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Abstract. Robert Aumann’s agreeing to disagree theorem shows that if two agents have the
same prior probability and update their probability of an event E with private information by
conditioning, then if the posterior probabilities ofE are common knowledge, then the posteriors
must be the same. Dov Monderer and Dov Samet prove a generalization of Aumann’s result
involving a probabilistic variant of common knowledge. In this paper, I use various methods
from probabilistic and dynamic-epistemic logics to explore a dynamic characterization of the
Monderer and Samet result. The main goal is to develop a model that describes the evolution
of the agents’ knowledge and (probabilistic) beliefs as they interact with each other and the
environment. I will show how the logical frameworks are rich and flexible tools that can be
used to study many dynamic processes of interactive social belief change.

1 Introduction

In 1976, Robert Aumann proved a fascinating result ([3]). Suppose that two
agents have the same prior probability and update their probability of an event E
with private information by conditioning. Aumann showed that if the posterior prob-
abilities ofE are common knowledge, then the agents must assign the same posterior
to E. This is true even if the agents receive different information. In other words,
if agents have the same prior probability and update by conditioning, then the agents
cannot “agree to disagree” about their posterior probabilities. This seminal result has
been generalized in many ways ([4, 12, 41, 42]) and is still the subject of much discus-
sion in Economics ([11, 31, 33]), Logic ([14, 15]) and, to a lesser extent, Philosophy
([30, Sec. 3]).

In this paper, I discuss a generalization of Aumann’s theorem proved by Dov
Monderer and Dov Samet ([34]). Monderer and Samet define a probabilistic variant
of common knowledge, which can serve as a natural “approximation” to common
knowledge. If there is not common knowledge about the posteriors, then Aumann’s
theorem does not say anything about how the posteriors may be related. Monderer
and Samet prove a generalization of Aumann’s result: If there is common p-belief
of the posteriors of an event for values of p close to 1, then the posteriors must all
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be very close together (a more formal statement is given in Section 2.2). This is one
way in which common p-belief is a natural approximation of common knowledge. In
this paper, I explore a dynamics characterization of the Monderer and Samet result,
involving update actions, along the lines of Geanakoplos and Polemarchakis’s well-
known dynamics characterization of Aumann’s Theorem ([23]). Toward this end,
various methods will be discussed from probabilistic and dynamic-epistemic logics.

2 Knowledge, Belief and Probability

2.1 Knowledge and Belief in Probabilistic Models

Suppose that A = {1, . . . , n} is a non-empty set of agents. Each agent i ∈ A
is endowed with a probability measure µi on a common probability space (W,F),
where W is a non-empty set and F is a σ-algebra. 1 To simplify the discussion,
assume thatW is finite (in this case, we can let F = ℘(W )). 2 We say that there is a
common prior among the agents A provided that for all i, j ∈ A, µi = µj .

The agents’ private information is represented by a partition on W . For each
i ∈ A, let Πi be i’s partition on W . For each w ∈ W , let Πi(w) be the element of
Πi containing w. So, if w is the “actual” state, then Πi(w) is the information that i
receives at w (i.e., it is i’s information cell at w). It is assumed that for each w ∈W ,
Πi(w) is assigned a positive probability. For each i ∈ A, i’s posterior probability
at state w, µi,w : F → [0, 1], is defined by conditioning i’s prior probability on i’s
information cell at state w. Thus, for each set E ∈ F , we have that

µi,w(E) = µi(E | Πi(w)) =
µ(E ∩Πi(w))

µi(Πi(w))
.

These models have been used to characterize solution concepts in games ([1, 2,
25]) and as a semantics for a modal language with epistemic and probability operators
([10, 20, 27], this themewill be discussed in more detail in Section 4). The probability
measure µi,w is agent i’s posterior probability given i’s current information (at state
w). We are interested in the agents’ posterior probabilities for some fixed event E. It
is convenient to think of the agents’ posteriors of a fixed event as a random variable. 3

This motivates the following notation: For an event E ⊆ W and r ∈ [0, 1], let
[Ei = r] = {w | µi,w(E) = r}.

1That is, F ⊆ ℘(W ) is a collections of subsets of W such that 1) W ∈ F ; 2) F is closed under
finite intersections; and 3) F is closed under countable unions.

2Much of what follows can be generalized to infinite state spaces. See [41] for a discussion of
Aumann’s theorem on infinite state spaces.

3Recall that, in probability theory, a random variable is a measurable function from the probability
space (W,F) to some other measurable space (typically the real numbers). The idea is that, for each
event E and agent i ∈ A, there is a function fi,E : W → R, where w 7→ µi,w(E).
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The agents’ “knowledge” and “beliefs” are represented by operators on ℘(W )

(the set of subsets of ℘(W )). (Here we largely follow the notational conventions of
epistemic game theory.) For each i ∈ A, let Ki : ℘(W ) → ℘(W ) be defined as
follows: For all E ⊆W ,

Ki(E) = {w | Πi(w) ⊆ E}.

Then,Ki(E) is an event consisting of all statesw in which i’s information atw implies
E (the standard convention in the literature is to refer to the event Ki(E) as “agent
i knows that E”). It is well known that each Ki satisfies the so-called S5 axioms:
For all events E and F , Ki(E ∩ F ) = Ki(E) ∩ Ki(F ), Ki(E) ⊆ E, Ki(E) ⊆
Ki(Ki(E)), andKi(E) ⊆ Ki(Ki(E)) (X denotes the complement ofX inW ). The
agents’ beliefs are defined in an analogous way. For each i ∈ A and p ∈ [0, 1], let
Bp

i : ℘(W ) → ℘(W ) be defined as follows: For E ⊆W ,

Bp
i (E) = {w | µi,w(E) = µi(E | Πi(w)) ≥ p},

where µi is i’s prior probability onW . Thus, i believes that E (to degree at least p)
provided that i’s posterior of E is above the given threshold.

