕ]]M }. ▹

5These may be validated in analogy with the calculations in [38, Chapter 3].
6Eventually, we can even allow formulas from our dynamic evidence logics themselves.
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This operation is described by a dynamic modality [+ϕ]ψ stating that
“ψ is true after ϕ is accepted as an admissible piece of evidence”:

(EA) M, w |= [+ϕ]ψ iff M, w |= Eϕ implies M+ϕ , w |= ψ.

Here, since evidence sets are non-empty, the precondition is that ϕ is true
at some state. By contrast, public announcement required that ϕ be true.

To capture evidence addition in logical terms, we want to find recursion
axioms that describe the effect of its action on models (‘dynamic equations’
of evidence change). Here are a few notions that will be used in our analysis:

Definition 4.4 (Compatible/Incompatible). Let M = ⟨W,E, V ⟩ be an ev-
idence model, X ⊆ E(w) a family of evidence sets, and ϕ a formula:

1. X is maximally ϕ-compatible provided ∩X ∩ [[ϕ]]M ̸= ∅ and no proper
extension X �of X has this property; and

2. X is incompatible with ϕ if there are X1, . . . , Xn ∈ X such that X1 ∩
· · · ∩Xn ⊆ [[¬ϕ]]M . ▹

Maximal ¬ϕ-compatibility need not imply incompatibility with ϕ.
Next, we rephrase our definition of conditional belief, in a new notation:

M, w |= B+ϕψ iff for each maximally ϕ-compatible X ⊆ E(w),�
X ∩ [[ϕ]]M ⊆ [[ψ]]M

But we also need a new conditional belief operator, based on incompatibility:

M, w |= B− ϕψ iff for all maximal f.i.p., if X is incompatible with ϕ then�
X ⊆ [[ψ]]M

Now, here is the axiom for belief after evidence addition that we are after:

Lemma 4.5. [+ϕ]Bψ ↔ Eϕ → (B+ϕ [+ϕ]ψ ∧B− ϕ [+ϕ]ψ) is valid.

Proof. Let M = ⟨W,E, V ⟩ be an evidence model and ϕ a formula with
[[ϕ]]M ̸= ∅. We first note the following facts:

1. X ⊆ E(w) is maximally ϕ-compatible iff X ∪ {[[ϕ]]M } ⊆ E+ϕ (w) is a
maximal f.i.p.

2. X ⊆ E(w) is a maximal f.i.p. that is incompatible with ϕ iff X ⊆ E+ϕ (w)
is a maximal f.i.p. that does not contain [[ϕ]]M .
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The proof of both facts follows by noting that E(w) ⊆ E+ϕ (w), while any
X that is a maximal f.i.p. in E+ϕ (w) but not in E(w) must contain [[ϕ]]M .

Now suppose that M, w |= [+ϕ]Bψ. Then,

(∗) for all maximal f.i.p. X ⊆ E+ϕ (w), we have
�

X ⊆ [[ψ]]M +ϕ

We must showM, w |= B+ϕ [+ϕ]ψ∧B− ϕ [+ϕ]ψ. To see that the left conjunct
is true, let X ⊆ E(w) be any maximally ϕ-compatible collection of evidence.
By (1), X ∪ {[[ϕ]]M } ⊆ E+ϕ (w) is a maximal f.i.p. set. Then, we have

�
X ∩ [[ϕ]]M =

�
(X ∪ {[[ϕ]]M }) ⊆ [[ψ]]M +ϕ = [[[+ϕ]ψ]]M

where the inclusion comes from (∗). Since X was an arbitrary maximally
ϕ-compatible set, we have M, w |= B+ϕ [+ϕ]ψ. For the right conjunct,
let X ⊆ E(w) be any maximal f.i.p. set incompatible with ϕ. By (2),
X ⊆ E+ϕ (w) is a maximal f.i.p. (not containing [[ϕ]]M ). Again by (∗),

�
X ⊆ [[ψ]]M +ϕ = [[[+ϕ]ψ]]M

Hence, since X was an arbitrary maximal f.i.p. subset of E(w) incompat-
ible with ϕ, we have M, w |= B− ϕ [+ϕ]ψ. This shows that [+ϕ]Bψ →
B+ϕ [+ϕ]ψ ∧B+ϕ [+ϕ]ψ is valid.

Suppose now that M, w |= B+ϕ [+ϕ]ψ ∧B+ϕ [+ϕ]ψ. Then

A. For all maximally ϕ-compatible X ⊆ E(w), we have
�

X ∩ [[ϕ]]M ⊆
[[[+ϕ]ψ]]M ; and

B. For all maximally f.i.p. X ⊆ E(w) incompatible with ϕ, we have
�

X ⊆
[[[+ϕ]ψ]]M .

We must show M+ϕ , w |= Bψ. Let X ⊆ E+ϕ (w) be a maximal f.i.p. set.
There are two cases to consider. First, [[ϕ]]M ∈ X . Then, by (1), X −
{[[ϕ]]M } ⊆ E(w) is maximally ϕ-compatible. Furthermore, by (A) we have

�
X =

�
(X − {[[ϕ]]M }) ∩ [[ϕ]]M ⊆ [[[+ϕ]ψ]]M = [[ψ]]M +ϕ

The second case is [[ϕ]]M ̸∈ X . Then by (2), X ⊆ E(w) is a maximal f.i.p.
that is incompatible with ϕ. By (B), we have

�
X ⊆ [[[+ϕ]ψ]]M = [[ψ]]M +ϕ

In either case,
�

X ⊆ [[ψ]]M +ϕ ; hence, M+ϕ , w |= Bψ, as desired.

