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Abstract. Adam Brandenburger and H. Jerome Keisler have recently discovered a

two person Russell-style paradox. They show that the following configurations of beliefs

is impossible: Ann believes that Bob assumes that Ann believes that Bob’s assumption is

wrong. In [7] a modal logic interpretation of this paradox is proposed. The idea is to

introduce two modal operators intended to represent the agents’ beliefs and assumptions.

The goal of this paper is to take this analysis further and study this paradox from the

point of view of a modal logician. In particular, we show that the paradox can be seen as

a theorem of an appropriate hybrid logic.
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1. Introduction1

In their textbook, Osborne and Rubinstein describe game theory as “a bag
of analytical tools designed to help us understand the phenomena that we
observe when decision-makers interact” ([19] page 1). They go on to say
that one of the basic assumptions of game theory is that when agents make
decisions, they take into account “their knowledge or expectations of other
decision-makers’ behavior (they reason strategically).” In other words, when
agents involved in a multi-agent interactive situation are making decisions
about what action to perform next, that decision is influenced by what
actions they expect the other agents will perform. This assumption leads
very naturally to questions about what agents believe about the other agents’
beliefs.

This observation has prompted a number of game theorists to propose
that the basic models of game theory (extensive games forms and normal
game forms) be extended to include a representation of the agents’ beliefs
(see [1, 22, 5, 6, 17, 9] for a discussion of the relevant literature). Essentially
the idea is that when describing a strategic interactive situation part of
that description should include the agents’ beliefs about the relevant ground
(non-epistemic) facts, beliefs about the other agents’ beliefs about these

Presented by Name of Editor; Received December 1, 2005
1Presented at Formal Epistemology Workshop (FEW), Berkeley, CA 2006. Forthcom-

ing in Studia Logica (2007).

Studia Logica (2006) 82: 1–20 c©Springer 2006



2 Eric Pacuit

ground facts, beliefs about the other agents’ beliefs about the other agents’
beliefs about these ground facts, and so on. Early on in 1967, John Harsanyi
[14] developed an elegant formal model which can be used to represent the
epistemic state of the agent in a game theoretic situation2. The idea is that
each agent could be any one of a number of different types, where a type
is intended to represent an infinite hierarchy of beliefs, i.e., the agent’s first-
order beliefs about the strategies of the other agents, second-order beliefs
about the other agents’ first-order beliefs, third-order beliefs about the other
agents’ second-order beliefs, and so on. Thus the problem of adding beliefs to
the basic models of game theory reduces to finding an appropriate collection
of possible types for each agent.

Adam Brandenburger and H. Jerome Keisler have recently discovered
a Russell-style paradox lurking in the background of the above discussion.
In [7], they show that the following configurations of beliefs is impossible:
Ann believes that Bob assumes3 that Ann believes that Bob’s assumption is
wrong. This suggests that it may not always be possible to find a type space
to represent certain configurations of beliefs.

In [7] a modal logic interpretation of the paradox is proposed. The idea
is to introduce two modal operators intended to represent the agents’ beliefs
and assumptions. The goal of this paper is to take this analysis further and
study this paradox from the point of view of a modal logician. In particu-
lar, we show that the paradox can be seen as a theorem of an appropriate
hybrid logic4. In [7], it is asked whether there is a sound and complete ax-
iomatization for a modal language that contains both and assumption and
a belief operator. It turns out that a solution can be found in a paper by I.
L. Humberstond from 1987.

2. The Paradox

In [7], Brandenburger and Keisler introduce the following two person Russel-
style paradox. The statement of the paradox involves two concepts: beliefs
and assumptions. An assumption is assumed to be a strongest belief. We
will say more about the interpretation of an assumption below. Suppose

2Harsanayi’s original motivation was to study games of incomplete information, i.e.,
games in which the agents are uncertain about the structure of the game.

3An assumption is a belief that implies all other beliefs. It is shown in [7] that it is
crucial the statement be about “one particular belief of Bob and all of Ann’s beliefs”. This
will be discussed below.

4Hybrid logic is a modal logic with distinguished propositional variables called nominals
that are used to name each world in a Kripke structure. See [4] for more information.
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there are two players, Ann and Bob, and consider the following description
of beliefs.

Ann believes that Bob assumes that Ann believes that Bob’s assump-
tion is wrong.

A paradox arises when one asks the question

Does Ann believe that Bob’s assumption is wrong?

Suppose that answer to the above question is ‘yes’. Then according to Ann,
Bob’s assumption is wrong. But, according to Ann, Bob’s assumption is Ann
believes that Bob’s assumption is wrong. However, since the answer to the
above question is ‘yes’, Ann believes that this assumption is correct. So Ann
does not believe that Bob’s assumption is wrong. Therefore, the answer to
the above question must be ‘no’. Thus, it is not the case that Ann believes
that Bob’s assumption is wrong. Hence Ann believes Bob’s assumption is
correct. That is, it is correct that Ann believes that Bob’s assumption is
wrong. So, the answer must have been yes. This is a contradiction.