The following Lemma gathers together a number of important facts about the
Bp

i operators. The proofs will not be repeated here, since they can be found in [34].

Lemma 1 Suppose that (W,F) is a probability space; µi is a probability measure
on (W,F); Πi is a partition on W ; and Bp

i : ℘(W ) → ℘(W ) is the belief operator
defined above, where p ∈ [0, 1]. Then,

1. For all events E, Bp
i (E) is a union of elements from Πi.

2. For all events E, if E is a union of elements from Πi, then Bp
i (E) = E.

3. For all events E, Bp
i (B

p
i (E)) = Bp

i (E).
4. For all events E and F , if E ⊆ F , then Bp

i (E) ⊆ Bp
i (F ).

5. If (En) is a decreasing sequence of events then

Bp
i

(∩
n

En

)
=
∩
n

Bp
i (En).

This Lemma demonstrates that the belief operators Bp
i have much in common

with the knowledge operatorsKi. Note that eachKi operator also satisfies items 1–5.
There are two crucial differences between knowledge and belief in this frame-

work. The first follows from the laws of probability. Since the probability of the
intersection of two events may be smaller than the probability of either event, it is
easy to find events E and F such that Bp

i (E) ∩ Bp
i (F ) ̸⊆ Bp

i (E ∩ F ). The sec-
ond difference is that the agents’ beliefs do not satisfy the truth axiom (while for the
knowledge operator, we have that, for all events E, Ki(E) ⊆ E). However, the Bp

i
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operators satisfy a natural generalization of the truth axiom. While Bp
i (E) does not

necessarily imply that E is true, it does ensure that E has a probability of at least p. I
will provide the proof of this fact here since it helps to illustrate the above definitions
of the basic epistemic attitudes.

Lemma 2 Suppose that ⟨W,F⟩ is a probability space with probability measure µi,
Πi is a partition on W , and Bp

i : ℘(W ) → ℘(W ) is a p-belief operator. For all
E ⊆W and p ∈ [0, 1], we have µi(E | Bp

i (E)) ≥ p.

Proof Suppose thatE is an event and p ∈ [0, 1]. Let Pi = {P | P ∈ Πi and µi(E∩
P ) ≥ pµi(P )}. Then, the Pi contains all the partition cells from Πi such that i’s
posterior for E is at least p. Note that Bp

i (E) =
∪

Pi (cf. Clause 1 in Lemma
1). Since the elements of Pi are disjoint, we have µi(Bp

i (E)) =
∑

P∈Pi
µi(P ).

Furthermore, since E ∩ Bp
i (E) =

∪
P∈Pi

(E ∩ P ), and each of the sets in Pi are
disjoint, µi(E ∩ Bp

i (E)) =
∑

P∈Pi
µi(E ∩ P ). Finally, since, for each P ∈ Pi,

µi(E | P ) ≥ p (i.e., µi(E ∩ P ) ≥ pµi(P )), we have

µi(E ∩Bp
i (E)) =

∑
P∈Pi

µi(E ∩ P )

≥
∑
P∈Pi

pµi(P ) = p
∑
P∈Pi

µi(P ) = pµi(B
p
i (E)).

Thus, µi(E | Bp
i (E)) ≥ p, as desired. □

2.2 Common Knowledge and Common p-Belief

The game theory and epistemic logic literature contains many notions of group
knowledge. It is beyond the scope of this article to discuss all these concepts (see,
for instance, [8, 21]). Instead, I will define common knowledge and the probabilistic
variant of common knowledge proposed by Monderer and Samet ([34]).

Given knowledge operators Ki for each agent i ∈ A, let K : ℘(W ) → ℘(W )

be K(E) =
∩

i∈AKi(E). 4 Thus, K(E) is the event that “everyone knows that E”.
An event is common knowledge if everyone knows thatE and this fact is completely
transparent to all the agents. This can be made precise as follows. An event E is said
to be self-evident for i provided that E ⊆ Ki(E). An event is self-evident if it is
self-evident for i for each i ∈ A. Thus, E is self-evident iff E is closed with respect
to the agents’ information partition: for all i ∈ A, for all w, v ∈ W , if w ∈ E and
v ∈ Πi(w), then v ∈ E. A common knowledge operator, C : ℘(W ) → ℘(W ), is
then defined as follows: For each E ⊆W ,

C(E) = {w | there is a self-evident set F such that w ∈ F and F ⊆ E}.
4This definition can be relativized to any subset of agents. I.e., for G ⊆ A, let KG(E) =∩

i∈G Ki(E). In order to keep notation to a minimum, I will not pursue this more general approach
in this paper.
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That is, E is commonly known provided that there is a true self-evident event that
implies E. It is well known that, in many settings, this definition is equivalent to the
more standard “infinite iterative” definition of common knowledge 5, 6: for all events
E,

C(E) = E ∩K(E) ∩K(K(E)) ∩K(K(K(E))) ∩ · · ·

The definition of common p-belief is similar. Let Bp : ℘(W ) → ℘(W ) be the
operator associating with every event E, the event

∩
i∈AB

p
i (E). Thus, Bp(E) is the

event in which every agent believes E to degree at least p. An event E ⊆ W is an
evident p-belief for i provided that E ⊆ Bp

i (E) and is an evident p-belief if is an
evident p-belief for all agents i ∈ A. The common p-belief operator, Cp : ℘(W ) →
℘(W ), is defined as follows:

For all sets E ⊆W ,

Cp(E) = {w | there is an event F such that (i) w ∈ F ;
(ii) F is an evident p-belief for every i ∈ A;
and (iii) F ⊆ Bp

i (E) for all i ∈ A}.