This proof will suffice to show that analyzing evidence changes is non-
trivial. We had to come up with a new notion of conditional belief.7

7In particular, the new B − ϕ ψ is not the same as the conditional belief B+¬ ϕ ψ.
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Language extension But we are not yet done. We have now extended
the base language, and hence, we need to find complete recursion axioms
for the new conditional beliefs after evidence addition – hopefully, avoiding
an infinite regress. To achieve this, let L2 be the smallest set of formulas
generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | �ϕ | Bϕ ,ψχ | Aϕ

where p ∈ At and ϕ is any finite sequence of formulas from the language.8

Definition 4.6 (Truth for L2). We only define the new modal operator:

M, w |= Bϕ ,ψχ iff for all maximally ϕ-compatible sets X ⊆ E(w),
if
�

X ∩ [[ϕ]]M ⊆ [[ψ]]M , then
�

X ∩ [[ϕ]]M ⊆ [[χ]]M

Note that we can define B+ϕ as Bϕ ,� and B− ϕ as B� ,¬ϕ . ▹

Theorem 4.7. The dynamic logic of evidence addition is axiomatized com-
pletely by (a) the static base logic of evidence models for the extended lan-
guage, (b) the minimal modal logic for each separate dynamic modality, and
(c) the following set of recursion axioms:

(EA1) [+ϕ]p ↔ (Eϕ → p) (p ∈ At)
(EA2) [+ϕ](ψ ∧ χ) ↔ ([+ϕ]ψ ∧ [+ϕ]χ)

(EA3) [+ϕ]¬ψ ↔ (Eϕ → ¬[+ϕ]ψ)

(EA4) [+ϕ]�ψ ↔ (Eϕ → (� [+ϕ]ψ ∨A(ϕ → [+ϕ]ψ)))

(EA5) [+ϕ]Bψ ↔ (Eϕ → (B+ϕ [+ϕ]ψ ∧B− ϕ [+ϕ]ψ))

(EA6) [+ϕ]� αψ ↔ (Eϕ → (� [+ϕ ]α [+ϕ]ψ ∨ (E(ϕ ∧ [+ϕ]α)∧
A((ϕ ∧ [+ϕ]α) → [+ϕ]ψ))))

(EA7) [+ϕ]Bψ,αχ ↔ (Eϕ → (Bϕ∧ [+ϕ ]ψ,[+ϕ ]α [+ϕ]χ∧
B[+ϕ ]ψ,¬ϕ∧ [+ϕ ]α [+ϕ]χ))

(EA8) [+ϕ]Aψ ↔ (Eϕ → A[+ϕ]ψ)

Table 1: Evidence Addition Recursion Axioms

Proof. For soundness, we explain what the recursion axioms say. The first
three axioms express the usual relationship between a dynamic-epistemic

8Absolute belief and evidence versions again arise by setting some parameters to � .



74 J. van Benthem and E. Pacuit

modality and boolean connectives. For example, axiom EA3 says that ev-
idence addition is functional: it maps each evidence model to the unique
model representing the situation after the evidence is accepted. Axioms
EA4 - EA8 then describe the precise effect of evidence addition on the
agent’s (conditional) beliefs and accepted evidence. Axiom EA4 says that
after accepting ϕ as evidence, the agent has evidence that ψ just in case
either she had evidence for ψ before adding ϕ, or ψ was implied by ϕ in
the model. Axiom EA5 shows the effect of accepting the evidence ϕ on the
agent’s beliefs. She comes to believe ψ after accepting ϕ as evidence just in
case she believed ψ conditional on ϕ being true and believes ψ conditional
on the incompatibility of ϕ.9

Here are a few more detailed verifications of some key recursion axioms.
To simplify the presentation, assume that [[ϕ]]M ̸= ∅ (so M, w |= Eϕ).

(Axiom EA4.) M, w |= [+ϕ]�ψ iff M+ϕ , w |= �ψ iff there is an X ∈
E+ϕ (w) with X ⊆ [[ψ]]M +ϕ . By definition, we have [[ψ]]M +ϕ = [[[+ϕ]ψ]]M .
There are two cases to consider for the axiom:

1. X ∈ E(w). Then, M, w |= � [+ϕ]ψ.

2. X = [[ϕ]]M . This means that [[ϕ]]M ⊆ [[[+ϕ]ψ]]M and so M, w |= A(ϕ →
[+ϕ]ψ).

(Axiom EA5.) The validity of this axiom is proven in Lemma 4.5.

(Axiom EA6.) M, w |= [+ϕ]� αψ iff M+ϕ , w |= � αψ iff there exists X ∈
E+ϕ (w) consistent with α and having X ∩ [[α]]M +ϕ ⊆ [[ψ]]M +ϕ . Again there
are two cases:

1. X ∈ E(w). Then we have X ∩ [[[+ϕ]α]]M = X ∩ [[α]]M +ϕ ⊆ [[ψ]]M +ϕ =
[[[+ϕ]ψ]]M . Hence M, w |= � [+ϕ ]α [+ϕ]ψ.

2. X = [[ϕ]]M . Then we have [[ϕ]]M ∩ [[α]]M +ϕ ⊆ [[ψ]]M +ϕ . Therefore,
M, w |= A((ϕ ∧ [+ϕ]α) → [+ϕ]ψ). Furthermore, since X is consistent
with α in M+ϕ , we have [[ϕ]]M ∩ [[α]]M +ϕ ̸= ∅, and hence M, w |=
E(ϕ ∧ [+ϕ]α).

(Axiom EA7.) The proof here is similar to the proof of Lemma 4.5. We first
note the following facts:

9Contrast this with the much simpler law PA5 for public announcement which only
considers whether the agent believed ψ conditionally on ϕ .
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1. X ⊆ E(w) is maximally ϕ∧ [+ϕ]ψ-compatible with
�

X ∩ [[ϕ ∧ [+ϕ]ψ]]M
⊆ [[[+ϕ]α]]M iff X ∪ {[[ϕ]]M } ⊆ E+ϕ (w) is maximally ψ-compatible with�
(X ∪ {[[ϕ]]M }) ∩ [[ψ]]M +ϕ ⊆ [[α]]M +ϕ

2. X ⊆ E(w) is maximally [+ϕ]ψ-compatible with
�

X ∩ [[[+ϕ]ψ]]M ⊆
[[¬ϕ ∧ [+ϕ]α]]M iff X ⊆ E+ϕ (w) is maximally ψ-compatible such that
[[ϕ]]M ̸∈ X and

�
X ∩ [[ψ]]M +ϕ ⊆ [[α]]M +ϕ .