Just as Russell’s paradox suggests that not every collection can constitute
a set, the Brandenburger-Keisler paradox suggests that not every description
of beliefs can be “represented”. This can be made precise by introducing
a belief model intended to represent each agent’s beliefs about the other
agent’s beliefs. Formally, a belief model is a two-sorted structure intended
to represent the beliefs each agent has about the other agent’s beliefs. Each
sort (one for each agent) is intended to represent a possible epistemic state
of an agent. Let x, x′, x1, x2, . . . denote “Ann states” and y, y′, y1, y2, . . .
denote “Bob states”. Let W a and W b denote the set of Ann and Bob states
respectively. For simplicity, we assume these sets are disjoint. Thus the
collection of states is the set W = W a ∪ W b. The second component of
a belief model is a pair of relations (one for each agent), denoted P a and
P b. The intended interpretation of xP ay, where x ∈ W a and y ∈ W b, is
that in state x, Ann considers y possible. Similarly for Bob. Since the
object of Ann’s beliefs is a statement about Bob’s beliefs, a language for
Ann, denoted La, is any collection of subsets of W b. Similarly for Bob. A
language is the (disjoint) union of La and Lb. For example, the power set
language is the language L = 2W b ∪2W a

. Given a proposition Y ∈ La (i.e.,
a collection of Bob states), Ann is said to believe Y at state x provided
the set of states that Ann considers possible at x is a subset of Y . An
assumption is defined to be a strongest belief. That is, given a set Y ∈ Lb,
Ann is said to assume Y is Y equals the set of states that Ann considers
possible. Similarly for Bob.
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We can now be more explicit about what it means to say that not ev-
ery configurations of beliefs can be represented. Say that a language L is
complete for a belief model if every statement in a player’s language which
is possible (i.e., true for some states) can be assumed by the player. It is
not too difficult to construct an argument (using Cantor’s Theorem) that
no model is complete for its powerset language. The main result of [7] is
that the same is true for the first-order language. Let the first-order lan-
guage of a belief model be the collection of first-order definable subsets of
W = W a ∪W b.

Theorem 1 (Brandenburger and Keisler [7]). No belief model is complete
for its first-order language.

The proof proceeds by formalizing the above paradox. The next section
examines this proof in detail.

3. Using Modal Logic

In [7], a modal logic version of Theorem 1 is proposed. The idea is to think
of the interactive belief models defined in the previous section as Kripke
structures. The approach we take in this section is to use neighborhood
models. Neighborhood models are a generalization of the standard Kripke,
or relational, semantics for modal logic invented by Scott and Montague
(independently in [21] and [18]). See [8] for a discussion of the basic results
concerning neighborhood models and the logics that correspond to them.
A neighborhood model consists of a nonempty set of states, a valuation
function and a neighborhood function that maps states to sets of sets of
states, i.e., if W is the set of states then a neighborhood function is a map
from W to 22W

. Given a state w ∈ W , a modal formula �φ is said to be
true at state w provided the truth set of φ (the set of all states satisfying
φ) is an element of the neighborhood of w. Intuitively, N(w) is the set of
propositions (set of states) that the agent believes at state w.

It is not hard to see that every Kripke frame 〈W,R〉 gives rise to a
neighborhood frame. Define a neighborhood function NR as follows: for
w ∈W , let NR(w) = {X | ∀v, wRv implies v ∈ X}. Now, given an arbitrary
relation R, NR is a filter. That is, for each w ∈ W , NR(w) is closed
under supersets, finite intersections and contains W . Furthermore if R is
serial (for each w there is v such that wRv), then ∅ 6∈ NR(w) (i.e., NR is a
proper filter). Finally, for each w ∈ W , ∩NR(w) is an element of NR(w).
Conversely, any neighborhood frame N that is a proper filter such that for
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each w ∈ W , ∩N(w) ∈ N(w), gives rise to a Kripke structures as follows:
for each w, v ∈W , say wRNv provided v ∈ ∩N(w).

Our goal in this section is to formalize the Brandenburger-Keisler para-
dox. The strategy is to define a belief model intended to represent the beliefs
of each agent about the other agent’s beliefs (which are in turn beliefs about
the first agent). Statements about the agents beliefs will written in a modal
language and interpreted in these models. Using this machinery we can show
that there is a formula that cannot be satisfied at any state. Our models
will be two-sorted neighborhood models.

Definition 2. An interactive neighborhood belief frame is a two-
sorted structure M = 〈W,Na, N b〉 where W = W a ∪W b, Na : W a → 22Wb

and N b : W b → 22Wa

where

• Each neighborhood function is a filter: Let i ∈ {a, b}, (i) for each w ∈W ,
X,Y ∈ N i(w) implies X ∩ Y ∈ N i(w); (ii) for each w ∈W , X ∈ N i(w)
and X ⊆ Y implies Y ∈ N i(w); and (iii) for each w ∈W , W i ∈ N i(w).