Thus, an event E is commonly p-believed if there is a true self-evident p-belief that
implies that everyone p-believes E. There is an equivalent definition in terms of
iterations of the p-belief operators, though some care is needed since the p-belief
operators are not closed under intersections. One can consult [34, 29, 36, 37, 20]
for a discussion of the preceding definition of common p-belief and its relations with
alternative definitions. The following example illustrates how the definition given
here works.

Example 1 Suppose that there are two coins, each sitting in different drawers, and
two agents, Ann (a) and Bob (b). For i = 1, 2, let Hi denote the event “the coin in
drawer i is facing heads up” and let Ti denote the event “the coin in drawer i is facing
tails up”. Ann looks at the coin in drawer 1 and Bob looks at the coin in drawer 2.
Suppose that after observing their respective coins, there is an announcement over a
loudspeaker that both coins are facing heads up (H1 ∩ H2). Assume that Ann was
listening closely, but the announcement was not perfectly clear, and so the probability
that she heard correctly is 0.9. Bob was not paying as close attention, and so the
probability that he heard correctly is 0.8. Given that these probabilities are commonly
known by Ann and Bob, the initial probability of statew1 (whereH1 andH2 are both

5In a well-known paper, Jon Barwise ([6]) discusses three main different approaches to defining
common knowledge: (i) the iterated view, (ii) the fixed-point view, and (iii) the shared situation view.

6It is worth pointing out that David Lewis had a somewhat different approach to common knowledge
([32]). For Lewis, the infinite conjunction is a necessary but not a sufficient condition for common
knowledge. See [13] for an illuminating discussion and a reconstruction of Lewis’ notion of common
knowledge. Nonetheless, following [3], the definition given in this section has become standard in game
theory and epistemic logic.
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true) is 0.9 × 0.8 = 0.72. Similar calculations for the remaining states give us the
following diagram (I draw an i-labeled line between two states when the two states
are in the same information cell for agent i). Furthermore, note that both agents have
the same prior probability, so only one number is assigned to each state.

H1, H2

0.72

w1

T1, H2

0.18
w2

H1, T2

0.08
w3

T1, T2

0.02
w4

b

b

a a

In particular, we have that w1 ∈ B0.9
a (H1 ∩H2) ∩B0.8

b (H1 ∩H2). This means
thatX = {w1} is an evident 0.8-belief for both Ann and Bob. SinceX ⊆ B0.8

a (H1∩
H2) = {w1, w2, w3, w4} = B0.8

b (H1 ∩ H2), we have that w1 ∈ C0.8
a,b (H1 ∩ H2).

That is, while it is not common knowledge that the coins are both facing heads up,
it is common 0.8-belief that they are. Finally, note that the agents’ posteriors for the
event H1 ∩H2 are 0.9 and 0.8.

2.3 The Agreement Theorems

Using the above definitions, I can now state Aumann’s Theorem and Monderer
and Samet’s generalization involving common p-belief. I start with the statement of
Aumann’s Theorem.

Theorem 1 (Aumann, [3]) Suppose that (W,F) is a finite probability space and µ is
a probability measure on (W,F). Further, suppose that there is a common prior: for
each i ∈ A, µi = µ is i’s prior probability measure. For all real numbers r1, . . . , rn ∈
[0, 1] and events E ∈ F , if C(

∩
i∈A[Ei = ri]) ̸= ∅, then for all i, j ∈ A, ri = rj .

The proof of this theorem is not difficult once the definitions are in place (see
[3]). Next, theMonderer and Samet result identifies the consequence of assuming that
the agents’ posterior probabilities of an eventE are commonly p-believed (rather than
commonly known).

Theorem 2 (Monderer and Samet, [34]) Suppose that (W,F) is a finite probability
space and µ is a probability measure on (W,F). Further, suppose that there is a
common prior: for each i ∈ A, µi = µ is i’s prior probability measure. For all real
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numbers r1, . . . , rn ∈ [0, 1] and events E ⊆W , if Cp(
∩

i∈A[Ei = ri]) ̸= ∅, then for
all i, j ∈ A, |ri − rj | < 1− p.

The original result in [34] had a different bound on the differences between the
posteriors. The bound used in the above version was provided by Zvika Neeman
([38]), who also showed that this bound cannot be improved. In the special case when
p = 1 and the posteriors are commonly p-believed, then the differences between the
posteriors is 1−p = 0 (i.e., the posteriors must be the same). Thus, the above theorem
generalizes Aumann’s Theorem. 7

Example 2 To further illustrate this theorem, consider the model depicted in Exam-
ple 1, and let E = H1 ∩H2. Then, the prior probability of E is µa(E) = µb(E) =

0.72, while the posterior probability of E is µa,w1(E) = 0.9 and µb,w1(E) = 0.8.
Furthermore, we can easily see that [Ea = 0.9] = {w1, w3} and [Eb = 0.8] =

{w1, w2}. In this model, C0.8
{a,b}([Ea = 0.9] ∩ [Eb = 0.8]) = C0.8

{a,b}({w1}) = {w1}.
Indeed, we have that |µa,w1(E)−µb,w1(E)| = 0.9−0.8 = 0.1 < 1−0.8, as expected
according to Theorem 2.

3 Dynamics

Aumann’s theorem raises a natural question: How, exactly, do the agents come
to agree on their posteriors? If there is common knowledge of the posteriors of an
event, then these posteriors must be equal. However, in general, common knowledge
will be achieved only after the agents gather and exchange information.

3.1 Processes of Inquiry and Information Exchange

There are two main stages to this dynamic process of information exchange.
Starting with a common probability space (W,F , µ):

1. Each agent i receives private information represented by a partition Πi onW .
The idea is that the agents each ask questions, or perform experiments, the
accumulated answers (or results) of which result in a partition over the set of
states. It is assumed that the agents know the question that the other agents ask
(i.e., each agent i knows the partitionsΠj for each agent J), but not the answers
that they receive (i.e., for each agent i and state w, i does not, in general, know
the event Πj(w)).

