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Abstract
We discuss a general approach to judgement aggregation based on lattice theory. Agents choose elements of a lattice, and
an aggregation procedure yields a ‘social choice’ based on the individual choices. Settings traditionally studied in social
choice theory can be thought of as implicational systems, and lattice theory provides an abstraction of such systems. In fact,
traditionally studied settings correspond to certain atomistic lattices in our framework. Our aim is to systematically investigate
how properties of a given lattice induce constraints on aggregation procedures that lead up to impossibility theorems. We
allow for non-atomistic lattices and this raises some subtle issues. We will discuss how well our framework fits in with the
traditional approaches to social choice theory, in particular with respect to generalizations of some of the well known axioms,
and go on prove an impossibility result that highlights the role of certain lattice theoretical properties. These properties reflect
some of the traditional axioms or other aspects of traditional systems.
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1 Introduction

There is a new field emerging around issues concerning the aggregation of a collection of individual
‘judgments’of a group of agents.An individual ‘judgment’is represented by a set of sentences in some
logical language. One looks for a procedure that has as its output a ‘social’ judgment. A key result
in this area is List and Pettit’s impossibility result [13]. By generalizing the well-known doctrinal
paradox [12], List and Pettit were able to show an ‘Arrow’-style [1] impossibility theorem: for
judgment sets that are subsets of a sufficiently rich collection of sentences there is no ‘well-behaved’
aggregation procedure. There have been a number of refinements and generalizations of this elegant
result [3, 7, 8, 16–18].

As our starting point we take work of Dietrich and List, which builds on List and Pettit’s result
and clarifies the connection between judgment aggregation impossibility results and Arrow’s famous
impossibility result. In the setting studied by these authors, an agenda is a collection of sentences in
some logical language.1 A judgment set is a subset of the agenda. The impossibility results arise out
of assumptions made about (i) the agenda, (ii) the possible judgment sets and (iii) the aggregation
functions. Formal details can be found in ref. [4].

1Whether the underlying logic is propositional, first-order, modal, etc. is not important for this discussion. See ref. [3] for
a discussion.
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518 A General Approach to Aggregation Problems

Virtually all proofs of impossibility results follow a similar line of reasoning. The main idea is
to show that assumptions about the aggregation procedure and the structure of the agenda force the
set of so-called ‘winning coalitions’ to have particular algebraic properties. Intuitively, a winning
coalition is a set of agents that can force the aggregation procedure to select a certain proposition.
More formally, let N be the set of agents. A set M ⊆N is said to be a winning coalition if and only
if for all propositions ϕ from the agenda, and in any situation, the aggregation procedure selects ϕ

whenever exactly the agents in M select ϕ.
Given an aggregation procedure F, let �F be the set of winning coalitions associated with F.

The proof of the main impossibility result in ref. [4] amounts to showing that �F is an ultrafilter,
that is, a collection closed under intersections and supersets and that satisfies for all M ⊆N , either
M ∈�F or N −M ∈�F .Any ultrafilter over a finite set must contain a singleton. Under the assumption
that the set of agents is finite, the impossibility result immediately follows, i.e. the set of winning
coalitions contains a singleton. Thus, there is a formal connection between properties of the agenda
and aggregation procedure and properties of the set of winning coalitions.

We have two goals in this article. Our principal goal is to introduce a general framework to
systematically investigate the connection between properties of the agenda and aggregation procedure
on the one hand, and properties of the winning coalitions on the other. Our framework is abstract
and algebraic in nature; and the heart of our article is formed by three sections in which we
investigate how this perspective relates to more familiar concepts in the literature. The next section
introduces our basic framework. In Section 3, we show how the algebraic structures that we consider
arise from more classical perspectives, i.e. preference or judgement aggregation. In Section 4,
we discuss how some of the traditional axioms of social choice theory can be generalized in our
setting.

Our second goal is to prove an Arrow-style impossibility result in our general setting. Section 5
contains such a result. We conclude in Section 6.

2 Our setting

2.1 Algebraic preliminaries

To introduce our general framework we will need some formal machinery. Much of this terminology
is well known and the reader is referred to ref. [2] for an extensive discussion. An partially ordered
set (‘poset’) is a pair (Z,≤) where ≤ is a reflexive, transitive and anti-symmetric relation on Z . We
write z<z′ if z≤z′ and z �=z′. With a slight abuse of notation we will use Z to denote the ordered set
(Z,≤). Given an element z∈Z , we write ↓z :={y∈Z | y≤z}.

For S ⊆Z , we write
∨

S for the least upper bound of S, if it exists;
∨

S is called the join of S.
Similarly, we write

∧
S for the greatest lower bound of S, which is called the meet. If every pair x, y

of elements of Z has a join and a meet, then we call Z a lattice. The join of x and y is denoted x∨y
and the meet is denoted x∧y.

A lattice is said to be topped if there is some element, denoted 1, such that for all z∈Z , z≤1;
equivalently 1=∨

Z . A lattice has a zero if there is an element 0 such that for all z∈Z,0≤z, that is,
0=∧

Z . A topped lattice with a zero is called bounded.
We write x−<y if x<y and x≤z<y implies x=z. An atom of a lattice Z with a zero element 0

is any element a∈Z such that 0−<a. Let A(Z) denote the set of atoms of Z . Given z∈Z , let A(z)
denote the set of atoms below z, i.e. A(z) :={a∈A(Z) | a≤z}. Elements m �=1 such that if m−<z
then z=1 are called co-atoms. Let M(Z) denote the set of all co-atoms in Z . Finally, given z∈Z ,
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A General Approach to Aggregation Problems 519

a complement of z is an element y∈Z such that z∨y=1 and z∧y=0. A number of lattices with
special properties will be relevant for this article:

• A lattice is atomic if there is some a∈A(z) for every z �=0.
• If every element of Z can be written as the join of its atoms, that is z=∨A(z), then Z is called

atomistic.2

• If for every z �=1 there exists m∈M(Z) such that z≤m, then Z is called co-atomic.
• A lattice is complete if every set S ⊆Z has a join, i.e.

∨
S exists.

• A lattice is compact if for every non-empty set S ⊆Z , if
∨

S =z and y≤z, then y≤∨
T for some

finite T ⊆S.3

• A Boolean algebra, or Boolean lattice, is a distributive lattice4 in which every element has a
(necessarily unique5) complement.

• We say a lattice is dichotomic if it is (i) atomistic (and hence atomic), (ii) co-atomic and (iii) has
the following property:
For all a∈A(Z), there is ac ∈Z such that for every m∈M(Z), a∨m=1 iff ac ≤m.

As will become apparent below, the join operator plays a special role in our framework. A crucial
notion that appears throughout the text is semi order-embeddability, which makes precise when a
lattice Y is ‘contained in’ another lattice Z in a join-preserving way.

Definition 1

‘semi order-embeddable’: Let Y and Z be lattices. Y is semi order-embeddable in Z if there exists
a map f such that:
(i) f (1y)= f (1z); (ii) f (y1)∨f (y2)= f (y1 ∨y2) (where y1,y2 ∈Y are arbitrary elements of Y , and 1y =∨

Y and 1z =∨
Z).