• Each neighborhood function contains its core: Let i ∈ {a, b}, for each
w ∈W , ∩N i(w) ∈ N i(w)

• For each x ∈W a, ∅ 6∈ Na(x)

• For each y ∈W b, ∅ 6∈ N b(y).

• There is x ∈W a such that ∩Na(x) 6= W b

• There is y ∈W b such that ∩N b(y) 6= W a

Given an Ann state x ∈ W a, the set Na(x) is the set of all of Ann’s beliefs
(about Bob) in state x, and vice versa (given a Bob state y, N b(y) is the
set of Bob’s beliefs about Ann). Thus ∩Na(x) is Ann’s strongest belief, or
assumption, at state x, and ∩N b(y) is Bob’s strongest belief, or assumption,
at state y. Of course, given the discussion above and the assumptions we are
making about the neighborhoods, every interactive neighborhood frame is
equivalent to a two-sorted Kripke structure. However, we prefer to work with
neighborhood models since they are relevant for the discussion of axioma-
tization and make clear the assumptions we are making about the agents
epistemic state. To that end, we discuss each of the above assumptions.
Much of the following discussion has been widely discussed in the literature
on epistemic logic and so our discussion will be brief. See [10] or [15] for
a more in-depth discussion. First and foremost, the object of the agent’s
beliefs are propositions about the other agent’s possible states of belief, i.e.,
the object of Ann’s beliefs are sets of Bob states (similarly for Bob). For
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this reason, in the discussion below we identify knowing some formula φ with
knowing its truth set (set of states where φ is true).

Logical Omniscience: The assumption that each agent’s neighbor-
hood function is a proper filter amounts to assuming the agents are logically
omniscient in the following sense. First, the agents do not know any in-
consistent facts. This follows since we assume that the emptyset is not in
the agent’s neighborhood and the neighborhood is closed under intersection.
Thus if an agent knows φ and the agent knows ψ, then φ and ψ must be
consistent, since the agent knows φ ∧ ψ and so their intersection cannot be
empty. Second, the agents believe all of the logical consequences of its cur-
rent state of belief. This following from the fact that the neighborhoods
are closed under supersets. Finally, since for each i ∈ {a, b} and w ∈ W ,
W i ∈ N i(w), the agents believe all tautologies.

Informative: The last two properties amount to assuming that each
agent has some nontrivial information about the other agent’s beliefs. That
is, if ∩Na(x) = W b for all x ∈ W a, then all of Ann’s beliefs must be
tautologies.

Let At be a set of propositional variables. Our language has the following
syntactic form

p | ¬φ | φ ∧ ψ | �iφ | �i φ

where p ∈ At and i ∈ {a, b}. A valuation is a function V : At → 2W and an
interactive neighborhood belief model is a tuple M = 〈W,Na, N b, V 〉
where V is a valuation and 〈W,Na, N b〉 is an interactive belief frame. Truth
is defined as follows: for x ∈W a, y ∈W b and w ∈W a ∪W b we have

• M, w |= p iff w ∈ V (p)

• M, w |= ¬φ iff M, w 6|= φ

• M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ

• M, x |= �aφ iff (φ)M ∈ Na(x).

• M, y |= �bφ iff (φ)M ∈ N b(y)

• M, x |= �aφ iff (φ)M = ∩Na(x)

• M, y |= �bφ iff (φ)M = ∩N b(y).

We may write w |= φ for M, w |= φ if it is clear which model is under con-
sideration. At this stage it is useful to introduce some special propositional
variables. Let A denote the propositions W a, that is x |= A iff x ∈ W a.
Similarly let B := ¬A denote Bob states. Given a Bob state y, the set
∩N b(y) is Bob’s assumption. Given an Ann state x, if x 6∈ ∩N b(y) then
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Bob’s assumption is not true of state x. That is, Bob’s assumption about
x is wrong. For a fixed x, consider the set of all Bob states in which Bob’s
assumption about x is wrong: {y | x 6∈ ∩N b(y)}. Call this set Px and let Px

represent this proposition, i.e., v(Px) = Px. Now the set

D = {x | {y | x 6∈ ∩N b(y)} ∈ Na(x)}

is the set of states where Ann believes that Bob’s assumption about here is
wrong. Let D represent this proposition, i.e., V (D) = D. Our first Lemma
is that it is impossible for Ann to believe that Bob assumes D.

Lemma 3. Suppose that M is an interactive neighborhood belief model. Then
there is no state x ∈W a such that

x |= �a �b D

Proof. Suppose towards contradiction that M is a belief model with an
Ann state x such that x |= �a �b D. Then

(∗) {y | D = ∩N b(y)} ∈ Na(x)

Since ∅ 6∈ Na(x), there is some y such that D = ∩N b(y). We arrive at a
contradiction by showing that the set D cannot exist:

Suppose x ∈ D. Then by the definition of D, {y | x 6∈ ∩N b(y)} ∈ Na(x).
By (∗) and the fact that Na(x) is a filter {y | D = ∩N b(y)} ∩ {y | x 6∈
∩N b(y)} ∈ Na(x). Since x ∈ D,{y | D = ∩N b(y)} ∩ {y | x 6∈ ∩N b(y)} = ∅.
But this contradicts the fact that ∅ 6∈ Na(x).