2. The agents exchange some information based on their current knowledge and
beliefs. The information exchanged could be the answer to the question that

7Note that common 1-belief is not necessarily equivalent to common knowledge. The two may
come apart when there are states in an information cell that are assigned probability 0. Dealing with
probability 0 events is a very interesting topic, although I do not focus on it in this paper.



Eric Pacuit / Dynamics for Probabilistic Common Belief 39

they asked ([7]), the posteriors of some fixed event E ([3, 23]), whether the
agents would accept a bet based on E ([43]), or, more generally, the output of
some discrete random variable ([35, 40]). Based on the information received
from the other agent(s), the agents (further) refine their initial partition. This
may result in new information that the agents can exchange.

This dynamic process of information exchange converges when the agents can-
not learn anything new. That is, there is convergence when no further exchange of
information results in any change to the agents’ knowledge or beliefs.

Many interesting questions can be asked about information exchange in general,
beyond the issue of convergence. For instance, what is commonly known (or com-
monly believed) among the agents after a process converges? Or, have the agents
reached consensus about some previous disagreement? For instance, is there agree-
ment about the posterior probability of some fixed event, or about whether to accept
a bet based on some fixed event?

3.2 Announcing Posterior Probabilities and Model Update

Geanakoplos and Polemarchakis ([23]) develop a dynamic characterization of
Aumann’s theorem by defining a general process of information exchange among
agents with different information along the lines of the process described above. 8

The authors show that when the agents exchange their current probability for some
fixed event E, convergence is reached after a finite number of exchanges. Further-
more, when the process of information exchange converges, there is common knowl-
edge of the current probabilities of E. Aumann’s theorem, then, implies that these
probabilities must be the same. Thus, the exchange of information results not only in
common knowledge, but also in consensus about the probability of E. This result is
a dynamic characterization of Aumann’s agreeing to disagree theorem. To make this
statement more precise, we give some formal definitions.

An epistemic-probability model is a tupleM = ⟨W, {Πi}i∈A, µ⟩, whereW ̸=
∅ is a finite set of states, for each i ∈ A, Πi is a partition onW , and µ is a probability
measure on9 W (µ is the common prior). In the remainder of this paper, we will
mostly be interested in pairs (M, w), called pointed epistemic-probability models,
where M is an epistemic probability model and w is a state from M. As the agents
exchange information, this model is transformed into a new one — a common idea
in the literature on information dynamics ([5, 8, 39]).

The type of transformation studied by Geanakoplos and Polemarchakis and sub-
sequent researchers involves a refinement of the agents’ partitions. A partition Π is a

8See [14, 15] for a discussion of dynamic modal logics of beliefs motivated by this work.
9Since the set set of statesW is finite, we can assume that the σ-algebra is ℘(W ). Furthermore, it is

often convenient, when the set of states is finite, to view the probability measure as a function µ : W →
[0, 1] with

∑
w∈W µ(w) = 1. Then, the probability of any setX ⊆ W is µ(X) =

∑
w∈X µ(w).
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refinement of Π′, provided that for all X ∈ Π′, there are Y1, . . . , Yk ∈ Πi such that
X = Y1∪· · ·∪Yk. We also say thatΠ′ is a coarsening ofΠ. Given an eventE ⊆W

and a partitionΠi ofW for agent i, letΠE
i be the coarsest partition that refinesΠi and

for all X ∈ ΠE
i , either X ⊆ E or E ⊆ X . If Πi represents i’s current information,

or current question, then ΠE
i represents i’s information after updating with E. Given

a sequence of events E = (E1, . . . , En), let ME = ⟨W, {ΠEi
i }i∈A, µ⟩. Then, ME

describes the agents’ knowledge and beliefs after every i ∈ A updates their partition
with the event Ei. Using this notation, we can describe the information exchanges
used in a dynamic characterization of Aumann’s Theorem.

Suppose thatM = ⟨W, {Πi}i∈A, µ⟩ is an epistemic-probability model, F ⊆W

is an event, and v ∈ W is the “actual world”. For each i ∈ A, let ri = µi,v(F ).
Then, the information exchanged at state v by all the agents is the sequence E =

(E1, . . . , En), where for each i ∈ A, Ei =
∩

j∈A,j ̸=i{w | µj,w(F ) = rj}. That is,
each agent i learns the other agents’ current probability of the event F . The agents
“indirectly” share their information by repeatedly reporting their posteriors of the
eventF at state v. This sequence of information exchanges is described by a sequence
of model transformations:

(M0, v)
E0=⇒ (M1, v)

E1=⇒ (M2, v)
E2=⇒ · · · Em−1

=⇒ (Mm, v),

where for k = 0, . . . ,m− 1, Ek is the information about the agents’ posterior prob-
abilities of F from modelMk at state v, and for k = 0, . . . ,m− 1,Mk+1 = MEk

k .
A sequence of model transformations is said to converge when no further infor-

mation exchanges change the model. That is, a sequence converges when there is
a model Mm such that MEm

m = M. Geanakoplos and Polemarchakis prove that
for any (finite) epistemic probability model M, event F and state v from M, the
sequence of model transformations generated by F and (M, v) is guaranteed to con-
verge. For an epistemic-probability model M, event F and state v, let M[F, v] be
the epistemic-probability model that is generated after a sequence of information ex-
changes about the posteriors of F at v converges.

Since the posteriors of the event F in M[F, v] are common knowledge, Au-
mann’s theorem then guarantees that the posteriors must be the same inM[F, v]. 10

The convergence of the agents’ opinions about an event F depends on the as-
sumption that there is a common prior and that the agents know the other agents’
possible information cells. I.e., the agents know which question was asked, or exper-
iment performed, by the other agents. If an agent i announces that her posterior for
F is r, then the other agents can rule out any state in which conditioning the com-
mon prior on i’s information at that state does not assign probability r to F . Thus,

10Actually, one can see that the posteriors for the event F must be equal without appealing to Au-
mann’s Theorem. That is, it can be shown that the agents’ posteriors for F must be equal in M[F, v],
cf. [15].
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even if all the agents announce the same posterior for an event, they may still learn
something. This is illustrated by the following example.