Semi order-embeddability is a weaker variant of a more often considered notion of order-
embeddability. A map f is an order-embedding if it preserves meets and zero in addition to
joins and 1.

To illustrate the above concepts, consider the following simple example of a lattice.
The powerset of 3 lattice. Suppose that X is a set with three elements, i.e. X ={1,2,3}. The poset
(℘(X ),⊆) forms a lattice which can be pictured as follows:

We will denote this lattice by 3. The join and meet operations are given by ∪ and ∩, respectively.
The lattice is topped by X and the zero is ∅. In fact, the lattice is a boolean algebra as it is distributive
and each element has a complement. For example, the complement of {x1} is {x2,x3}.

2Of course, every atomistic lattice is atomic. But the converse is not true—consider the set of natural numbers with its
natural ordering, (N,≤).

3This means in particular that z itself equals
∨

T for a finite subset T ⊆S.
4A lattice is distributive if for all x,y,z∈Z , x∧(y∨z)= (x∧y)∨(x∧z).
5In a distributive lattice, if an element has a complement then it is unique.
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520 A General Approach to Aggregation Problems

2.2 The framework

Let N be a non-empty set of agents. For much of what we say in this text it will not matter whether
or not N is finite. However, as usual, we assume there are at least two agents (i.e. |N |≥2). The key
idea is that agents are assumed to select elements of some topped lattice Z . Intuitively, the elements
of Z represent judgment sets and if z′ ≤z then acceptance of z implies acceptance of z′. A profile is
any function6 π :N →Z . If z∈Z , we write π [A]=z if all agents in the set A choose z (i.e. for all i∈A,
π (i)=z). If z≤π (i) then we say that agent i accepts z. Hence we assume that if π (i)=z then agent
i accepts all z′ such that z′ ≤z, i.e. i accepts each element in the set ↓π (i).

Let ZN :={π | π :N →Z} be the set of all profiles. An aggregation function is a map F :ZN →Z .
Given a profile π , F(π ) is the socially accepted element of Z . Note that, in general, F may be a partial
function. We write dom(F) for the domain of F.

The next section contains an extended discussion of how to interpret this framework. For now,
we give the basic intuitions. The idea is that the elements of the lattice are the possible judgment
sets. The ordering can be interpreted as follows: if z′ ≤z then z′ contains less information7 than
z. It is now easy to understand why the crucial operation is combining—joining—two or more
elements of Z; after all, we are looking for ways to combine the judgment sets of individual agents.
A special role is played by 1, which intuitively is the set of all propositions (the inconsistent
set). If z∨z′ �=1, then z and z′ are consistent with each other. This role of 1 motivates the
following assumption (both on profiles and aggregation functions) that is made throughout the
article.

Consistency: For all π ∈ZN and all i∈N , π (i)<1 and F(π )<1. That is, all agents and society are
consistent.

Note that this property can be viewed as two properties on F. The first is a range restriction
(∀π ∈ZN , F(π )<1). The second is a domain restriction on F. That is, we assume that the domain
of F is restricted to consistent profiles. Let � be the set of all consistent profiles, i.e. �={π ∈
ZN | ∀i∈ N, π (i)<1}. A standard assumption in the literature is that with respect to �, F is a total
function.

Definition 2

‘Universal Domain’: An aggregation function F :ZN →Z satisfies universal domain (with respect
to consistent profiles) if for all π ∈�, F(π ) exists, i.e. �⊆dom(F).

When the function F satisfies universal domain as defined above, we write F :�→Z .

2.3 Decisive sets

Fix a profile π ∈�. Each element z∈Z partitions N into three sets. Informally, these are the sets
that any social aggregation function can ‘take into account’ when making the social choice. The first
set is the set of agents that accepts z, formally, let [[z]]π ={i∈N | z≤π (i)} be this set. Second, the
set of agents that would like to ‘block’ z from being socially accepted, because their judgment is
incompatible with it. This is the set [[z\]]π ={i∈N | z∨π (i)=1}. Finally, there is the set of agents that
do not have an opinion about z, i.e. the set N −([[z]]π ∪[[z\]]π ).

6When N is finite, a profile is often represented as a element of Zn =Z ×Z ×···×Z (n-fold product) where n is the size
of N . We have chosen to use the function notation since, unless explicitly stated, we do not assume that N is finite.

7This information-theoretic interpretation of a lattice is very important in theoretical computer science. In this setting,
elements of the lattice represent (finite) information about an algorithm. See [2] Chapters 8 and 9 for details.
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A General Approach to Aggregation Problems 521

A key notion for our paper is a decisive subset of N .

Definition 3

‘Decisive subset’: Let F be an aggregation function. Suppose z∈Z and let M ⊆N . M is decisive
for F with respect to z iff for all π ∈� the following holds. Whenever z≤π (i) for all i∈M and
z∨π (j)=1 for all j∈N −M, then z≤F(π ). A set M ⊆N is decisive if for all z∈Z , M is decisive for
F with respect to z.

Our discussion above suggests two (dual) notions connected with the definition of decisiveness:

1. A set M forces F to accept z if for all π if [[z]]π =M then z≤F(π ).
2. A set M blocks F from accepting z if for all π if [[z\]]π =M, then z �≤F(π ).

Of course, forcing F to accept z is dual to blocking F from accepting z. The notion of decisiveness
we use is weaker—it states that in order for M to force F to accept z, everyone in M must accept z
and everyone outside of M must block z. That is, in the face of direct opposition, the group M still
manages to force F to accept z. Formally, using the above notation, according to the above definition
M is decisive for F with respect to z if for all π if [[z]]π =M and [[z\]]π =N −M then z≤F(π ).

We may slightly weaken the antecedent by saying that M is weakly decisive for F with respect
to z, if for all π if [[z]]π =M and [[z\]]π ∩N −M �=∅ then z≤F(π ). All proofs will go through with this
weaker notion of decisiveness.

3 Examples

In this section we indicate how the more familiar judgment and preference aggregation settings fit
into our algebraic framework. We begin with a general (and well-known) fact. Let W be a non-empty
set and ℘(W ) the powerset of W . A closure operator on W is a function C :℘(W )→℘(W ) satisfying
the following three conditions:

1. For all X ⊆W , X ⊆C(X).
2. For all X,Y ⊆W , if X ⊆Y then C(X)⊆C(Y ).
3. For all X ⊆W , C(C(X))⊆C(X).

A set X ⊆W is said to be closed if C(X)=X . Let WC ={X | X is closed}. We will make use of the
following well-known fact (see [2, Proposition 7.2] for details).

Fact 1

For any set W �=∅ and closure operator C :℘(W )→℘(W ), WC is a complete lattice with

∧
i∈I

C(Xi)=
⋂
i∈I

Xi

and ∨
i∈I

C(Xi)=C(
⋃
i∈I

Xi),

for any index set I .