The proof of these facts is straightforward. For the proof of (2), note that if
X ⊆ E+ϕ (w) is maximally ψ-compatible and [[ϕ]]M ̸∈ X then we must have�

X ∩ [[ψ]]M +ϕ ⊆ [[¬ϕ]]M . Suppose that M, w |= [+ϕ]Bψ,αχ. Then,

(∗) for all maximally ψ-compatible X ⊆ E+ϕ (w) with�
X ∩ [[ψ]]M +ϕ ⊆ [[α]]M +ϕ , we have

�
X ∩ [[ψ]]M +ϕ ⊆ [[χ]]M +ϕ

We must show M, w |= Bϕ∧ [+ϕ ]ψ,[+ϕ ]α [+ϕ]χ ∧ B[+ϕ ]ψ,¬ϕ∧ [+ϕ ]α [+ϕ]χ. For
the first conjunct, let X ⊆ E(w) be maximally ϕ ∧ [+ϕ]ψ-compatible with�

X ∩ ([[ϕ ∧ [+ϕ]ψ]]M ) ⊆ [[[+ϕ]α]]M . By (1), X ∪ {[[ϕ]]M } ⊆ E+ϕ (w) is
maximally ψ-compatible with

�
(X ∪ {[[ϕ]]M })∩ [[ψ]]M +ϕ ⊆ [[α]]M +ϕ . By (∗),

�
X∩[[ϕ ∧ [+ϕ]ψ]]M =

�
X∩[[ϕ]]M ∩[[[+ϕ]ψ]]M =

�
(X∪{[[ϕ]]M })∩[[ψ]]M +ϕ

⊆ [[χ]]M +ϕ = [[[+ϕ]χ]]M

Hence, M, w |= Bϕ∧ [+ϕ ]ψ,[+ϕ ]α [+ϕ]χ. For the second conjunct, let X ⊆
E(w) be a maximally [+ϕ]ψ-compatible set with

�
X ∩ [[[+ϕ]ψ]]M ⊆ [[¬ϕ ∧ [+ϕ]α]]M .

Then by (2), X ⊆ E+ϕ (w) is maximally ψ-compatible with
�

X ∩ [[ψ]]M +ϕ ⊆
[[α]]M +ϕ . By (∗), we have

�
X ∩ [[[+ϕ]ψ]]M =

�
X ∩ [[ψ]]M +ϕ ⊆ [[χ]]M +ϕ = [[[+ϕ]χ]]M

Hence, M, w |= B[+ϕ ]ψ,¬ϕ∧ [+ϕ ]α [+ϕ]χ
For the converse, suppose that

M, w |= Bϕ∧ [+ϕ ]ψ,[+ϕ ]α [+ϕ]χ ∧B[+ϕ ]ψ,¬ϕ∧ [+ϕ ]α [+ϕ]χ.

Then

A. for all maximally ϕ ∧ [+ϕ]ψ-compatible sets X ⊆ E(w) with
�

X ∩
[[ϕ ∧ [+ϕ]ψ]]M ⊆ [[[+ϕ]α]]M , we have

�
X ∩ [[ϕ ∧ [+ϕ]ψ]]M ⊆ [[[+ϕ]χ]]M .
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B. for all maximally [+ϕ]ψ-compatible sets X ⊆ E(w) with
�

X∩[[[+ϕ]ψ]]M
⊆ [[¬ϕ ∧ [+ϕ]α]]M , we have

�
X ∩ [[[+ϕ]ψ]]M ⊆ [[[+ϕ]χ]]M .

We must show that M+ϕ , w |= Bψ,αχ. Let X ⊆ E+ϕ (w) be a maximally
ψ-compatible set with

�
X ∩ [[ψ]]M +ϕ ⊆ [[α]]M +ϕ . There are two cases. First,

[[ϕ]]M ∈ X . Then by (1), X − {[[ϕ]]M } is maximally ϕ ∧ [+ϕ]ψ-compatible
with

�
(X − {[[ϕ]]M }) ∩ [[ϕ ∧ [+ϕ]ψ]]M ⊆ [[[+ϕ]α]]M . By (A), we have

�
X ∩ [[ψ]]M +ϕ =

�
(X − {[[ϕ]]M }) ∩ [[ϕ ∧ [+ϕ]ψ]]M ⊆ [[[+ϕ]χ]]M = [[χ]]M +ϕ

The second case is [[ϕ]]M ̸∈ X . Then, by (2), X ⊆ E(w) is maximally [+ϕ]ψ-
compatible with

�
X ∩ [[[+ϕ]ψ]]M ⊆ [[¬ϕ ∧ [+ϕ]α]]M . By (B), we have

�
X ∩ [[ψ]]M +ϕ =

�
X ∩ [[[+ϕ]ψ]]M ⊆ [[[+ϕ]χ]]M = [[χ]]M +ϕ

In either case,
�

X ∩ [[ψ]]M +ϕ ⊆ [[χ]]M +ϕ , so M+ϕ , w |= Bψ,αχ, as desired.

The remainder of the completeness proof follows a standard pattern in
dynamic epistemic logic. Working inside out, the stated recursion axioms
suffice for successively removing all dynamic modalities from a given formula,
leading to a provably equivalent formula in the base language (these steps
involve the inference rule of Replacement of Provable Equivalents), whose
logic was assumed to be complete.

We have now found a complete system of evidence addition with its
natural associated static base modalities of conditional belief. This is an
interesting extension of standard neighborhood logic by itself. But how does
this language fit with our earlier analysis of public announcement? Things
turn out to be in harmony.