Suppose x 6∈ D. Then {y | x 6∈ ∩N b(y)} 6∈ Na(x). However, {y | D =
∩N b(y)} ⊆ {y | x 6∈ ∩N b(y)} and by (∗) and the fact that Na(x) is a filter,
{y | x 6∈ ∩N b(y)} ∈ Na(x). Contradiction.

This Lemma is essentially a restatement of the paradox from the Introduc-
tion; and the proof is adapted from Lemma 5.7 of [7]. The benefit of using
neighborhood models is that the proof illustrates exactly which assumptions
about the agents state of beliefs are needed. In particular, it is clear that
each of the properties of a proper filter are used and if any of them are
dropped then the proof will not go through. Furthermore, it is clear that
the assumption operator �b is crucial5. For suppose that x |= �a�bD. Then
{y | ∩ N b(y) ⊆ D} ∈ Na(x). From this assumption we cannot derive a

5Brandenburger and Keisler make the same point in Proposition 7.2 of [7].
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contradiction. In particular, {y | ∩N b(y) ⊆ D} and {y | x 6∈ N b(y)} need
not be disjoint. However, assuming x 6∈ D still leads to a contradiction.
Thus, we have the following observation.

Observation 4. Let M be an interactive neighborhood belief model. For
each x ∈W a, if x |= �a�bD then x |= D.

Proof. This follows from the proof of Lemma 3. We need only note that
if x 6∈ D then {y | D ∈ N b(y)} ⊆ {y | x 6∈ ∩N b(y)}.

In fact, in [7], Brandenburger and Keisler show precisely which statements
cannot be assumed by agents in an interactive belief frame. We now proceed
to prove an analogous theorem in this setting. We first need a lemma.

Lemma 5. Suppose that M is an augmented neighborhood interactive belief
model. Then if there exists a state x1 ∈ W a such that x1 |= �aB and
x2 ∈W a such that

x2 |= �a�b�a �b A

Then,
x2 |= �aPx2

where V (Px2) = {y | x2 6∈ ∩N b(y)}.

Proof. Suppose x1 |= �aB and

x2 |= �a�b�a �b A

But suppose that x2 6|= �aPx2 . Then V (Px2) 6∈ Na(x2) and so ∩Na(x2) 6⊆
V (Px2). Hence there is a y0 such that

1. y0 ∈ ∩Na(x2), and

2. x2 ∈ ∩N b(y2)

By assumption, {y | y |= �b�a�bA} ∈ Na(x2). Hence by 1., y0 |= �b�a�bA.
That is {x | x |= �a �b A} ∈ N b(y0). By 2, x2 |= �a �b A. That is,
{y | ∩N b(y) = W a} ∈ N b(x2). In particular, by 1

(∗) ∩N b(y0) = W a.

Claim For each x ∈ W a, {y | ∩N b(y) = W a} ∈ Na(x). Otherwise there
is a x′ ∈W a such that {y | ∩N b(y) = W a} 6∈ Na(x′). By (∗), x′ ∈ ∩N b(y0)
and so, x′ |= �a �b A}. Hence {y | ∩N b(y) = W a} ∈ Na(x′). Contradiction.
Thus the claim is proved.
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From the claim, {y | ∩N b(y) = W a} ∈ Na(x1). Since, ∩Na(x1) = W b,
for each y, ∩N b(y) = W a. This contradicts the assumption that there is an
y ∈W b such that ∩N b(y) 6= W a.

Using this Lemma we can be more specific about precisely which statements
cannot be assumed in an interactive belief model. Give a interactive belief
frame M, M is said to have a hole at a formula φ provided φ is satisfiable
in M but �iφ is not satisfiable for some i ∈ {a, b}. The interactive neigh-
borhood frame is said to have a big hole at a formula φ if φ is satisfiable
in M but �iφ is not satisfiable for some i ∈ {a, b}.

Theorem 6. Every interactive neighborhood model M has either a hole at
A, ¬A, or D; or a big hole at �bA, �a �b A, �b�a �b A, or �bD.

Proof. Suppose the statement is false. Thus there are no holes nor big
holes at any of the above formulas. Since both A and B := ¬A are obviously
satisfiable and there are no holes at these formulas, there are x1 ∈ W a and
y1 ∈ W b such that x1 |= �aB and y1 |= �bA. Since �bA is satisfiable, there
is x2 such that x2 |= �a �b A. Hence there is y2 such that y2 |= �b�a �b A.
Hence there is x3 such that x3 |= �a�b�a�A. By Lemma 5, since x1 |= �aB,
x3 |= D. Hence there is a y3 such that y3 |= �bD. Since there is no big hole
at �bD, there must be x5 such that x5 |= �a �b D. But this contradicts
Lemma 3.