We now illustrate how each component of the judgement aggregation framework is represented in
our framework.
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522 A General Approach to Aggregation Problems

3.1 The alternatives and judgement sets

The basic premise of the judgement aggregation setting is that a group of agents is making collective
judgments about interconnected propositions. Typically, it is assumed that the propositions are
expressions in some formal language and the ‘interconnection’is derived from a consequence relation
(cf. for example, the setting in [4]). More formally, let L be a formal language with a negation symbol
(¬). For simplicity, we might work with the language of propositional calculus although this is not
crucial (cf. [3]).Abstractly, a consequence relation is any relation �⊆℘(L)×L satisfy the following
properties:8

1. {p}�p.
2. Suppose A⊆B. Then if A�p then B�p.
3. Suppose A�p and for all q∈A, B�q. Then B�p.

Dietrich [3] provides an extensive analysis of impossibility results in this setting.9 We first need some
more terminology:

• A set X ⊆L is �-inconsistent (or more simply inconsistent if no confusion about the
consequence relation will arise) if there is some p∈L such that X �p and X �¬p.

• We say X ⊆L is consistent10 if X is not inconsistent.
• A set X is deductively closed provided X contains all of its consequences, i.e. X ={p | X �p}.
• Finally, a set X is complete if for every pair p,¬p∈L, either p∈X or ¬p∈X.

A judgement set is any set X ⊆L where p∈X is intended to mean ‘the agent (or group) accepts p’.
Typically it is assumed that judgement sets are consistent, complete and deductively closed [13], but
weaker assumptions have also been discussed [5, 6, 8].

What is important for this article is that every � (satisfying the above three properties) defines
a closure operator C� :℘(L)→℘(L) as follows: for X ⊆L, C�(X)={p | X �p}. Conversely, every
closure operator C can be used to define a consequence relations �C as follows: for X ⊆L and
p∈L, X �C p iff p∈C(X). Thus, given a logical language and a closure operator satisfying Properties
1–3, using Fact 1, we can construct a complete lattice Ldc� whose elements are the deductively
closed subsets of L. Note that the top of this lattice will be the11 inconsistent set (i.e. the set of all
propositions). Notice also that the co-atoms of this lattice are the maximally consistent subsets (i.e.
complete and consistent subsets). Thus, in our setting, fixing the lattice Ldc� amounts to a rationality
assumption that the agents only choose deductively closed and consistent judgement sets. A stronger
rationality assumption is that agents choose complete and consistent judgement sets. In settings,
where judgement sets are assumed to be complete as well, the agents’ choices in the lattice must be
restricted to the co-atoms.

Weaker rationality assumptions can also been discussed. In particular, it is not hard to see that we
can work with judgement sets satisfying only consistency (see [5] for a recent impossibility result

8In fact, the second property follows from the other two. However, we include it to highlight that we are interested in
monotonic consequence relations. Consult [11] for references and an overview of this algebraic approach to logic.

9Typically, the judgement aggregation problem is studied in the context of propositional logic. Dietrich [3] provides a
general and unified framework to study judgement aggregation problems with a variety of underlying logics. The goal of his
paper is to highlight the exact properties of the underlying consequence relation that is used to obtain various impossibility
results. In particular, five properties of a consequence relation (called L1–L5) are highlighted. Each of his conditions L1–L5
is used in this article.

10Dietrich [3]considers a weaker notion of consistency: a set X is weakly consistent if it contains at most one member of
each pair p,¬p∈L. In our setting, these are equivalent.

11Assuming � satisfies Properties 1–3, the deductive closure of any inconsistent set will be the set of all formulas.
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A General Approach to Aggregation Problems 523

where judgments sets are only assumed to be consistent). However, this lattice arises as the lattice
of closed sets of a different closure operator.

Definition 4

Let L be a formal language and � a consequence relation for L. Define C′� :℘(L)→℘(L) as follows:
for X ⊆L,

C′�(X)=
{

L if X is �-inconsistent,

X otherwise (i.e. X is �-consistent).

We first note that C′� is in fact a closure operator.

Fact 2

Suppose L is a formal language and � satisfies properties 1 and 2 above. Then C′� is a closure
operator.

Proof. Suppose X,Y ⊆L. Since C′(X) is either L or X, trivially X ⊆C′(X). Suppose X ⊆Y . Either
X is �-consistent or X is �-inconsistent. If X is �-inconsistent and � satisfies Property 2. above, then
Y is also �-inconsistent. Hence C′(X)=L=C′(Y ). If X is �-consistent, then C′(X)=X. Therefore,
X =C′(X)⊆C′(Y ), as C′(Y ) is either Y or L and it is assumed that X ⊆Y . To see C′C′(X)⊆C′(X),
first note X is either consistent or inconsistent. If X is �-inconsistent, then C′(X)=L and since C′
is monotonic C′(L)=L. Thus C′(C′(X))=L=C′(X). Suppose that C′(X) is �-consistent. Then, by
definition C′(X)=X , so X =C′(X)=C′(C′(X)). �

Again we use Fact 1 to construct a lattice Lc� of consistent judgement sets, where the top element
is the inconsistent set of all formulas and the co-atoms are again the maximally consistent subsets.

An alternative algebraic approach followed by Gärdenfors [8] is to assume that the set of
alternatives are elements of a Boolean algebra. Recall that a Boolean algebra is a distribute lattice
in which every element has a (unique) complement. Note that elements of Gärdenfors’ algebra
are intended to represent possible alternatives whereas elements of our lattices are intended to
represent sets of alternatives. In any Boolean algebra B, a consequence relation can be defined
as follows: given two elements x,y of the Boolean algebra, we say y is a consequence of x provided
(−x∨y)=1, where −x is the complement of x (alternatively, if x is less than y in the order). This can
be lifted to sets by saying that an element y of B is a consequence of a set X of elements of B if12

(−∨
X ∨y)=1. Given a consequence relation, defining the lattices as described above is an easy

exercise.
To summarize, given a formal language L we can construct the powerset lattice L⊆ = (℘(L),⊆).

This lattice makes no rationality assumptions and does not represent any interconnections between
the propositions (elements of L). Fixing a consequence relation �⊆℘(L)×L highlights various
sublattices of L⊆. Precisely which sublattices are of interest depends on the rationality assumptions
(i.e. consistency, deductive closure, completeness, etc.). Notice that each of the above lattices (L⊆,Ldc�
and Lc�) satisfy additional properties. For example, all lattices are atomistic (and hence atomic),
co-atomic, and complemented, to name a few. Our main goal in this article is to investigate how
these lattice-theoretic assumptions are used when proving Arrow-style impossibility results.