Fact 4.8. The following principle suffices for obtaining a complete dynamic
logic of evidence addition plus public announcement:

[!ϕ]Bψ,αχ ↔ Bϕ∧ [!ϕ ]ψ,ϕ→[!ϕ ]α [!ϕ]χ

4.3. Evidence removal

Evidence addition and public announcement are two ways in which an agent
can incorporate a proposition ϕ. Public announcement is stronger in that
the agent also agrees to ignore states inconsistent with ϕ. The latter attitude
is interesting by itself, suggesting an act of evidence removal, well-known in
studies of belief revision as a natural converse to addition. While modeling
“removal” has been a challenge to standard dynamic-epistemic logics, our
richer setting suggests a natural logic.
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Definition 4.9 (Evidence Removal). Let M = ⟨W,E, V ⟩ be an evidence
model, and ϕ a formula in L1. The model M− ϕ = ⟨W − ϕ , E− ϕ , V − ϕ ⟩ has
W − ϕ = W , V − ϕ = V and for all w ∈ W ,

E− ϕ (w) = E(w)− {X | X ⊆ [[ϕ]]M }. ▹

This time, the corresponding dynamic modality is [−ϕ]ψ (“after remov-
ing the evidence that ϕ, ψ is true”), defined as follows:

(ER) M, w |= [−ϕ]ψ iff M, w |= ¬Aϕ implies M− ϕ , w |= ψ 10

Again, we look for a dynamic recursion axiom. As with evidence addi-
tion, the analysis is not purely a passive imposition of action superstructure.
Finding a total dynamic language that is in harmony again affects the choice
of the base language itself, and hence it is an instrument for discovering new
logical structure concerning evidence.

For a start, let L−1 extend the language L1 with the operator [−ϕ].

Proposition 4.10. L−1 is strictly more expressive than L1.

Proof. Consider evidence models M1 = ⟨W, E1, V ⟩ and M2 = ⟨W, E2, V ⟩:

r

rq

p

E1

r

rq

p

E2

The formula [−p]� (p∨q) of L−1 is true in M1 but not in M2. But no formula
of L1 can distinguish M1 from M2. To see this, note that Esup1 = Esup2 , while
the agent has the same beliefs in both models.

10Removing the evidence for ϕ is weaker than the usual notion of contracting one’s beliefs
by ϕ [21]. It is possible to remove the evidence for ϕ and yet the agent maintains her belief
in ϕ ! Formally, [− ϕ ]¬Bϕ is not valid. To see this, let W = { w1, w2, w3} with p true only
at w3. Consider an evidence model with two pieces of evidence: E = { { w1, w3} , { w2, w3} } .
The agent believes p and, since the model does not change when removing the evidence
for p, [− p]Bp is true. The same is true for the model with explicit evidence for p, i.e.,
E�= { { w1, w3} , { w2, w3} , { w3} } .
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Adding compatibility So far, we have looked at conditional evidence
and beliefs, generalizing the usual notion to restriction and incompatibil-
ity versions. This time, we also need to look at evidence that is merely
“compatible” with some relevant proposition.

An agent had evidence that ψ conditional on ϕ if there is evidence con-
sistent with ϕ such that restriction to the worlds where ϕ is true entails ψ.
Our new conditional operator � ϕψ drops the latter condition: it is true if
the agent has evidence compatible with ϕ that entails ψ.11 In general, we
include operators � ϕψ where ϕ is a sequence of formulas. The evidence
entailing ψ must now be compatible with each of ϕ”.

Definition 4.11 (Compatible evidence). LetM = ⟨W,E, V ⟩ be an evidence
model and ϕ = (ϕ1, . . . ,ϕn) a finite sequence of formulas. A subset X ⊆ W
is compatible with ϕ if, for each ϕi , X ∩ [[ϕi ]]M ̸= ∅. ▹

Truth of a matching new formula � ϕψ is then defined as follows:

M, w |= � ϕψ iff some X ∈ E(w) compatible with ϕ has X ⊆ [[ψ]]M

This new operator gives us a very natural reduction axiom for � : 12

Fact 4.12. The formula [−ϕ]�ψ ↔ (¬Aϕ → � ¬ϕ [−ϕ]ψ) is valid.

Proof. Let M = ⟨W,E, V ⟩ be an evidence model with [[ϕ]]M ̸= W (other-
wise, for all w, E− ϕ (w) = ∅). We show that [−ϕ]�ψ ↔ � ¬ϕ [−ϕ]ψ is valid
on M. Let w ∈ W . The key observation is that for all X ⊆ W , X ∈ E− ϕ (w)
iff X ∈ E(w) and X is compatible with ¬ϕ. Then we get

M, w |= [−ϕ]�ϕ iff M− ϕ , w |= �ϕ
iff there is a X ∈ E− ϕ (w) such that X ⊆ [[ψ]]M − ϕ

(note that [[ψ]]M − ϕ = [[[−ϕ]ψ]]M )
iff there is a X ∈ E(w) compatible with ¬ϕ

such that X ⊆ [[[−ϕ]ψ]]M
iff M, w |= � ¬ϕ [−ϕ]ψ.

But as before, we are not done yet. We also need a reduction axiom for
our new operator � ϕ . This can be stated in the same style. But we are
not done even then. With the earlier conditional evidence present as well,
we need an operator � α

ϕψ saying there is evidence compatible with ϕ and α
such that the restriction of that evidence to α entails ψ.

11A set X may be consistent with both ϕ1 and ϕ2, yet inconsistent with ϕ1 ∧ ϕ2.
12The precondition is needed because the set of all worlds W is an evidence set.
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Definition 4.13 (Compatibility evidence - set version). Amaximal f.i.p. set
X is compatible with a sequence of formulas ϕ provided for each X ∈ X ,
X is compatible with ϕ. ▹

Language and dynamic logic We are now ready to prceed. Let L3 be
the set of formulas generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | Bα
ϕψ | � α

ϕψ | Aϕ

where p ∈ At and ϕ is any finite sequence of formulas from the language.13

Definition 4.14 (Truth of L3). We only define the new modal operators:

• M, w |= � α
ϕψ iff there is a set X ∈ E(w) compatible with ϕ, α such that

X ∩ [[α]]M ⊆ [[ψ]]M .

• M, w |= Bα
ϕψ iff for each maximal family α-f.i.p. X compatible with ϕ,�

X α ⊆ [[ψ]]M .