Example 3 Recall the situation described in Example 1. Two (fair) coins are flipped
and placed in two different boxes. Ann observes the coin in the first box and Bob
observes the coin in the second box. LetM0 represent Ann and Bob’s beliefs before
they observe the coins. Assume that both Ann and Bob initially believe that the coins
are fair. Then, M0 = ⟨W, {Πi}i∈{a,b}, µ⟩, where Πa = Πb = {W} and for j =

1, . . . , 4, µ(wj) = 1
4 . We are interested in 4 events: H1 = {w1, w3} (the coin in

box 1 is lying heads up); H2 = {w1, w2} (the coin in box 2 is lying heads up);
T1 = {w2, w4} (the coin in box 1 is lying tails up); and T2 = {w3, w4} (the coin is
box 2 is lying tails up).

The first “learning event” is that Ann observes the coin in box 1 andBob observes
the coin in box 2. The agents’ observations transform the model M0 into M1 =

⟨W, {ΠH1
a ,ΠH2

b }, µ⟩, in which Ann knows whether coin 1 is heads up or tails up
(Ka(H1)∪Ka(T1)) and Bob knows whether coin 2 is heads up or tails up (Kb(H2)∨
Kb(T2)). We are assuming here that the observations are “out in the open”, so that Ann
knows that Bob is observing the coin in box 2 and Bob knows that Ann is observing
the coin in box 1. 11 After the agents observe the coins in their respective boxes, they
exchange information. Suppose that both coins are lying heads up. There are two
situations to contrast.

In the first situation, the agents exchange their current probabilities of the event
E = H1 ∩ H2. Note that the agents’ posterior probabilities are the same for E:
µa,w1(E) = µb,w1(E) = 1

2 . However, the agents do learn something from this ex-
change of information. Sinceµa,w2(E) = µa,w4(E) = 0 andµb,w2(E) = µb,w4(E) =

0, it becomes common knowledge that both coins are lying heads up. Thus, the agents
become certain of event E (i.e., both Ann and Bob assign probability 1 to E af-
ter exchanging their information). Indeed, note that we get the same result even if
the coins are biased (so that the initial probability is not uniform). In general, the
agents will become certain of the event E in any model in which µ(E | ΠH1

a (w1)) ̸=
µ(E | ΠT1

a (w1)) or µ(E | ΠH2
b (w1)) ̸= µ(E | ΠT2

b (w1)). So, for example, the agents
will become certain of E after exchanging their probabilities for E in the model that
was described in Example 1.

In the second situation, the agents exchange their current probabilities of the
event F = (H1 ∩ H2) ∪ (T1 ∩ T2). That is, F is the event “the coins in the boxes
match”. As in the first situation, both Ann and Bob assign probability 1/2 to this
event: µa,w1(F ) = µb,w1(F ) = 1

2 . However, in this case, exchanging their cur-
rent probabilities of F does not result in any changes to the model. This is because
µ(F | H1) = µ(F | T1) = µ(F | H2) = µ(F | T2) = 1

2 . Note that the same phe-

11This assumption can be dropped using ideas from dynamic epistemic logic: see [8, 39] for a discus-
sion.
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nomenon occurs if we assume that the coins are perfectly correlated (so that, inM0,
we have µ(w1) = µ(w4) = 1

2 and µ(w2) = µ(w3) = 0), and the agents exchange
their current probabilities of E.

In both cases, the agents’ initial observations result in the same probability of
the event in question. In the first situation, sharing these probabilities causes the
agents to become certain of the event. In the second situation, however, sharing the
probabilities does not result in any changes to the agents’ knowledge or beliefs. The
crucial difference is the agents’ higher-order information—i.e., what the agents know
about the other agent’s knowledge and beliefs. It is the higher-order information that
drives the changes in the agents’ beliefs about an event E. Suppose that agent j
announces that the probability of some event E is q. Given j’s current information
partition and this announcement, the other agents can partition the set of states into
those in which j’s announcement is true (i.e., j’s current probability of E is q) and
those in which the announcement is false. The agents then use this new information
to refine their partitions.

3.3 Information Exchanges for Common p-Belief

What type of information exchanges should be used in a dynamic characteriza-
tion of Monderer and Samet’s generalization of Aumann’s Theorem? That is, for an
event F and an epistemic-probability modelM, what dynamic process will converge
on a model in which there is common p-belief of the agents’ current probability of F ?

I start by considering a specific example. The goal is to explain how we account
for the model from Example 1. That is, if the above-discussed two situations from
Example 3 represent two extreme points on a scale of different types of dynamic
processes of information exchanges, then is there an intermediate type of process that
results in the model from Example 1?

One way to answer this question is to use a “softer” type of belief change to
represent the agents’ initial observation. The idea is that situations such as the one
described in the model from Example 1 arise because the agents receive uncertain
evidence about the coins. The standard way to update beliefs given uncertain evidence
is to use an approach pioneered by Richard Jeffrey. ([28]) Here are some relevant
details for our purpose.