3.1. Humberstone’s All and Only Logic

In the previous section, the operator �i is intended to represent an agent’s
assumption. In [7], it is asked whether a sound and complete axiomatization
exists. A number of axioms suggest themselves. For example, it is easy to
see that �iφ→ �iφ is valid in any interactive belief model (i ∈ {a, b}). The
main difficulty, of course, is how to deal with the assumption operator.

A similar question has been investigated by I. L. Humberstone in [16].
Humberstone is concerned with axiomatizing a language with the � opera-
tor. We now sketch the main idea of Humberstone’s solution. It will be con-
venient to restrict attention to the single-agent case interpreted over Kripke
structures. Humberstone is concerned with three different modal operators:
�, � and �. The intended interpretation of �φ is as usual — true in all ac-
cessible worlds; the interpretation of �φ is that φ is only6 true in accessible

6This modality has been investigated by a number of different authors. Most notably
Passy and Tinchev [20] discuss this modality as part of a larger discussion of Boolean Modal
Logic. See also [13, 20], [2] Section 7.1 and the references therein for more information.
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worlds; and �φ is that φ is true in exactly the accessible worlds. Formally,
given a Kripke structure7 M = 〈W,R, V 〉, truth is defined as follows.

• M, w |= �φ iff for each v if wRv then M, v |= φ.

• M, w |= �φ iff for each v if M, v |= φ then wRv.

• M, w |= �φ iff M, v |= φ iff wRv.

Humberstone proceeds by first axiomatizing languages with only the � and
� modalities respectively. It is well known that the weakest normal modal
logic in the language with only the � modal operator can be axiomatized
by adding to any axiomatization of propositional calculus the single rule

(φ1 ∧ · · · ∧ φn) → ψ

(�φ1 ∧ · · · ∧�φn) → �ψ

Call this logic K. For the logic containing only the � operator, the following
rule is used by Humberstone [16]

ψ → (φ1 ∨ · · · ∨ φn)
(�φ1 ∧ · · · ∧�φn) → �ψ

Following Humberstone, we call this logic Anti-K. The completeness proof
for Anti-K follows a standard canonical modal construction. The one distin-
guishing feature is how to define the canonical accessibility relation. The key
idea (which Humberstone credits to A. vander Nat [23]) is to say that a max-
imally consistent set Γ is related to a maximally consistent set ∆ provided
there is a formula φ such that �φ ∈ Γ and φ ∈ ∆.

Humberstone’s strategy to axiomatize the � operator is to first consider
a new operator � interpreted over bi-relational frames. That is, frames of
the form 〈W,R1, R2, V 〉 where R1 and R2 are both relations. The definition
of truth of � is as follows:

• M, w |= �φ iff for all v, if wR1v thenM, v |= φ, and for all v, ifM, v |= φ
then wR2v.

The goal is to first axiomatize �, then introduce axioms to ensure that
R1 = R2. As for the logic, called AO, interpreted over arbitrary bi-relational
frames, Humberstone uses the following rule which is the obvious combina-
tion of the two rules discussed above.

7A Kripke structure is a tuple 〈W, R, V 〉 where R ⊆ W ×W is an accessibility relation
and V is a valuation function. It is assumed the reader is familiar with such structures.
See [2] for more information.
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(γ1 ∧ · · · ∧ γm) → ψ ψ → (φ1 ∨ · · · ∨ φn)
(�γ1 ∧ · · · ∧�γn ∧�φ1 ∧ · · · ∧�φn) → �ψ

Finally, Humberstone adds two rules which ensure that R1 = R2 and thus
axiomatizing the minimal logic in the language containing only the assump-
tion operator �. A extended discussion of these rules will take us too far off
topic, and so the reader is referred to [16] for a complete discussion and a
full proof of soundness and completeness.

The results of Humberstone can easily be extended to provide an axiom-
atization of the minimal modal logic over the language with both a � and
a � modality. We need only add the axiom �φ → �φ. Finally, it is an
easy exercise in modal logic to provide axiomatizations of interactive belief
frames. Some of the relevant issues will be discussed in the next section.

4. Using Hybrid Logic

Hybrid logic8 extends basic modal logic with special propositional variables,
called nominals, intended to be “names” of possible worlds. See [4] and ref-
erences therein for more information. The goal of this section is to study the
Brandenburger-Keisler paradox from the hybrid logic point of view. It turns
out that it is more convenient to work with two-sorted Kripke structures
instead of neighborhood structures as we did in the previous section.

Definition 7. A tuple F = 〈W,Ra, Rb, A,B〉 is called a interactive belief
frame provided W is a (non-empty) set of states, A and B are subsets of
W such that W = A ∪B and A ∩B = ∅, Ra ( A×B and Rb ( B ×A are
both serial relations on W

Throughout this section, we use the following syntactic convention. The
variables x, x1, x2, x′, x′′, . . . will denote Ann variables. So, the formula
∀xφ(x) be shorthand for ∀x(x ∈ A → φ(x)), where A is a propositional
variable where V (A) = A. Let y, y′, y′′, y1, y2, . . . be Bob variables. Finally,
we use z, z′, z1, z2, . . . of arbitrary elements of W (they may belong to either
A or B).