We write � α
ϕ1,...,ϕ n for � α

(ϕ1,...,ϕ n ) and ϕ,α for (ϕ1, . . . ,ϕn ,α). Also, if ϕ =

(ϕ1, . . . ,ϕn), then we write [−ϕ]ϕ for ([−ϕ]ϕ1, . . . , [−ϕ]ϕn). ▹

Theorem 4.15. The complete dynamic logic of evidence removal is axioma-
tized, over the complete logic of the static base language for evidence models
as enriched above, by the following recursion axioms:

(ER1) [−ϕ]p ↔ (¬Aϕ → p) (p ∈ At)
(ER2) [−ϕ](ψ ∧ χ) ↔ ([−ϕ]ψ ∧ [−ϕ]χ)

(ER3) [−ϕ]¬ψ ↔ (¬Aϕ → ¬[−ϕ]ψ)

(ER4) [−ϕ]� α
ψχ ↔ (¬Aϕ → � [− ϕ ]α

[− ϕ ]ψ,¬ϕ [−ϕ]χ)

(ER5) [−ϕ]Bα
ψχ ↔ (¬Aϕ → B

[− ϕ ]α
[− ϕ ]ψ,¬ϕ [−ϕ]χ)

(ER6) [−ϕ]Aψ ↔ (¬Aϕ → A[−ϕ]ψ)

Table 3: Evidence Removal Recursion Axioms

Proof. We only do axiom ER5. Let M = ⟨W,E, V ⟩ be an evidence model,
w ∈ W and [[ϕ]]M ̸= W . First of all, note that the key observation in the

13Absolute belief and evidence versions again arise by setting some parameters to � .
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proof of Fact 4.12 extends to sets of evidence sets (cf. Definition 4.13). That
is, for all worlds w, X ⊆ E− ϕ (w) is compatible with ψ iff X ⊆ E(w) is
compatible with [−ϕ]ψ,¬ϕ. Furthermore, for all states w, X ⊆ E− ϕ (w) is
a maximal α-f.i.p. iff X ⊆ E(w) is a maximal [−ϕ]α-f.i.p. compatible with
¬ϕ.14 Then we can calculate as follows:

M, w |= [−ϕ]Bα
ψχ iff M− ϕ , w |= Bα

ψχ

iff for each maximal α-f.i.p. X ⊆ E− ϕ (w)
compatible with ϕ,

�
X α ⊆ [[χ]]M − ϕ = [[[−ϕ]χ]]M

iff for each maximal [−ϕ]α-f.i.p. X ⊆ E(w)
compatible with [−ϕ]ϕ and ¬ϕ,�
X [− ϕ ]α ⊆ [[[−ϕ]χ]]M

iff M, w |= B
[− ϕ ]α
ψ,¬ϕ [−ϕ]χ.

The above principles state the essence of evidence removal, as well as
the beliefs one can still have after such an event. The additional insight is
that removal essentially involves compatibility as well as implication between
propositions – something of independent logical interest.

Logics for evidence once more This is a beginning rather than an end.
Extending the base language in this manner will have repercussions for our
earlier analyses. Still, it is possible to also find reduction axioms for our new
evidence and belief operators under actions of evidence addition and public
announcement. For example, for the compatible evidence operator � ψ with

ψ = (ψ1, . . . ,ψn), we have the following validities:

[+ϕ]� ψχ ↔ [Eϕ → (� [+ϕ ]ψ[+ϕ]χ ∨ (
�

i=1,...,n
E(ϕ ∧ ψi ) ∧A(ϕ → [+ϕ]ψ)))]

[!ϕ]� ψχ ↔ (ϕ → � ϕ
[!ϕ ]ψ[!ϕ]χ)

We do not include all combinations here. The key point is that the
analysis is in harmony not leading to further extensions of the base language.

Perhaps more challenging open problems have to do with the “action
algebra” of combining our three basic actions on evidence. What happens

14The last clause about being compatible with ¬ϕ is crucial: not every X ⊆ E − ϕ (w)
that is a maximal α-f.i.p. corresponds to a maximal [− ϕ ]α-f.i.p. subset of E (w).
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when we compose them? Our guess is that we need to move to an “event
model” version of our logics in the style of dynamic-epistemic logic.

4.4. Evidence modification

We have analyzed the two major operations on evidence that we can see.
Nevertheless, the space of potential operations on neighborhood models is
much larger, even if we impose conditions of bisimulation invariance as in
[10]). Instead of exploring this wide realm, we show one new operation. So
far, we added or removed evidence. But one could also modify the existing
pieces of evidence. To see the difference, here is a new way of making some
proposition ϕ highly important:

Definition 4.16 (Evidence Upgrade). 15 LetM = ⟨W,E, V ⟩ be an evidence
model and ϕ a formula in L1. The model M⇑ϕ = ⟨W ⇑ϕ , E⇑ϕ , V ⇑ϕ ⟩ has
W ⇑ϕ = W , V ⇑ϕ = V , and for all w ∈ W ,

E⇑ϕ (w) = {X ∪ [[ϕ]]M | X ∈ E(w)} ∪ [[ϕ]]M . ▹

This is stronger than simply adding [[ϕ]]M as evidence, since one modifies
each admissible evidence set. But it is weaker than publicly announcing ϕ,
as the agent retains the ability to consistently condition on ¬ϕ.

Fact 4.17. The following recursion principles are valid:

1. [⇑ϕ]�ψ ↔ (Eϕ → A(ϕ → [⇑ϕ]ψ))
2. [⇑ϕ]Bψ ↔ (Eϕ → A(ϕ → [⇑ϕ]ψ))

Proof. For the second law, note that in E⇑ϕ (w), there is only one maximal
f.i.p. whose intersection must be [[ϕ]]M . The proof of the first law goes like
that of Fact 4.18 below.