12We need to assume B is complete in case X is infinite.
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524 A General Approach to Aggregation Problems

3.2 The agenda

An agenda is a set of propositions under consideration, or ‘on the table’. Formally, it is any subset A
of the logical language L (or sub-boolean algebra in Gärdenfors’ setting). Once the agenda is fixed,
it is assumed that the agents’ judgement sets are subsets of the agenda and the above notions of
completeness, deductive closure and consistency are relativized to the agenda.13

In our setting, fixing an agenda means that we restrict attention to a sublattice of the ‘full lattice’
built from the language L and consequence relations � as described above (i.e. either Lc� or Ldc�
depending on rationality assumptions). Of course, not every sublattice will lead to an impossibility
result. Consider, for example, the agenda A={p,q,p∧q} and suppose that an agent chooses the set
X ={p,p∧q}. Is this agent inconsistent? Of course, the answer depends on how to interpret what it
means that ‘q �∈X’. If this is taken to mean that the agent accepts ¬q, then the agent is inconsistent.14

One can also argue that, since the agenda does not contain ¬q, the agent was not given the ability to
express that fact that he is inconsistent. For reasons such as these, it is often assumed that the agenda
is negation closed.15 In our setting, this amounts to the following condition on the agenda: every
element has a (not necessarily unique) complement (See Section 4.2 for more details).

An agenda A in the usual sense is a set of propositions (typically not the full language L). Given
any sublattice L of L⊆, we write L(A) for the sublattice of L where each element is a subset of A.
For example, Lc�(A) is the lattice of all �-consistent subsets of A.

In [13] it was noted that an impossibility result requires certain ‘richness’ conditions on the agenda
(in addition to the agenda be negation closed).16 This has lead to research on characterization theorems
that identify properties of agendas that correspond to impossibility results. It is beyond the scope of
this paper to survey all of the properties that have been proposed. We will focus on just one property
from ref. [4].

Definition 5

‘Minimal Connectedness’: An agenda A is minimally connected if there is an set Y ⊆A with
|Y |≥3 such that (i) Y is a minimally inconsistent set (that is, Y is inconsistent, but every subset of
Y is consistent) and (ii) there is an even subset Z ⊆Y such that Y −Z ∪{¬p | p∈Z} is consistent.

Suppose that the agenda satisfies minimal connectedness and consider L�(A) (the exact rationality
assumptions are not important). It is not hard to see that Property (i) in the above definition implies
that the powerset of 3 lattice is order-embeddable in L�(A). For example, suppose that the set Y has
4 elements (i.e, Y ={p1,p2,p3,p4}. Then Property (i) says that Y is minimally inconsistent, i.e. every
subset of Y is consistent, but Y is inconsistent. Focusing on the elements {p1,p2}, {p3} and {p4} we
find a sublattice isomorphic to the powerset of 3 lattice.
Property (ii) in the above definition implies that additional structure is present in L�(A). Finding a
general way of describing this substructure is beyond the scope of this article. Instead we look at
an example. Suppose that Z ={p1,p2} is the witness for Property (ii) in the above definition. Then,
{¬p1,¬p2,p3,p4} is consistent. Hence, we have the following additional structure in the lattice L�(A).

13For example, given an agenda A, a judgement set X ⊆A is complete with respect to A if for each p,¬p∈A either p∈X
or ¬p∈X .

14In the AI and non-monotonic logic literature, this is called the closed world assumption.
15That is, if p is in the agenda then ∼p is in the agenda, where ∼p is ¬p if p �=¬q, otherwise ∼p is ¬p.
16In fact, this observation is already present in rudimentary form in Guilbaud [10].
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A General Approach to Aggregation Problems 525

In the pictures above these substructures are illustrated, note that {¬p1}∨{p1,p2}=1 and {¬p2}∨
{p1,p2}=1. In [4], this property is used to prove that the aggregation function is monotonic. In this
article, Monotonicity of the aggregation function is stated as an explicit axiom (Section 4.3). As such,
in the next sections, we only focus on the Property (i) of the above definition.

Other agenda-richness properites have been proposed in the literature. For example, Gärdenfors
[8] assumes a property that implies his agenda is non-atomic (recall that his agenda is a Boolean
algebra). Indeed, there is a growing interest in so-called characterization theorems that characterizes
the ‘agenda-richness properties’ that are necessary and sufficient for an Arrow-style impossibility
result. It is beyond the scope of this article to discuss the details—the interested reader can consult,
for example, ref. [7, 17]. In our setting, these agenda-richness assumptions amount to assuming
the existence of a sublattice with particular structural properties. In this way, these characterization
results can be discussed in our setting; however, this will be left for future work.

Following ref. [4], we can view preference aggregation as a special case of judgement aggregation
(also [14] for a comparison between judgement and preference aggregation). Suppose C is a finite set
of candidates and P the set of strict linear orders over C. In the standard Arrovian setting, agents
choose elements of P . In our setting, consider the lattice of subsets of C×C that are consistent with
the order being transitive and irreflexive (the top element is the set C×C). Assuming the agents
are selecting connected orders amounts to assuming the agents choose co-atoms of this lattice. Note
that this lattice is dichotomic: if (x,y) is inconsistent with a complete strict preference relation, then
the relation must contain (y,x), and vice-versa. The lattice 3 also appears here in the form of the
Condorcet triple.
In the lattice below, for example, x>y>z means {(x,y),(x,z),(y,z)} and x>y means {(x,y)}. In
this simplified setting, one immediately sees a conflict between Arrow’s Independence of Irrelevant
Alternatives (IIA) and forcing agents to choose the co-atoms. Arguing very informally, IIA states that
the only information that the aggregation procedure can use when deciding whether to make x>y>z
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526 A General Approach to Aggregation Problems

the social preference are the atoms below x>y>z (in this case, x>y and y>z). Now, in the context
of preference aggregation, Arrows’s IIA property implies Neutrality.17 Informally, Neutrality says
that the social choice with respect to some basic element of the agenda depends only on the pattern of
the choices of the voters with respect to this particular element. But this means that, using neutrality,
if x>y>z is socially accepted then a symmetric argument can be used to force the procedure to
accept y>z>x. Since the join of these elements is 1, this gives a contradiction.18

In the rest of this article, we shift the focus from the formal languages and consequence relations
to the lattices of possible judgement sets. The lattices we have considered in this section, (Lc�(A)
and Ldc� (A)), satisfy various lattice-theoretic properties. Our goal in this article is to relax these
assumptions about the lattice as much as possible while still being able to prove an Arrow-style
impossibility result. For instance, in this article we will typically not assume atomicity of the lattice.
While in many contexts, assuming atomicity is very natural, in this text we are interested in the
minimal amount of structure needed to prove an impossibility result. We hope that this level of
generality can lead to new insights about formal relationships between properties of the agenda,
rationality assumptions and properties of the aggregation function.

4 Axioms

Now that we have seen how the lattice-theoretic framework fits in with the rest of the social choice
literature, we begin by examining a few axioms familiar from this literature to see how they generalize
to our new setting.

4.1 Neutrality

Neutrality of the aggregation function—in the literature on judgement aggregation this property is
also known as systematicity—is instrumental to many Arrow-style results. In atomistic lattices, the
corresponding property is stated as follows:

Definition 6

‘NeutralityA’: For all π and π ′ and a,b∈A(Z) if [[a]]π =[[b]]π ′ then a≤F(π ) iff b≤F(π ′).
If Z is an atomistic lattice, each z∈Z can be written as the join of the atoms below it, and hence
in such lattices NeutralityA ‘grounds’ the way the aggregation function behaves on non-atomic
(‘compound’) elements in terms of the atoms below them—a fact which underlies many classical
proofs in the literature on social choice. It is interesting to think about possible generalizations of

17See, for example, [9] for a proof of this fact. In the context of judgement aggregation, it can be shown that IIA implies
Neutrality under certain richness assumptions on the agenda, such as path connectedness [4, 7, 17].