The language used to formalize the argument will be the full hybrid
language. Let Prop be a countable set of propositional variables containing
at least two designated variable A and B. Let Nom be a set of nominals and
Var a set of variables. A formula can have the following syntactic form

8I thank Rohit Parikh for suggesting that Hybrid Logic may be a useful tool to under-
stand the Brandenburger-Keisler Paradox.



12 Eric Pacuit

φ ::= P | i | ¬φ | φ ∧ φ | 〈a〉φ | 〈b〉φ | @iφ | ∀xφ(x)

where i ∈ Nom and P ∈ Prop. Let ∨,→, [a], [b] and ∃xφ(x) be defined as
usual. Following the above convention, define the following formulas

∀xφ(x)
def
= ∀x(A → φ(x))

and

∀yφ(y)
def
= ∀y(B → φ(y))

A model based on a frame F is a tuple M = 〈F , V 〉, where V : Prop∪Nom →
2W such that for each i ∈ Nom, |V (i)| = 1 and V (A) = A and V (B) = B. A
substitution is a function σ : Var → W . Truth is defined relative to a state
w ∈ W and a substitution σ. We say that σ′ is an x-variant of σ, denoted
σ ∼x σ

′, if σ′(y) = σ(y) for all y 6= x. Truth is defined as follows. Let M be
an arbitrary belief model, w ∈W and σ a substitution:

• M, w |=σ P iff w ∈ V (P )

• M, w |=σ i iff w ∈ V (i)

• M, w |=σ ¬φ iff M, w 6|=σ φ

• M, w |=σ φ ∧ ψ iff M, w |=σ φ and M, w |=σ ψ

• M, w |=σ @iφ iff M, v |=σ φ where v ∈ V (i)

• M, w |=σ 〈c〉φ iff there is a v ∈ W such that wRcv and M, v |=σ φ
(c ∈ {a, b})

• M, w |=σ ∀xφ(x) iff for each x-variant σ′, M, w |=σ′ φ(x)

The so called binding operator will be relevant for our study. Define
↓x φ(x) as follows:

↓x φ(x)
def
= ∃x(x ∧ φ(x))

Since this operator will play an important role in the following discussion,
we give the definition of truth:

M, w |=σ↓x φ(x) iff M, w |=σ′ φ(x) where σ′ ∼x σ with σ′(x) = w

It is not hard to see that the following formulas are valid in any interactive
belief frame.

1. (two-sortedness) A ↔ ¬B
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2. (two-sortedness a) @i〈a〉j → (@iA ∧@jB)

3. (two-sortedness b) @i〈b〉j → (@iA ∧@jB)

4. (seriality a) 〈b〉>
5. (seriality b) 〈b〉>

It is not hard to see that the converse is true as well: if the above formulas
are valid in a frame, then the frame is an interactive belief frame. As usual,
we interpret [a]φ(y) as “Ann believes φ(y). Note that, here it is assumed
that φ(y) is a statement about Bob’s states. Similarly, [b]φ(x) is intended
to mean that “Bob believes φ(x)”, where φ(x) is a statement about Ann’s
states. Thus the formula @x[a]φ(y) is intended to mean that “at state x,
Ann believes φ(y)”, if this is true we will say “x believes φ(y)”. However,
some care must be taken when expressing the formula φ(y). For example,
to express “(at state x), Ann believes that Bob considers all of Ann’s states
possible”, we use the formula

@x[a] ↓y ∀x(@y〈b〉x)

The ↓ operator bounds y to the current state. So the literal translation of
the above formula is at state x, in all a accessible states, y, all of the x states
are accessible from y.

Moving on to the slightly more complicated notion of “assumes”. Recall,
that we say that an agent assumes a set Y at a state z provided the set of
all accessible states is equal to Y . With the help of the quantifiers, we can
interpret assumes as follows:

x assumes φ(y) iff @x(∀y(@x〈a〉y ↔ φ(y))

For example, to express “(at state x), Ann assumes that Bob considers all
of Ann’s states possible” we can use the following formula:

@x∀y(@x〈a〉y ↔ ∀x′(@y〈b〉x′))

here x′ is an Ann variable (like x).
Turning to the paradox, consider the sentence @x[a]¬〈b〉x. This sentence

says that at state x, in all the states that Ann can “see”, Bob cannot “see”
x. In other words, at state x, Ann believes that Bob is wrong about her
state (x in this case). Now if this sentence is true at state y in precisely the
states that Bob can see, we have that Bob assumes that Ann believes that
Bob is wrong about her state. Formally,

∀x(@y〈b〉x↔ @x([a]¬〈b〉x))
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is true at the states y where Bob assumes that Ann’s beliefs about Bob’s
assumption are wrong. As in Lemma 3, we can now state the analogue of
Lemma 5.7 from [7].

Lemma 8. In any model based on a belief frame, for any state x0,

@x0 [a] ↓y (∀x(@y〈b〉x↔ @x([a]¬〈b〉x)))

is false.