As these principles show, ⇑ϕ gives a very special status to the incoming
information ϕ, blurring the distinction between evidence and belief. This
suggests a weaker operation that modifies the evidence sets in favor of ϕ,
but does not add explicit support for ϕ. Define M⇑w ϕ as in Definition
4.16 except for setting E⇑w ϕ (w) = {X ∪ [[ϕ]]M | X ∈ E(w)}. A simple
modification to Principle 2 in the above fact gives us a valid principle for
our evidence operator. However, the case of belief poses some problems.16

15This operation is a bit like “radical upgrade” in dynamic logics of belief change.
16The new complication is that, without adding ϕ to the evidence sets, intersections of

maximal f.i.p. sets in the upgraded model may contain more than just ϕ states.
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Fact 4.18. The formula [⇑wϕ]�ψ ↔ (� [⇑wϕ]ψ ∧A(ϕ → [⇑wϕ]ψ)) is valid.

Proof. Let M = ⟨W,E, V ⟩ be an evidence model with w ∈ W . Then,

M, w |= [⇑wϕ]�ψ iff M⇑ϕ , w |= �ψ
iff there is a X ∈ E⇑ϕ (w) such that X ⊆ [[ψ]]M − ϕ

(note that [[ψ]]M ⇑ϕ = [[[⇑ϕ]ψ]]M )
iff there is X�∈ E(w) with

X�∪ [[ϕ]]M = X ⊆ [[[⇑ϕ]ψ]]M
iff there is X�∈ E(w) with

X�⊆ [[[⇑ϕ]ψ]]M and [[ϕ]]M ⊆ [[[⇑ϕ]ψ]]M
iff M, w |= � [⇑ϕ]ψ ∧A(ϕ → [⇑ϕ]ψ)

4.5. From external to internal actions: evidence combination

We have now brought to light a rich repertoire of evidence-modifying ac-
tions. Still, the operations discussed above all exemplify “external evidence
dynamics” responding to some outside source, where the agent reacts appro-
priately, either by incorporating ϕ or removing ϕ from consideration. But
our neighborhood models also suggest internal operations that arise from
pondering the evidence, without external triggers. We will discuss only one
such internal operation in this paper, be it a basic one.

One natural operation available to an agent is to combine her evidence.
Of course, as we have noted, an agent’s evidence may be contradictory, so
she can only combine evidence that is not inconsistent.

Definition 4.19 (Evidence combination). Let M = ⟨W,E, V ⟩ be an evi-
dence model. The model M# = ⟨W#, E#, V #⟩ has W# = W , V # = V and
for all w ∈ W , E#(w) is the smallest set closed under (non-empty) intersec-
tion and containing E(w). The corresponding modal operator is defined as
M, w |= [#]ϕ iff M#, w |= ϕ. ▹

A complete study of this operation will be left for future work, since it
poses some challenges to our recursive style of analysis so far.17 Nevertheless,
we can observe the following interesting facts:

Fact 4.20. The following formulas are valid on evidence models:

17The problem may be that standard modal languages are too poor, forcing us upward
in expressive power to hybrid or first-order logics – but we suspend judgment here.
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1. � [#]ϕ → [#]�ϕ (combining evidence does not remove old evidence18)

2. B[#]ϕ ↔ [#]Bϕ (beliefs are immune to evidence combination)

3. Bϕ → [#]�ϕ (beliefs are explicitly supported after combining evidence19

4. For factual ϕ, Bϕ → ¬[#]�¬ϕ (if an agent believes ϕ then the agent
cannot combine her evidence so that there is evidence for ¬ϕ)

Proof. The proof that the first three items are valid is left to the reader.
For the fourth, note that �¬ϕ → ¬Bϕ is valid. The proof is as follows:
First of all, in any evidence model M = ⟨W,E, V ⟩, every piece of evidence
in X ∈ E(w) is contained in a maximal f.i.p. X ⊆ E(w) (models are finite,
so simply find the maximal f.i.p. containing X which may be {X,W}).
Suppose that �¬ϕ is true at a state w, then there is an X ∈ E(w) such
that X ⊆ [[¬ϕ]]M . Let X be the maximal f.i.p. containing X. Hence,�
X ⊆ X ⊆ [[¬ϕ]]M . Therefore, Bϕ is not true at w. This shows that

�¬ϕ → ¬Bϕ is valid, as desired. We can then derive Principle 3 by noting
the following series of implications:

Bϕ → [#]Bϕ → [#]¬�¬ϕ → ¬[#]�¬ϕ

Here the first implication follows from the second principle applied to factual
formulas ϕ (for which ϕ ↔ [#]ϕ is valid), the second implication follows
from the fact that Bϕ → ¬�¬ϕ is valid (as argued above) while [#] is a
normal modal operator and the third implication follows from the fact that
the evidence combination operation is functional.

5. Comparison with plausibility models

In this section, we will contrast our neighborhood models with another modal
framework for belief change. This excursion (which can be skipped without
loss of coherence) throws new light on our earlier proposals. We merely state
some main notions and results without proof, referring to [33] for details.

18Definition 4.19 assumed that, for all states w, E (w) ⊆ E#(w). Thus, in the process
of combination, an agent does not notice any inconsistencies that may be present in her
evidential state. A deeper analysis would include acts of removing observed inconsistencies.

19The converse is not valid. In fact, one can read the combination [#]� as an existential
version of our belief operator. It is true if there is some maximal collection of evidence
whose intersection implies ϕ . In plausibility models for doxastic logic, this says that ϕ is
true throughout some maximal cluster. This notion of belief is much riskier then Bϕ , and
again we encounter the variety of agent attitudes mentioned in Section 2.
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Plausibility models Originally used as a semantics for conditionals (cf.
[14]), the following idea is wide-spread in modal logics of belief [28, 31, 2, 8].
One endows epistemic ranges with an ordering w ≼ v of relative plausibility
on worlds (usually uniform across indistinguishable worlds): “according to
the agent, world v is at least as plausible as w”.20 Plausibility orders are
usually reflexive and transitive, and often also connected, making every two
worlds comparable. Our discussion will allow pre-orders with incomparable
worlds. Plausibility models support a general dynamics of informational
action through model change, for which we refer to cf. [31].