18A similar point is made more formally in number of papers by Donald Saari. See, for example, [20].
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A General Approach to Aggregation Problems 527

Figure 1. Neutrality∗ versus NeutralityA.

this notion to non-atomistic lattices, where such a reduction is not possible. A prima facie natural
generalization of NeutralityA is the following formulation, which is obtained by simply deleting the
requirement that a and b be atomic from the definition of NeutralityA.

Definition 7

‘Neutrality∗’: For all π and π ′ and z and z′, if [[z]]π =[[z′]]π ′ then z≤F(π ) iff z′ ≤F(π ′).

As discussed in Section 3, Gärdenfors [8] also works with a non-atomistic lattice, and he uses ideas
similar to the definition above to develop a notion of IIA for non-atomistic lattices.19 However, as
we will argue next the definition above is an unduly strengthening of NeutralityA and imposing this
property upon an aggregation function gives some unintuitive consequences.

Consider the lattice K1 in Figure 1(a)—a concrete example of this lattice is the lattice of consistent
sets of the agenda {p,q,¬p∧¬q} as pictured in Figure 1(c). Suppose Z is any lattice such that K1
is semi order-embeddable; and let F be any choice function satisfying Neutrality∗. (A) Neutrality∗
forces the collection of decisive sets of F to be closed under non-empty intersections. This condition
on the agenda needed to prove closure under intersections, that is, the semi order-embeddability
of K1, is much weaker than those one needs to prove the same thing in the traditional judgment
aggregation setting. In particular, the set {p,q,¬p∧¬q} is not minimally inconsistent in the sense of
Dietrich and List (as in Definition 5).

The lattice K2 is perhaps even more ubiquitous; it sits, for instance, inside the lattice 3, but
also in the lattice of consistent sets of the agenda {p,q,¬q}. Under the condition that K2 is semi
order-embeddable in Z , (B) Neutrality∗ forces the collection of decisive sets of F to be closed under
non-empty intersections, whenever it is closed under supersets.

Proof of (A) and (B). Let F be a an aggregation function satisfying Neutrality ∗ and A and B
decisive sets such that A∩B �=∅. Consider first K1 and consider the profile π such that π [A]=a,

19Here, we only wish to emphasize the connection between Definition 7 and his definition of IIA for non-atomic lattices.
As discussed above, when viewed from our perspective, the framework of Gärdenfors actually yields an atomistic lattice.
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π [B]=b and π [N −A−B]=c. Since A and B are decisive, a∨b≤F(π ). Now consider K2 and the
profile π [N −(B−A)]=a and π [B]=b. Since B and every superset of A are decisive, a∨b≤F(π ).

Now consider both lattices and any profile π ′ such that π [A∩B]=a∨b and π [N −(A∩B)]=c. In
both lattices

[[a∨b]]π = (A∩B)=[[c]]π ′ ,

and thus we find a∨b≤F(π ′) by Neutrality∗. π ′ was arbitrary and so A∩B is decisive. �
Note that we could not have made the same argument based on NeutralityA, since the element a∨b,
which figures crucially in it, is not atomic. In the example above, F chooses the element a∨b because
there is sufficient support for choosing a and b individually, but not because there is support for the
a∨b. The main issue is that in our more general setting, determining whether a aggregation function
accepts an arbitrary element z of the lattice should depend not only on the acceptance set of z but
also on the acceptance sets of elements whose acceptance is implied by z (i.e. elements of ↓z). What
we are looking for is some way to make precise what it means for the choices of the agents on ↓z
to be ‘the same’ as the choices on some other downset ↓z′. Since the structures ↓z and ↓z′ may be
wildly different, it is not a priori clear how to give such a definition.

The idea of a Neutral Simulation (which is inspired by a similar construction known from modal
logic) forms the heart of the notion of Neutrality that we will employ in the balance of this text.
The following definitions make this notion precise.

Definition 8

‘Neutral Simulation’: Let S ⊆Z ×Z be a symmetric binary relation on the lattice Z , and let π and
π ′ be profiles. The relation S is called a Neutral Simulation on Z between π and π ′ if and only if:
(i) whenever zSz′, [[z]]π =[[z′]]π ′ ;
(ii) for all y≤z, there exists y′ ≤z′ such that ySy′;
(iii) for all y′ ≤z′, there exists y≤z such that ySy′.

Definition 9

‘
↓≡↓≡↓≡’: We write [[z]]π ↓≡[[z′]]π ′ if there exists a Neutral Simulation on Z between π and π ′ such that zSz′.

Definition 10

‘Neutrality’: F satisfies Neutrality (or ‘is Neutral’) if, and only if, for all z,z′ ∈Z and for all π,π ′ ∈
dom(F), if [[z]]π ↓≡[[z′]]π ′ then z≤F(π ) iff z′ ≤F(π ′).

It may be verified that in the examples based on K1 and K2, it is impossible to find a Neutral
Simulation between π and π ′ with respect to the element a∨b that allows us to make the same
argument as we made using NeutralityA. In Section 5 we will show that under this notion of Neutrality,
impossibility results emerge only if a richer substructure than K1 or K2, viz. the lattice 3, is semi order-
embeddable in Z—a structure that is closely related to an agenda condition that figures prominently
in related literature. For now we conclude our discussion of various forms of the Neutrality axiom
with a proof that NeutralityA coincides with our preferred notion of Neutrality in the traditional,
atomistic, context and so is a true generalization.

Lemma 11

Suppose Z is an atomistic lattice. Then F satisfies NeutralityA if and only if F satisfies Neutrality.

Proof. (⇒). Suppose [[x]]π ↓≡[[y]]π ′ , let S be a witnessing Neutral Simulation between π and π ′ such
that xSy and let F satisfy NeutralityA. Pick any atom a≤x. By the Neutral Simulation, there exists
y′ ≤y such that aSy′ and thus [[a]]π =[[y′]]π ′ .
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Figure 2. Complements.

Moreover, for all y′′ ≤y′ there exists x′ ≤a such that [[x′]]π =[[y′′]]π ′ . In particular this is true for
the atoms that make up y′.
Case 1. For all atoms b below y′, [[b]]π ′ =N . Then [[y′]]=N , and hence [[a]]π =N , since aSy′. Pick b
arbitrarily from the atoms below y′.
Case 2. There exists b≤y′ such that [[b]]π ′ �=N . Now, by Neutral Simulation, there exists x′ ≤a such
that [[x′]]π =[[b]]π ′ . Since x′ <a implies x′ =0, and [[0]]π =N , it must be that x′ =a.

In both cases [[a]]π =[[b]]π ′ . Now suppose y≤F(π ′). Then y′ ≤F(π ′) and hence b≤F(π ′). By
NeutralityA, a≤F(π ). Since a was arbitrary and x is the join of its atoms, x≤F(π ), and hence we
have proved that y≤F(π ′) �⇒ x≤F(π ).