The proof can be found in the appendix and using a tableaux system for
quantified hybrid logic from [4]. Furthermore we have the following analo-
goue of Lemma 5.6 from [7].

Lemma 9. In all belief frames, if

1. @x1∀y@x1〈a〉y; and

2. @x2 [a][b][a] ↓ y(∀x(@y〈b〉x))

are valid, then so is
@x2 [a]¬〈b〉x2

The proof is found in Appendix B. We say that a model based on a belief
frame has a hole at φ(y) iff there φ(y) is satisfiable, but not assumed by any
agent. In other words, the conjunction of

1. @xφ(y); and

2. ∀x¬(@x∀y(@x〈a〉y ↔ φ(y)))

is valid. The model has a big hole provided, @xφ(y) ∧ ∀x(¬@x[a]φ(y)) is
valid. As in Theorem 1, these previous two lemmas can be used to show
precisely which formulas are holes or big holes. Given our discussion from
Section 3, the proof of the hybrid version of Theorem 1 is straightforward,
so the details will be left to the reader.

A. Tableaux for Quantified Hybrid Logic

The proofs of Lemma 9 and 8 use a tableaux system found in [4]. In this
short appendix, we will list the rules relevant for the proofs in the next
section. It is assumed that the reader is familiar the the tableaux method
— for more information please see [4] including soundness and completeness
proofs.



Understanding the Brandenburger-Keisler Paradox 15

This tableaux system is closely related to tableaux systems for first-
order logic and first-order modal logic found in Fitting and Mendelsohn’s
classic text First-Order Modal Logic [12]. Formulas appearing on a branch
of a tableaux proof will be of the form @sφ or ¬@sφ where s is a nominal.
The rules for propositional calculus are standard and will be given here for
completeness.

@sφ ∧ ψ
@sφ
@sψ

(∧)
¬@sφ ∨ ψ
¬@sφ
¬@sψ

(¬∨)

@sφ ∨ ψ
@sφ | @sψ

(∨)
¬@sφ ∧ ψ

¬@sφ | ¬@sψ
(¬∧)

@s¬φ
¬@sφ

(¬)
¬@s¬φ

@sφ
(¬¬)

We must slightly adapt the rules for the modal operators from [4] to fit the
current setting. The issue is that there are two sorts of nominals — Ann
states and Bob states. Thus if s and t are nominals then in the formula
@s〈a〉t we implicitly assume that s is an Ann state and t is a Bob state.
We assume there are two sorts of nominals — one for Ann and states and
the second for Bob states. We write x and y for Ann and Bob nominals
respectively. Furthermore, in the (〈a〉) and (¬[a]) rules, y is a Bob nominal
that does not occur on the branch.

@x〈a〉φ
@x〈a〉y
@yφ

(〈a〉)
¬@x[a]φ
@x〈a〉y
¬@yφ

(¬[a])

@x[a]φ @x〈a〉y
@yφ

([a])
¬@x〈a〉φ @x〈a〉y

¬@yφ
(¬〈a〉)

Of course, there are also the obvious set of modal rules for the 〈b〉 modality.
The next set of rules deal with nominals and the @ operator. These include
rewrite rules to delete nestings of @ and rules to handle the fact that @st
means that the nominal s and the nominal t are equal.
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@s@tφ

@tφ
(@)

¬@s@tφ

¬@tφ
(¬@)

[s on a branch]
@ss

(Refl)

@st @sφ

@tφ
(Nom)

@st @r〈c〉s
@r〈c〉t

(Bridge)

Next we include the binding. In what follows, φ[s/w] means replace every
free occurrence of the nominal w in φ with s.

@s ↓w φ

@sφ[s/w]
(↓) ¬@s ↓w φ

¬@sφ[s/w]
(¬ ↓)

Finally, we have quantifier rules. These are the obvious adapted rules from
Fitting’s tableaux system from [11]. As usual, in the (∃) and (¬∀) rules, c
is a new parameter that does not appear on the branch, and in the (∀) and
(¬∃) rules t is any parameter.

@s∃xφ(x)
@sφ(c)

(∃) ¬@s∀xφ(x)
¬@sφ(c)

(¬∀)

@s∀xφ(x)
@sφ(t)

(∀) ¬@s∃xφ(x)
¬@sφ(t)

(¬∃)

The above tableaux system is proved sound and complete for the class of
all hybrid models in [4]. Two issues must be addressed. The first is that it
is assumed that each Ra and Rb are serial. As a consequence we add the
following rule

@x〈a〉y (Serial a)

where y is a Bob nominal that is new to the branch. We also include a
similar rule for Bob, which we will call (Serial b). The second issue is that it
is assumed that Ra ( W a ×W b and Rb ( W b ×W a. We therefore include
the following rule

¬@x〈a〉y (Informativity a)

where x and y are Ann and Bob nominals respectively that are new to the
branch. We also include a similar rule for Bob, which we will call (Informa-
tivity b).
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B. Proofs

The proofs in this appendix use a tableaux for quantified hybrid logic from
[3]. The reader is referred to [3] for details of the proof system.