Definition 5.1 (Plausibility model). A plausibility model is a tupleM =
⟨W,≼, V ⟩ where W is a finite nonempty set, ≼⊆ W ×W is a reflexive and
transitive ordering on W , and V : At → ℘(W ) is a valuation function. If ≼
is also connected (for each w, v ∈ W , either w ≼ v or v ≼ w) then we say
M is a connected plausibility model. A pair M, w where w is a state is
called a pointed (connected) plausibility model. ▹

Language and logic Plausibility models interpret a standard doxastic
language. Let L� be the smallest set of formulas generated by the syntax

p | ¬ϕ | ϕ ∧ ψ | Bϕψ | [≼]ϕ | Aϕ

To define truth, we need some notation. For X ⊆ W , let

Min� (X) = {v ∈ X | v ≼ w for all w ∈ X }

Given a set X, Min� (X) is the set of most plausible worlds in X (i.e.,
minimal elements ofX according to the plausibility order). We only consider
the modal operators:

• M, w |= Bϕψ iff Min� ([[ϕ]]M ) ⊆ [[ψ]]M

• M, w |= [≼]ϕ iff for all v ∈ W , if v ≼ w then M, v |= ϕ

• M, w |= Aϕ iff for all v ∈ W , M, v |= ϕ.

With Bϕ defined as B�ϕ, we get the usual notion of belief as truth in all
minimal worlds. We can think of this as follows. Any pre-order forms a
partial order of “clusters”, maximal subsets where the relation is universal.
A finite pre-order has one or more final clusters, not having any proper
successors. (If the order is connected, there is only one final cluster.) Belief
means truth in all final clusters.

20In conditional semantics, plausibility or “similarity” is a world-dependent order.
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The logic of this system is basically the minimal conditional logic over
pre-orders that we have seen before. Next, consider definability. Plausibility
orders are binary relations supporting a standard modal language. Indeed,
[3] showed how belief and conditional belief are definable in the language
with A and [≼] only:

Fact 5.2. Belief and conditional belief can be explicitly defined as follows:

• Bϕ := A⟨≼⟩[≼]ϕ

• Bϕψ := A(ϕ → ⟨≼⟩(ϕ ∧ [≼](ϕ → ψ)))

While the plausibility modality by itself may look like a technical device,
[2] interpret [≼]ϕ as “a safe belief in ϕ”. Following [26], this amounts to
the beliefs an agent retains under all new true information about the actual
world.21 Indeed, this simple modal language over plausibility models will
turn out to be a natural stage of expressive power.

From plausibility models to evidence models Here is an intuitive
connection. Let M = ⟨W,≼, V ⟩ be a plausibility model:

the appropriate evidence sets are the downward ≼-closed sets of worlds.

To be more precise, we fix some notation:

• Given a X ⊆ W , let X↓�= {v ∈ W | ∃x ∈ X and v ≼ x}
(we write X↓ when it is clear which plausibility ordering is being used).

• A set X ⊆ W is ≼-closed if X↓�⊆ X.

Here is the formal definition for the above simple idea:

Definition 5.3 (Plausibility-Based Evidence Model). Let M = ⟨W,≼, V ⟩
be a plausibility model. The evidence model generated from M is22

EV (M) = ⟨W, E� , V ⟩ with E� as follows:

E� = {X | ∅ ̸= X is ≼-closed } ▹

Given a plausibility model M, the evidence model generated by M
clearly satisfies the basic properties required in Section 2: the sets are non-
empty, and the whole universe is among them. But more can be said:

Fact 5.4. Evidence sets of models EV (M) are closed under intersections.

21For the same notion in the computational literature on agency, cf. [25].
22Here the set of worlds and valuation function remain as in the model M .
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Plausibility models represent a situation where the agent has already
“combined” all of her evidence (cf. the operation # studied in Section 3.4),
as reflected in this technical property:

If X,Y ∈ E� and X ∩ Y ̸= ∅ then X ∩ Y ∈ E� .

This connection between plausibility models and evidence models can be
extended to a translation between their languages:

Definition 5.5 (P -translation). The translation (·)P : L → L� is given by:

• pP = p, (¬ϕ)P = ¬ϕP , (ϕ ∧ ψ)P = ϕP ∧ ψP , (Aϕ)P = AϕP ,

• (�ϕ)P = E[≼]ϕP ,

• (� ϕψ)P = E⟨≼⟩(ϕP ∧ [≼](ϕP → ψP )),

• (� ϕγψ)
P = E(

�
i ⟨≼⟩γPi ∧ ⟨≼⟩(ϕP ∧ [≼](ϕP → ψP ))),

• (Bϕψ)P = A(ϕP → (⟨≼⟩ϕP ∧ [≼](ϕP → ψP ))),

• (Bϕ ,αψ)P = A(([≼]αP ∧ [≼]⟨≼⟩ϕP ) → ⟨≼⟩(ϕP ∧ [≼](ϕP → ψP ))), and

• (Bϕγ ψ)
P = A((ϕP ∧

�
i ⟨≼⟩γPi ) → (⟨≼⟩(ϕP ∧

�
i ⟨≼⟩γPi ) ∧ [≼]((ϕP ∧

�
i ⟨≼

⟩γPi ) → ψP ))). ▹

Lemma 5.6. Let M = ⟨W,≼, V ⟩ be a plausibility model. For any formula
ϕ ∈ L1 and world w ∈ W ,

M, w |= ϕP iff EV (M), w |= ϕ

Details of this connection can be found in [33].

From evidence models to plausibility models Going in the opposite
direction, given a family of evidence sets, how to induce a plausibility order?
We use a notion from topology, and models of relation merge (cf. [1, 15]),
the “specialization (pre)-order”:

Definition 5.7 (Plausibility based evidence model). Suppose that M =
⟨W, E , V ⟩ is an (uniform) evidence model. The plausibility model generated
by M is the structure ORD(M) = ⟨W,≼E , V ⟩ where ≼E is an ordering on
W defined as follows:23

w ≼E v iff ∀X ∈ E , v ∈ X implies w ∈ X ▹

23� E is reflexive and transitive, so ORD (M ) is indeed a plausibility model.
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Our two representations are related as follows:

Fact 5.8. (i) For all models plausibility models M, ORD(EV ((M)) = M,
(ii) The identity EV (ORD(M)) = M does not hold for all evidence models
M. (iii) For all evidence models M, EV (ORD(M)) = M#, where # is
the combination operation of Section 4.19.