The reverse direction of Neutrality is proved similarly.

(⇐). Suppose a,a′ are atoms and [[a]]π =[[a′]]π ′ . Then S ={(a,a′),(0,0)} clearly forms a
Neutral Simulation. Hence by Neutrality, a≤F(π ) ⇐⇒ a′ ≤F(π ′), as required in order to show
NeutralityA.

4.2 Behavior on complements

Suppose that Z is a bounded lattice, which may or may not be atomic. We say that elements z1,z2
are complements if z1 ∧z2 =0 and z1 ∨z2 =1; see Figure 2(a). Elements z1,z2 ∈Z −{0, 1} are called
quasicomplements if of these two equations only z1 ∨z2 =1 holds—that is z1 ‘blocks’ z2 and vice
versa. We say that Z is a lattice with complements if every element z∈Z has at least one complement
(in general a complement need not be unique; see Figure 2(b)).

In a ‘classical’ context where F always chooses a co-atom, the following fact can easily seen to be
true. If A, N −A is some partition of the agents, and all agents in the set A support some element z1
(say, a proposition p), and all the others support any given complement z2 of z1 (perhaps ¬p),
then F chooses either z1 or z2. If an aggregation function F has this property, we will call it
Decisive.

Definition 12

‘Decisive’: F is Decisive if, whenever z1 and z2 are complements, and the profile π is such that
z1 ≤π (i) for all i∈A, and z2 ≤π (i) for all i∈N −A, then either z1 ≤F(π ) or z2 ≤F(π ).

As explained above, our framework allows for ‘incomplete’ selections. We would like to demand of
the aggregation function F to use the information provided to it in terms of profiles in an efficient
fashion. Decisiveness captures one such form of efficiency. Decisiveness is a weakening of a
condition on F called completeness in the literature—this is the condition that F always chooses p
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530 A General Approach to Aggregation Problems

or ¬p.20 To bring out the conditions imposed by this axiom a little bit more clearly, consider the
following example:

The consensus aggregation function:21 For all π , Fc(π ) :=∧
i∈N π (i).

Clearly Fc always selects a consistent element. However, speaking informally, consensus is not a
very efficient aggregation procedure, and in our framework this fact formally reflects in that Fc is
not Decisive.

4.3 Monotonicity

Another well known axiom from the literature on social choice theory is Monotonicity, which states—
roughly—that when the support for some element z increases, z cannot disappear from the social
choice. In atomistic lattices, the way Monotonicity affects how the aggregation function behaves on
non-atomic (‘compound’) elements can again be grounded in terms of the atoms below them:

Definition 13

‘MonotonicityA’: For all a∈A(Z) and for all π,π ′, if [[a]]π ⊆[[a]]π ′ , then a≤F(π ) implies a≤F(π ′).
Generalizing this idea leads to the following axiom, which will be our preferred notion.

Definition 14

‘Monotonicity’: For all x∈Z and for all π,π ′, if for all x′ ≤x, [[x′]]π ⊆[[x′]]π ′ , then x≤F(π ) implies
x≤F(π ′).
Lemma 15

Let Z be atomistic. F satisfies MonotonicityA if and only if F satisfies Monotonicity.

Proof. The right to left direction is immediate. Conversely, suppose x≤F(π ). Furthermore suppose
for all x′ ≤x, [[x′]]π ⊆[[x′]]π ′ . Then for all atoms a below x, we have [[a]]π ⊆[[a]]π ′ , and moreover,
since a≤x≤F(π ), by MonotonicityA, a≤F(π ′). Since x is the join of its atoms, x≤F(π ′). �
Again in classical contexts, where agents choose elements from M(Z), Monotonicity has some
additional consequences, which we might adopt as separate axioms in our framework of ‘incomplete’
choices. Suppose π and π ′ are two distinct profiles, where π can be obtained from π ′ by modifying
some agent’s choice away from an element that blocks x, towards an element that is consistent with
x. Then, intuitively, this change should not make x disappear from the social choice.

Definition 16

‘Monotonicity�’: If π and π ′ are profiles such that (i) [[x\]]π ′ ⊆[[x\]]π , and (ii) π (i)=π (j) for all
i /∈[[x\]]π −[[x\]]π ′ , then x≤F(π ) implies x≤F(π ′).
The following idea is an obvious variant.

Definition 17

‘Monotonicity�’: If π and π ′ are profiles such that (i) [[x\]]π ′ ⊇[[x\]]π , and (ii) π (i)=π (j) for all
i /∈[[x\]]π ′ −[[x\]]π , then x �≤F(π ) implies x �≤F(π ′).
The following lemma relates these two notions to the Monotonicity axiom.

20And of course, in our framework, completeness would correspond to the idea that F always picks a co-atom.
21This example assumes Z is a complete lattice when N is infinite.
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Lemma 18

Suppose all agents choose elements in M(Z). Then Monotonicity implies both Monotonicity� and
Monotonicity�.

Proof. Suppose x≤F(π ). Let y≤x. Let π ′ be a profile satisfying the antecedent of Monotonicity�.
In this case, for each i∈N , π (i)=π ′(i) except when i∈[[x\]]π but i �∈ [[x\]]π ′ . Let y≤x. If π (i),π ′(i)∈
M(Z), either y≤π (i) or y∨π (i)=1, and y≤π ′(i). Hence for all y≤x, [[y]]π ⊆[[y]]π ′ and by
Monotonicity, x≤F(π ′).

Suppose x �≤F(π ). Let y≤x. Let π ′ be a profile satisfying the antecedent of Monotonicity�. In this
case, for each i∈N , π (i)=π ′(i) except when i �∈ [[x\]]π but i∈[[x\]]π ′ . Let y≤x. If π (i),π ′(i)∈M(Z),
y≤π (i) and either y≤π ′(i) or y∨π ′(i)=1. Hence for all y≤x, [[y]]π ′ ⊆[[y]]π . Suppose x≤F(π ′). By
Monotonicity, x≤F(π ), contradicting our assumption on F(π ). �

5 An impossibility result

In the previous section, we have discussed generalizations of Neutrality and Monotonicity to our
lattice-theoretic setting. In this section we investigate what axioms allow us to prove an Arrow-style
impossibility theorem. Throughout the section, we consider a lattice Z with complements (and hence
Z is topped and has a zero), though we do not assume Z is atomistic or even atomic.

We start by considering the behavior of F with respect to some arbitrary element x∈Z and one of
x’s complements. We use the notation x to denote some fixed, but arbitrary, element x′ such that x≤x′.

Definition 19

‘ω(x1,x2)’: Let x1 and x2 be complements and define ω(x1,x2)⊆℘(N) as follows: for all A⊆N ,
A∈ω(x1,x2) iff whenever ∀i∈A,π (i)=x1 and ∀i∈N −A,π (i)=x2, then x1 ≤F(π ).

Thus a set of agents A is an element of ω(x1,x2), if A can force x1 when its opposition N −A, accepts
the complement x2.