In the dynamic process of information exchange described in this section, ini-
tially, each agent receives some evidence. In the situations described above, each
agent receives different evidence (Ann receives evidence that the coin in box 1 is
heads up, while Bob receives evidence that the coin in box 2 is heads up), but both
are certain that the evidence is correct. Thus, after taking this evidence into account,
Ann is certain that the coin is lying heads up in box 1, and Bob is certain that the
coin is lying heads up in box 2. Jeffrey is interested in situations in which the agents
shift their probabilities in response to some evidence, though they do not necessarily



Eric Pacuit / Dynamics for Probabilistic Common Belief 43

become certain that the evidence is correct. For instance, Ann and Bob may observe
the coins in the boxes under a dim light. For a set of statesW , Jeffrey calls a sequence
(Q1 : r1, . . . , Qm : rm) a learning experience, where {Qi} is a partition onW , for
each j = 1, . . . ,m, rj ∈ [0, 1], and

∑
j rj = 1. The intuition is that each rj is the

new posterior of the partition cell Qj .
Then here is the new update rule. Given a probability µ onW , the new proba-

bility given a learning experience (Q1 : r1, . . . , Qm : rm), denoted by µnew, of an
event E is:

µnew(E) =
n∑

i=1

riµ(E | Qi).

It is not hard to see that Jeffrey updating is a generalization of conditioning: The
above equation reduces to standard conditioning with a learning sequence in which
exactly one element has a weight of 1, while all the others have weights of 0.

Starting with the initial model M0, suppose that Ann’s learning experience is
(H1 : 0.9, T1 : 0.1) and Bob’s is (H1 : 0.8, T1 : 0.2). Then, the model from Example
1 results from Ann and Bob applying the Jeffrey update rule and assuming that these
learning experiences are common knowledge. This type of multi-agent Jeffrey update
can be represented using the probabilistic event models and update rule from [10]. 12

However, this is not the end of the story. As noted above, if Ann and Bob share
their probabilities of the eventE in the model from Example 1, then they will become
certain in the eventE. This implies that the model from Example 1 can be maintained
as long as Ann and Bob do not communicate. A complete analysis should allow
exchanges of information to be intermixed with learning about an event, either by
conditioning or by Jeffrey update.

We conclude with a brief discussion of some of the issues that arise whenmoving
from common knowledge to common p-belief. I will not arrive at a complete solution,
but we will see what I take to be the main challenge. Again, it helps to illustrate our
theme with a specific example, this time, a scenario based on the proof of Proposition
1 in [23].

Example 4 Suppose thatM0 = ⟨W, {Πa,Πb}, µ0⟩, where

• W = {w1, w2, w3, w4, w5, w6, w7, w8, w9};
• Πa = {{w1, w2, w3}, {w4, w5, w6}, {w7, w8, w9}} and
Πb = {{w1, w2, w3, w4}, {w5, w6, w7, w8}, {w9}};

• for all j = 1, . . . , 9, µ(wj) =
1
9 .

12The details of the probabilistic event models and update rules are beyond the scope of this article.
One may consult [10] for a discussion. An interesting question for future research is to explore the types
of epistemic-probability models that arise from to look at the long-run dynamics of applying of updating
an epistemic-probability model with a sequence of probabilistic event models.
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Moreover, suppose that the event that we are interested in is E = {w1, w5, w9}. The
relevant model (without the probabilities) is pictured as follows — where agent a’s
partition is the solid line; agent b’s partition is the dashed line; and E is the gray
ellipse:

w1 w2 w3

w4 w5 w6

w7 w8 w9

Starting with this initial model, the process of information exchanges that was
described in this section proceeds as follows:

• Round 1: Ann announces that her probability ofE is 1
3 and Bob announces that

his is 1
4 . After the agents share these probabilities, the probabilities inE do not

change. However, Ann’s partition is refined so that Πa(w7) = {w7, w8} and
Πa(w9) = {w9}. Bob’s partition is not changed either. Thus, this refinement
does not change Ann’s and Bob’s probability for E.

• Round 2: Ann announces that her probability of E is 1
3 and Bob announces

that his is 1
4 . As a result of this announcement, Bob refines his partition so that

Πb(w5) = {w5, w6} and Πb(w7) = {w7, w8}. Once again, this refinement
does not change Ann’s and Bob’s probability for E.

• Round 3: Ann announces that her probability of E is 1
3 and Bob announces

that his is 1
4 . As a result of this announcement, Ann further refines her partition

so that Πa(w4) = {w4} and Πa(w5) = {w5, w6}. This refinement does not
change Ann’s and Bob’s probability for E.

• Round 4: Ann announces that her probability ofE is 1
3 and Bob announces that

his is 1
4 . As a result of this announcement, Bob further refines his partition so

that Πb(w4) = {w4} and Πb(w1) = {w1, w2, w3}. Now Ann and Bob both
assign probability 1

3 to the event E.

After round 4, the process converges since there is no new information that can
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be shared. Note that, as the reader is invited to check, w1 ∈ C
1
4 (E), and this does

not change during the information exchange — until the process converges, when we
have w ∈ C

1
3 (E).

So, we have identified an obvious further question at this stage. What type of
information updates will increase the p so that there is common p-belief of the event
E? If wewant to increase the common p-belief of the eventE, then there needs to be a
more drastic change to Ann and Bob’s probabilities during the process of information
exchange.

One natural approach is to assume that the agents receive information that changes
the relative likelihood of their information cells. For instance, suppose that in round 1,
the agents learn that Ann’s partition cell {w1, w2, w3} is twice as likely as her other
cells. This can be represented by a Jeffrey update along the lines of the ones used
in the previous section. The problem with this approach is that this type of change
in the probabilities does not shift the agents’ posteriors of the event E. Indeed, a
defining feature of Jeffrey updating is that an agent’s conditional probabilities are left
unchanged. ([18])

So, clearly, more is to be done in analyzing the agent dynamics that we started
with. In particular, one important clue from our example is that increasing the com-
mon p-belief of the event E is closely tied to learning about E. That is, the type of
updates that will increase common p-belief of E involve simply raising the (prior)
probability of E.

We leave our discussion of probabilistic-epistemic update dynamics at this stage,
hoping to have illustrated the main issues and challenges involved in analyzing
Monderer-Samet type results and related scenarios. A complete analysis of the dy-
namic processes that result from combining learning directly about an event while
also allowing agents to share their probabilities of that event will be left for another
paper.