Lemma 10. In all belief frames, if

1. @x1∀y.@x1〈a〉y; and

2. @x2 [a][b][a] ↓ y.(∀x.(@y〈b〉x))

are valid, then so is
@x2 [a]¬〈b〉x2

Proof.

0a. @x1∀y@x1〈a〉y Assumption 1
0b. @x2 [a][b][a] ↓y (∀x(@y〈b〉x)) Assumption 2
0c. ¬@x2 [a]¬〈b〉x2 Assumption 3
1. ¬@y0〈b〉x0 (Informativity b)
2. @x2〈a〉y1 0c: (¬[a])
2′. ¬@y1¬〈b〉x2 Ditto
3. @y1〈b〉x2 2′: (¬¬)
4. @y1 [b][a] ↓y (∀x(@y〈b〉x)) 2, 0b: ([a])
5. @x2 [a] ↓y(∀x(@y〈b〉x)) 3, 4: ([b])
6. @y1 ↓y (∀x(@y〈b〉x)) 2, 5: ([a])
7. @y1∀x(@y1〈b〉x) 6: (↓)
8. @y1@y1〈b〉x1 7: (∀)
9. @y1〈b〉x1 8 (@)
10. @x1〈a〉y0 0a: (∀) and (@)
11. @x1 [a] ↓y (∀x(@y〈b〉x)) 4, 9: ([b])
12. @y0 ↓y(∀x(@y〈b〉x)) 10, 11: ([a])
13. @y0∀x(@y0〈b〉x) 13: (↓)
14. @y0@y0〈b〉x0 13: (∀)
15. @y0〈b〉x0 14: (@)

Contradiction 1,15

Lemma 11. In any model based on a belief frame, for any state x0,

@x0 [a] ↓y (∀x(@y〈b〉x↔ @x([a]¬〈b〉x)))

is false
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Proof. We show that any tableaux that starts with the above formula
closes.

0. @x0 [a] ↓y(∀x(@y〈b〉x↔ @x([a]¬〈b〉x))) Assumption
1. @x0〈a〉y0 (Seriality a)
2. @y0 ↓y(∀x(@y〈b〉x↔ @x([a]¬〈b〉x))) 0, 1: ([a])
3. @y0(∀x.(@y0〈b〉x↔ @x([a]¬〈b〉x))) 2: (↓)
4. @y0(@y0〈b〉x0 ↔ @x0([a]¬〈b〉x0)) 3: (∀)
5. @y0(@y0〈b〉x0 → @x0([a]¬〈b〉x0) 4: (∧)
6. @y0(@x0([a]¬〈b〉x0) → @y0〈b〉x0) Ditto

Left (5)
a5 ¬@y0(@y0〈b〉x0) 5: (∨)
b5 ¬@y0〈b〉x0 a5: (¬@)

Right (5)
5a @y0@x0 [a]¬〈b〉x0 5: (∨)
5b @x0 [a]¬〈b〉x0 5a: (@)
5c @y0¬〈b〉x0 5b, 1: ([a])
5d ¬@y0〈b〉x0 5c: (¬)

Since both branches end with ¬@y0〈b〉x0, call this formula (∗), we need
only close one of the branches (making sure to only find contradictions with
formulas on both branches). The branch immediately splits using line 6:

Left (6)
a6 ¬@y0@x0 [a]¬〈b〉x0 6: (∨)
b6 ¬@x0 [a]¬〈b〉x0 a6: (¬@)
c6 @x0〈a〉y1 b6: (¬[a])
c6′ ¬@y1¬〈b〉x0 Ditto
d6 @y1〈b〉x0 c6′: (¬¬)
e6. @y1 ↓y (∀x(@y〈b〉x↔ @x([a]¬〈b〉x))) c6, 1: ([a])
f6. @y1(∀x(@y1〈b〉x↔ @x([a]¬〈b〉x))) e6: (↓)
f6. @y1(@y1〈b〉x0 ↔ @x0([a]¬〈b〉x0)) e6: (∀)
g6. @y1(@y1〈b〉x0 → @x0([a]¬〈b〉x0) f6: (∧)
h6. @y1(@x0([a]¬〈b〉x0) → @y0〈b〉x0) Ditto

Left (g6)
ag6 ¬@y1(@y1〈b〉x0) g6: (∨)
bg6 ¬@y1〈b〉x0 ag6 (¬@)

Contradiction d6, bg6
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Right (g6)
g6a @y1@x0([a]¬〈b〉x0) g6: (∨)
g6b @x0 [a]¬〈b〉x0 g6a,@
g6c @y1¬〈b〉x0 c6, g6b, [a]
g6d ¬@y1〈b〉x0 g6c,¬@

Contradiction g6d, d6

Right (6)
6a @y0@y0〈b〉x0

6b @y0〈b〉x0 6a, @
6c Contradiction 6b, ∗
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