Lemma 20

Let F satisfy Universal Domain and Neutrality. Suppose x1 and x2 are complements. Then
(a) for all complements y1 and y2, ω(x1,x2)=ω(y1,y2).
(b) ω(x1,x2)=ω(x2,x1).
(c) if A∈ω(x1,x2), then N −A �∈ω(x1,x2).
(d) if, additionally, F is Decisive, then ω(x1,x2) satisfies the ‘ultraproperty’: A∈ω(x1,x2) if and only

if N −A �∈ω(x1,x2).

Proof. (a) We show ω(x1,x2)⊆ω(y1,y2). Let A∈ω(x1,x2) and let π be a profile where ∀i∈A,
π (i)=x1 and ∀i∈N −A, π (i)=x2. As F satisfies Universal Domain and A∈ω(x1,x2), we have
x1 ≤F(π ).

Now consider any profile function π ′ where ∀i∈A,π ′(i)=y1 and ∀i∈N −A,π ′(i)=y2. For all
x′ ≤x1, either x′ �≤x2, and so [[x′]]π =A or x≤x2, and so [[x′]]=N . By similar reasoning, for all y′ ≤y1,

[[y′]]π ′ =[[y1]]π ′ ∈{A,N}. Hence, as [[·]]· is antitonic w.r.t. ≤, we see [[x1]]π ↓≡[[y1]]π ′ . By Neutrality
x1 ≤F(π ) iff y1 ≤F(π ′). In particular, since x1 ≤F(π ) we have y1 ≤F(π ′). Hence, A∈ω(y1,y2).
Symmetric reasoning shows ω(y1,y2)⊆ω(x1,x2).

(b) This follows immediately from (a) by taking (y1,y2)= (x2,x1).

 at U
niversity of M

aryland on M
arch 14, 2015

http://logcom
.oxfordjournals.org/

D
ow

nloaded from
 

http://logcom.oxfordjournals.org/
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(c) Finally we show that A∈ω(x1,x2) only if N −A /∈ω(x1,x2). Suppose A∈ω(x1,x2). Suppose
further N −A∈ω(x1,x2). Then, since by (b) ω(x1,x2)=ω(x2,x1), N −A∈ω(x2,x1). Now let π be
any profile such that ∀i∈A, π (i)=x1, and ∀i∈N −A, π (i)=x2. Since A∈ω(x1,x2) it follows that
x1 ≤F(π ). Since N −A∈ω(x2,x1), it follows x2 ≤F(π ). Hence 1=x1 ∨x2 ≤F(π ), a contradiction,
since F never selects 1. Conclude N −A /∈ω(x1,x2).

(d) Immediate. �
We now generalize from a pair of complements to the behavior of F with respect to some arbitrary
element x when this element is blocked by a group of agents.

Definition 21

‘�(x)’: Define �(x)⊆℘(N) as follows: for all A⊆N , A∈�(x) iff whenever [[x]]π =A and [[x\]]π =
N −A, then x≤F(π ).

In our setting, � is the family of decisive sets for the element x. We have the following result.

Lemma 22

Let F satisfy Monotonicity, Universal Domain, and Neutrality and let F be Decisive. Then for all
x∈Z , �(x)=�, where �⊆℘(N) satisfying: (i) A∈�, B⊇A implies B∈�; (ii) A∈� if and only if
N −A /∈�.

Proof. Let x1 and x2 be complements. First we show that ω(x1,x2) is closed upwards. Let
A⊆B. Now let π be such that ∀i∈A π (i)=x1 and ∀i∈N −A π (i)=x2. Let π ′ be such that
∀i∈B π (i)=x1 and ∀i ∈N −B π (i)=x2. If A∈ω(x1,x2), we have x1 ≤F(π ). By Monotonicity
x2 ≤F(π ′) and so by Neutrality, B∈ω(x1,x2).
We show �(x1)⊇ω(x1,x2). Let A∈ω(x1,x2). Let π be any profile such [[x1]]π =A and [[x1\]]π =N −A.
Furthermore, let π ′ be a profile such that ∀i∈A π (i)=x1 and ∀i∈N −A π (i)=x2.
Then for all x′ ≤x1, [[x′]]π ⊇[[x1]]π =[[x1]]π ′ =[[x′]]π ′ . Since A∈ω(x1,x2), and F satisfies
Universal Domain, x1 ≤F(π ′). By Monotonicity, x1 ≤F(π ). Since π was arbitrary,
A∈�(x1).

Next we show ω(x1,x2)⊇�(x1). Suppose A∈�(x1). Let π be such that ∀i∈A,π (i)=x1 and
∀i∈N −A,π (i)=x2, then x1 ≤F(π ). Clearly [[x1]]π =A and [[x1\]]π =N −A. Hence x1 ≤F(π ). So
A∈ω(x1,x2).

Using the above results and Lemma 20(a), we find for any x1 and y1 that have complements x2
and y2, respectively:

�(x1)⊆ω(x1,x2)⊆ω(y1,y2)⊆�(y1)⊆ (y1,y2)⊆ω(x1,x2)⊆�(x1),

proving our claim. �
The above result shows that �(x), that is, the family of decisive sets, is invariant under the choice
of the element x. A family of sets �⊇℘(N) that has Property (i) and (ii), and additionally satisfies:

(iii) If A∈� and B∈�, then A∩B∈�

is called an ultrafilter. We show next that � is an ultrafilter if an additional property holds of the
lattice Z .
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Lemma 23

Suppose F satisfies the conditions stated in Lemma 22. Furthermore suppose 3=℘({1,2,3}) is semi
order-embeddable in Z . Then � is an ultrafilter.

Strictly speaking, the condition that 3 is semi order-embeddable in Z is weaker than that of minimal
inconsistency (Definition 5), since the latter amounts to 3 being order-embeddable. This observation
once again illustrates an important feature of our framework, viz. that the join-operation is the crucial
operation.

Proof. We have already shown � is closed under supersets and satisfies the ultraproperty (this fol-
lows from Lemma 20 and Lemma 22). Thus, we need only show � is closed under taking intersections.
Let A,B∈�. We know A∩B �=∅. We wish to show that A∩B∈�. Let C =A∩B, and let A′ =A∪{i | i /∈
A,B,C}. Note that A′ ⊇A and hence A′ ∈�. Let f be a semi order-embedding of 3, Take π such that:

[[ f ({1})]]π =A′,
[[ f ({3})]]π =B,

[[ f ({2})]]π =N −C.

Note that, f ({1}) and f ({2,3}) are quasi-complements. [[ f ({1})]]π =A and [[ f ({2,3})]]=B∩(N −C)=
N −A. Since A′ ∈�, f ({1})≤F(π ). f ({3}) and f ({1,2}) are quasi-complements, hence by analogous
reasoning f ({3})≤F(π ). Finally, f ({1,3}) and f ({2}) are quasi-complements. [[ f ({1,3})]]π =C, and
[[ f ({2})]]π =N −C. Since � has the ultraproperty either C ∈� or N −C ∈�. Suppose the latter,
then f ({2})≤F(π ) hence

∨{ f ({1}),f ({2}),f ({3})}=1≤F(π ), a contradiction. So C ∈�. �
An agent i∗ ∈N is called a dictator if x≤F(π ) whenever x≤π (i∗).