4 Logical Considerations

One obvious approach to studying the fine-structure of the scenarios discussed
in the preceding sections is the introduction of logical languages and their associated
techniques for analyzing reasoning by, or about, agents.

4.1 Epistemic Probabilistic Base Logic

Many different logical frameworks have been proposed to reason about epistemic-
probability models ([10, 19, 20, 27, 44]). One may consult [17] for a comparative dis-
cussion of these different logical frameworks. In this section, I highlight the formal
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language from [19, 20], being the most natural language to formalize the agreement
theorems discussed in this paper.

Suppose that At is a countable set of atomic propositions, and then, let L be the
smallest set of formulas generated by the following grammar:

p | ¬φ | φ ∧ ψ | Kiφ | Cφ | p1Pi(φ1) + · · ·+ pkPi(φk) ≥ q

where i ∈ A, p ∈ At and p1, . . . , pk, q are rational numbers in [0, 1]. 13 The addi-
tional Boolean connectives (∨,→,↔) are defined as usual. This language can be in-
terpreted on our earlier epistemic-probability models, when we add a valuation func-
tion to interpret the atomic propositions. Suppose that M = ⟨W, {Πi}i∈A, {µi}, V ⟩
is an epistemic-probability model where V : At → ℘(W ) is a valuation func-
tion. Truth of formulas φ ∈ L at a pointed epistemic-probability model, denoted
M, w |= φ, is defined by recursion:

• M, w |= p iff w ∈ V (p)

• M, w |= ¬φ iffM, w ̸|= φ

• M, w |= φ ∧ ψ iffM, w |= φ andM, w |= ψ

• M, w |= Kiφ iff w ∈ Ki([[φ]]M)

• M, w |= Cφ iff w ∈ C([[φ]]M)

• M, w |= p1Pi(φ) + · · ·+ pkPi(φ) ≥ q iff
∑k

j=1 pjµi([[φj ]]M | Πi(w)) ≥ q.

It is straightforward to show that we can now also define formulas p1Pi(φ) +

· · ·+pkPi(φ) ≤ q and p1Pi(φ)+· · ·+pkPi(φ) = q, with the obvious interpretations.
Furthermore, for rational numbers p, q ∈ [0, 1], it is useful to define p = q to be the
formula pPi(⊤) +−qPi(⊤) = 0 (where ⊤ is the formula p ∨ ¬p).

Excursion. In much of the literature on epistemic-probability modal logic, a
more general semantics is used, with different probability measures assigned to each
state. A general epistemic-probability model is then a structure ⟨W , {Ri}i∈A, {πi}i∈A,
V ⟩, where W ̸= ∅; for each i ∈ A, Ri ⊆ W ×W is an equivalence relation and
V : At → ℘(W ) is a valuation function. For each i ∈ A, πi assigns a probability
function to each state: For each i ∈ A, πi : W → (W ⇀ [0, 1]) such that14 for all
w ∈W , ∑

v∈dom(πi(w))

πi(w)(v) = 1

13Here the restriction to rational numbers ensures that the language is countable.
14The notation π : W ⇀ [0, 1] means that π is partial function. Let dom(π) be the domain of π.

This assumption does not play an important role in this paper, though it is is needed in order to deal with
states that should be ignored when assigning probability to an event. For instance, after φ is publicly
announced, the states that do not satisfy φ should not figure into any probabilistic calculations.
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Then, the interpretation of the earlier basic probability formula is:

M, w |= p1Pi(φ) + · · ·+ pkPi(φ) ≥ q iff
k∑

i=1

piPi(w)([[φ]]M) ≥ q

where for any set X ⊆W , Pi(w)(X) =
∑
v∈X

Pi(w)(v).

There are two important differences between this model and the epistemic-probability
models used in this paper. The first is that since agents’ probability functions may
vary from state to state, the agents do not necessarily know their probability function.
The second difference is that the probability functions used to interpret the probabil-
ity formulas are not conditioned on the agents’ current information. The approach
taken in this section ensures that for all formulas φ, rational numbers p ∈ [0, 1] and
epistemic-probability modelsM,Bp

i ([[φ]]M) = [[Pi(φ) ≥ p]]M. In both frameworks,
conditional probability is definable: For formulas φ and ψ, let Pi(φ | ψ) ≥ q be de-
fined as Pi(φ ∧ ψ) +−qPi(ψ) = 0. 15

In the above language L, the agreeing to disagree theorem is expressible as fol-
lows:

C(Pa(φ) = p ∧ Pb(φ) = q) → p = q.

Aumann’s result says that the above formula is valid (true at all states) on any model
in which there is a common prior. Completely formalizing this theoremwould require
a formula that expresses the fact that there is a common prior. One may consult [22,
24, 26] for approaches to this challenging problem, and [15] for a complete logical
analysis of this approach to formalizing Aumann’s Theorem.

4.2 Extension to Common p-Belief

In order to extend the above logical analysis to Monderer and Samet’s general-
ization of Aumann’s theorem, we must go beyond the above formalism, and add a
common p-belief operator to the language. To do this we add, for each rational num-
ber p ∈ [0, 1], a modal operator Cp to the language L. The interpretation of these
formulas is straightforward:

M, w |= Cpφ iff w ∈ Cp([[φ]]M).

In a language with common p-belief operators defined in this way, the Monderer
and Samet agreement theorem can be expressed—where the same comment as above
applies about the further task of formalizing the common prior:

Cp(Pa(φ) = p ∧ Pb(φ) = q) → ((a− b < 1− p) ∧ (b− a < 1− p)).

15One further difficulty with expressingBp
i ([[φ]]M) precisely is in finding formulas that express agent

i’s information at each state. See [15] for an elegant solution to this problemwhen formalizingAumann’s
theorem in this more general setting, as well as other relevant results: see below.
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To the best of my knowledge, finding a complete logic for the language L with com-
mon p-belief operators is still an open problem (cf. [19] for a brief discussion).