Translations and languages The preceding connection again matches a
translation between modal languages, in particular for (conditional) beliefs
on evidence models and their induced plausibility models. But other notions
are less easily reduced. For instance, [33] show how dealing with safe belief
on plausibility orders requires a new notion of reliable evidence that extends
our earlier evidence logics.

This concludes our brief comparison of relational and neighborhood se-
mantics for belief and evidence. We have clarified their relationship as one
of generalization, where neighborhood models describe one more level of de-
tail: the internal combination stages for evidence. Even so, many of the new
operations that we have found in earlier sections would also make sense as
definable operators in the natural modal logic of plausibility models, and we
have shown how various interesting new questions arise at this interface.

6. Conclusion and Further Directions

We have shown that evidence dynamics on neighborhood models offers a
rich environment for modeling information flow and pursuing logical studies.
Here are some avenues for further research. Some are more technical, some
increase coverage. We start with the former.

Exploring the static logic We have found quite a few new evidence-
based modalities of conditional belief. What is the complete logic of this
system? This is a new question of axiomatization, that can be appreciated
also outside of our dynamic perspective. One reason for its complexity may
be that we are mixing a language of neighborhood-based modalities with
normal operators of belief with a matching relational semantics.

Notions of bisimulation Our languages invite matching notions of struc-
tural invariance for evidence models. We already saw that standard bisim-
ulation for neighborhood models matches modal logics with only evidence
operators. But Fact 3.5 showed that this does not extend to modalities of



88 J. van Benthem and E. Pacuit

belief referring to intersections of maximally consistent families of evidence
sets. And we introduced even stronger modal languages in our discussion of
dynamics in Section 4. What stronger notions of bisimulation respect this
evidence structure?

Finally, there are also obvious technical generalizations to be made: to
infinite models, and to DEL-style product update mechanisms for rich input.

Reliable evidence and its sources But our setting can also model fur-
ther phenomena. For instance, there is a natural notion of “reliable” evi-
dence, based only on sets containing the actual world. What is the complete
logic of this operator? This suggests a broader study of belief based on re-
liable evidence, in line with current trends in epistemology. But eventually,
we also want to introduce explicit modeling of sources of evidence and what
agents know or believe about their reliability.

Social notions We have seen how rich evidence structure arises in single
agent models. But multi-agent scenarios are also natural: e.g., argumen-
tation is social confrontation of evidence, which may result in new group
attitudes among participants. This raises interesting issues about natural
notions of group evidence and belief. Here evidence structure soon takes us
beyond the usual notions from the epistemic literature based on relational
models.

To illustrate this, suppose there are two agents i and j and a multi-
agent uniform evidence model M = ⟨W, Ei , Ej , V ⟩. We can then ask what
evidence the group i, j has. One option here is mere throwing together into
one “unprocessed” new evidence set:

M, w |= � { i ,j }ϕ iff there is a X ∈ Ei ∪ Ej such that X ⊆ [[ϕ]]M

At another extreme, the group might only take into account only evidence
that is shared between the two agents:

M, w |= � { i ,j }ϕ iff there is a X ∈ Ei ∩ Ej such that X ⊆ [[ϕ]]M

For a rough analogy on relational models, the latter form of group evidence is
more like common knowledge, while the former is more related to distributed
knowledge. But our richer neighborhood models also allow for further dis-
tinctions. In particular, the agents can also “pool” their evidence creating a
new evidential states by combining their evidence:

Ei ⊓ Ej = {Y | ∅ ̸= Y = X ∩X�with X ∈ Ei and X�∈ Ej }
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We can then define group evidence and belief modalities for this evidential
state as we did in Section 2.2. For instance,

M, w |= [i ⊓ j]ϕ iff there exists X ∈ Ei ⊓ Ej with X ⊆ [[ϕ]]M

What other natural notions of group evidence can we find?

Priority structures The evidence dynamics in this paper treats evidence
sets on a par. As a consequence, removal may seem arbitrary and non-
deterministic, since there is nothing in the structure of the evidence itself
which directs the process. A next reasonable step would be to model levels of
reliability of evidence. One natural format for this are the “priority graphs”
of [1], which have already been used extensively in dynamic-epistemic logic
[15, 8]. These graphs provide much richer input to evidence management,
and can break stalemates between conflicting pieces of evidence. It should
be possible to extend the above framework to one with ordered evidence sets
– and conversely, then, our logics may help provide something that has been
missing so far: modal logics working directly on priority graphs.

Other logics of evidence “Evidence” is a notion with many different
aspects. Our proposal has been set-theoretic and semantic, while there are
many other treatments of evidence for a proposition ϕ, in terms of proofs
for ϕ, or using the balance of probability for ϕ versus ¬ϕ. What we find
particularly pressing is a junction with more syntactic approaches making
evidence something coded that can be operated on in terms of inference and
computation. If finer operational aspects of inference and introspection enter
one’s notion of evidence, then the methods of this paper should be extended
to include dynamic logics of awareness and inference [30, 36].

Related frameworks Finally, the analysis in this paper should be linked
up with other traditions, including the seminal work by [6] and [24] on
evidence, probabilistic logics of evidence [9], or the “topologic” of [17]. And
one can add the “priority graphs” inducing preference orders in [16], or the
“belief base” account of belief revision in [11]. We intend to clarify these
connections in future work.

Conclusion We have made a proposal for using neighborhood models as
fine-grained evidence structures that allow for richer representation of infor-
mation than current relational models of belief. We have shown how these
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structures support a rich dynamics of evidence change that goes beyond cur-
rent logics of belief revision. A number of relative completeness theorems
identified the key dynamic equations governing this process, while also sug-
gesting new static languages of evidence and belief. Finally, we discussed
some new issues that lie ahead, such as adding priority structure and group
evidence, exploiting the richer neighborhood setting.
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