Theorem 24

Let F satisfy Universal Domain, Neutrality, Monotonicity, Monotonicity� and Decisiveness
and suppose N is finite; Furthermore suppose 3 is semi order-embeddable; then there exists a
dictator.

Proof. Since N is finite � is a principal ultrafilter with a minimal element {i∗}. Suppose x≤π (i)
and suppose furthermore that x �≤F(π ).

Let X be the set [[x]]π , and B be the set [[x\]]π . Consider the profile π ′ where π ′(j)=x′ for all
j /∈X ∪B. Since at least i∈X , we know N −B∈� and so x≤F(π ′). Comparing π with π ′, we see
that some agents block x under π ′ but not under π , whereas the opinions of all other agents remain
unchanged. By Monotonicity�, x≤F(π ). �
According to Theorem 24 the social choice will be an element z such that π (i∗)≤z. In words,
everything accepted by the dictator i∗ will end up in the social choice. The dictator is thus a bit
weaker than a classical Arrovian dictator, who would be able to force the equation π (i∗)=z to hold
with equality. However, the weaker form of dictatorship arises quite naturally in our framework,
because of the possible incompleteness of agents’ choices: i∗ need not have an opinion on all
elements of the lattice Z—it might well happen that x �≤π (i∗) while at the same time x∨π (i∗)<1.
However, if i∗ would like to preclude some such x∈Z from the social choice, she has the option
of choosing to include a quasicomplement of x below her choice π (i), i.e. force an element that
blocks x.

The lattice 3 plays a crucial role in the argument, because it forces the collection of decisive sets to
be closed under intersections. In fact, a converse of Theorem 24 also holds: if 3 is not embeddable,
we can state a possibility result, at least for complete, compact lattices. Let i∗ be some designated
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element of N . The family of majorities with chair i∗ is the family of sets F such that for A⊆N ,
A∈F if and only if either |A|> (1/2)N , or |A|= (1/2)N and i∗ ∈A. The corresponding majority rule
with chair i∗ is the aggregation function:22

Fm
i∗ (π ) :=

∧
{z∈Z | [[z]]π ∈F}.

Theorem 25

Let N be finite. Let Z be a compact and complete lattice with complements and let F satisfy Universal
Domain, Neutrality, Monotonicity, Monotonicity�, and Decisiveness. Then F is necessarily
dictatorial if and only if 3 is semi order-embeddable into Z .

Proof. The right to left part of the theorem follows from the previous one. As for the other direction,
it is an easy exercise to show Fm

i∗ satisfies the axioms stated in the theorem. We will prove, by
contraposition, that Fm

i∗ (π )<1 for all π (hence is indeed an aggregation function) whenever the
lattice 3 is not semi order-embeddable.

Suppose Fm
i∗ (π )=1. Since Z is compact, there exists a finite subset T ⊆{z∈Z | [[z]]π ∈F} such that∧

T =1.
Clearly T cannot be empty or contain only a singleton. We will prove T is also ‘pairwise consistent’:

let z1,z2 ∈T . Straightforwardly from the properties of the family of majorities with chair i∗, we
find [[z1]]π ∩[[z2]]π �=∅. Hence, there exists j∈N , such that z1 ∨z2 ≤π (j). Now π (j)<1, and so by
transitivity it follows z1 ∨z2 <1.

Now, there must be a set S ⊂T such that
∨

S <1, but
∨

S∨z1 ∨z2 =1 for some distinct z1,z2 ∈
T −S. In particular, there is such a set S of smallest cardinality, and moreover we know |S|≥1, by
our pairwise consistency argument. It remains to prove that

∨
S∨z1 <1 and

∨
S∨z2 <1. Suppose

one of these inequations fails, say
∨

S∨z1 =1. There is a largest subset S′ ⊂S, such that S′∨z1 <1.
That is, for every element y∈S−S′,

∨
S′∨z1 ∨y=1. But then S′ ⊂S, y /∈S, z1 /∈S contradicts that S

is the set of smallest cardinality satisfying the stated assumption.
We have shown that

∨
S,z1,z2 are pairwise consistent, yet

∨
S∪{z1,z2}=1, viz. 3 is semi order-

embeddable. This concludes the proof. �

6 Conclusion

In this text we have introduced a general framework for studying aggregation problems. Our
framework is abstract and lattice-theoretic in nature, the crucial operation being the joining of two
elements of the lattice. Our work can be categorized broadly as studying the formal connections
between properties of the agenda (or lattice, in our case) and the induced algebraic structure of the
set of winning coalitions. There are a number of recent papers closely related to our work, notably
Dokow and Holzman [7] and Nehring and Puppe [17]. These authors also work in a very general
setting and provide characterization results.

One fruitful aspect of our framework is its unifying ability: in Section 3 we have argued how
lattices arise frequently from more traditional approaches to social choice theory (see Monjardet
[15] for a broader perspective on the use of lattice theory in the social sciences). Additionally, the
lattice-theoretic perspective allows us to push the level of abstraction a bit further. We have shown
how certain well known axioms might generalize to our setting, and discussed some insights and
limitations that arise from this perspective.

22Our example of the majority rule with chair i∗ solely serves for concreteness. The proof will go through if F is any
strong and proper simple game, provided F is not an ultrafilter. For simple game theory see e.g. Taylor and Zwicker [21].
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Many lattices arising from traditional approaches to social choice theory satisfy very strong
conditions. In the penultimate section we have presented an impossibility theorem, while relaxing
a number of such strong conditions. Moreover, we have stated a lattice-theoretic property that is
necessary to obtain an impossibility result. This property, viz. semi order-embeddability of the
powerset of 3 lattice, is closely related to the notion of a minimal inconsistent set that appears
in the judgment aggregation literature.

Finally, recently there is interest in aggregation of incomplete orders and incomplete (but
consistent) subsets of an agenda. In the preference aggregation setting see Pini et al. [19] and
for the judgment aggregation setting see Gärdernfors [8] and Dietrich and List [6]. As we are
not assuming that the agents select maximal elements of the lattice, our result contributes to this
literature.

In this text, we have placed emphasis on exposition of the framework, rather than on extending
it in as many directions as possible. From where we stand now, opportunities for further research
present themselves in (at least) three directions. First, one might study how other lattice-theoretic
properties might lead to impossibility results. For instance, one could move from the complemented
lattices that we study in Section 5 to lattices with pseudo-complements, which arise frequently in
logic. Second, one might want to study how other agenda conditions would show up in our setting. To
give an example, an interesting condition that has appeared in the literature is ‘path-connectedness’.
Dietrich and List have shown in the context of judgment aggregation that if the agenda satisfies this
condition, then Neutrality of the aggregation function is equivalent to imposing a generalized version
of Arrow’s IIA axiom [4]. Finally, one might study the consequences of different axioms, or perhaps
different generalizations of axioms, than those considered in Sections 4 and 5 inside our setting. We
hope to pursue some of these interesting directions in future work.
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