4.3 Dynamic Logics of Probabilistic Epistemic Update

In this richer setting, the processes of information exchange discussed in Sec-
tion 3 can also be subjected to a logical analysis using existing dynamic epistemic-
probability logics [16, 10].

In particular, announcements of the agents’ current posteriors can be described in
the language using a public announcement operator. For each φ ∈ L (with common
p-belief operators), let [φ]ψ be a formula with the intended interpretation is that “after
φ is publicly announced, ψ is true”. Suppose that M = ⟨W, {Πi}i∈A, {µi}i∈A, V ⟩
is an epistemic-probability model. The model Mφ is the structure ⟨Wφ, {Πφ

i }i∈A,
{µφi }i∈A, V φ⟩, whereWφ = W , for all i ∈ A, Πφ = Π

[[φ]]M
i , V φ = V , and for all

µφi (·) = µi(· | [[φ]]M). This assumes that only formulas that are assigned non-zero
probability are announced (cf. [16] for an illuminating discussion of this). Truth of
public announcement formulas is defined as follows:

M, w |= [φ]ψ iff ifM, w |= φ, thenMφ, w |= ψ.

The above formula assumes that only true statements can be announced. This as-
sumption can be dropped (see [16] for a discussion), although this extra generality
is not needed for the purposes of this section. As a basic application, the key single
step in the process of information exchanges discussed in Section 3 is represented by
the dynamic formula [Pa(φ) = p ∧ Pa(φ) = q]ψ. A complete logic for the dynamic
processes of information exchange that underlie Aumann’s Theorem can be found in
[15].

4.4 Toward a Dynamic Logic for Common p-Belief

I conclude this section with a brief discussion of a key logical issue for the
Monderer-Samet setting. What are the recursion axioms for the common p-belief
operators?

A fundamental insight in the dynamic epistemic logic literature [8] is that there is
a strong logical relationship between what is true before and after an announcement in
the form of so-called recursion axioms. The recursion axioms describe the effect of an
announcement (or indeed, any relevant sort of information-producing event) in terms
of what is true before the announcement. For instance, the reader can easily check
that the following formula is valid (i.e., true at all states) in any epistemic-probability
model:

[ψ](Pi(φ) ≥ q) ↔ (φ→ Pi([ψ]φ | ψ) ≥ q).
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When a logical language becomes strictly more expressive by adding public an-
nouncement operators, recursion axioms are not always available. Adding public
announcement operators to epistemic logic (even without probability operators) with
common knowledge is such a case. It was shown by [5] that the language of epis-
temic logic with common knowledge and public announcements is more expressive
than epistemic logic with common knowledge. Therefore, a recursion axiom for for-
mulas of the form [φ]Cψ does not exist.

Nonetheless, a recursion axiom-style analysis is still possible ([9]). The key
idea is to introduce a conditional common knowledge operator C(φ,ψ) saying that φ
is true at all states that are reachable by finite paths of the agents’ accessible relations
going through states satisfying φ. There are recursion axioms in this more expressive
language:

[!ψ]Cφ↔ (ψ → C([!ψ]φ,ψ).

A natural question is whether this approach can be extended to common p-belief
operators. The answer is that we can, but the definition of conditional common p-
belief operators requires some care. We first define a conditional p-belief operator:
Bp

i (E,F ) = {w | µi(E | Πi(w) ∩ F ) ≥ p}. Then, conditional common p-belief is
defined as follows:

Cp(E,F ) = {w | there is a U ⊆W such that
w ∈ U ∩ F , U ⊆ Bp(U,F ), and U ⊆ Bp(E,F )}.

Once this definition is in place, it is not hard to see that the following formula is valid:

[!ψ]Cpφ↔ (ψ → Cp([!ψ]φ,ψ).

This section has merely given a taste of the insights that can be gained by using
existing dynamic epistemic probability logics to reason about agreement theorems
and the dynamic processes of information exchange that leads to agreement. A lot
more lies ahead of us. 16

5 Conclusion

This article has raised more questions than it has answered, and its main con-
tribution is conceptual rather than technical. It has argued for a more fine-grained
analysis of the dynamic process of information exchange that underlies agreeing to
disagree type results. Our main goal was to develop a model that describes the evo-
lution of the agents’ knowledge and beliefs as they interact with each other and the
environment. At each moment, the agents receive an input. This input might be an
announcement from one or more of the agents in the group (about some property of

16For further illustrations, the reader may consult [14] in a framework without probabilities.
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the agent’s current beliefs, such as the probability of some fixed event), or, more gen-
erally, some signal revealing the value of some unknown random variable. Based on
this input, the agents update their beliefs.

We have shown how concrete results from game theory sharpen our intuitions
and raise concrete issues in thinking about the preceding phenomena through the lense
of probabilistic update steps. We also hope to have shown, or at least made it plausible
to the reader, how the logical framework discussed in Section 4 is a rich and flexible
tool that can be used to study many dynamic processes of interactive social belief
change.
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摘 要

Robert Aumann的不一致的达成定理揭示了如果两个主体关于某事件 E具有
相同的先验概率，并且利用私人信息更新了他们关于事件 E的概率，那么，若事

件 E 的后验概率是他们之间的公共知识，则这个后验值一定是相同的。而 Dov
Monderer和 Dov Samet考虑了包含有关于公共知识概率赋值的一种变体，推广了
奥曼这个结论。在这篇文章中，笔者基于概率和动态认知逻辑，采用多种方法考

察了关于他们结论的动态刻画。本文主要的目标是构建一个模型，可以描述随着

主体彼此间的交互深入和环境变化，主体知识和信念所发生的变化。同时，笔者

表明这种逻辑框架对于研究交互社会群体中主体信念改变的动态进程是富足和灵

活的。


