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Abstract

Let us assume that some agents are connected by a communication graph. In
the communication graph, an edge from agent i to agent j means that agent i
can directly receive information from agent j. Agent i can then refine its own
information by learning information that j has, including information acquired by
j from another agent, k. We introduce a multi-agent modal logic with knowledge
modalities and a modality representing communication among agents. Among other
properties, we show that the logic is decidable, that it completely characterizes the
communication graph, and that it satisfies the basic properties of the space logic of
[18].

1 Introduction

The topic “who knew what and when” is not just of interest to epistemic logicians. Often
it is the subject of political scandals (both real and imagined). For example, consider
the much talked about Valerie Plame affair. A July 2003 column in the Washington Post
reported that Plame was an undercover CIA operative. This column generated much
controversy due to the fact that such information (the identity of CIA operatives) is
restricted to the relevant government officials. Of course, in this situation, we know full
well “Who knew what and when”: in July of 2003, Robert Novak (the author of the
article) knew that Plame was a CIA operative. What creates a scandal in this situation
is how Novak came to know such information. Since the CIA goes to great lengths
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to ensure that communication about sensitive information is contained within its own
organization, the only way Novak could have known that Plame was a CIA operative was
if a communication channel had been created between Novak and someone inside the CIA
organization.

To put this a bit more formally, given a set of agents A, call any graph G = (A, E)
a communication graph where the intended interpretation of an edge between agent i
and agent j is that i and j can communicate. In this setting, the CIA can be represented
as a connected component of G. Given that the CIA is the only group of agents that
(initially) knows the identity of CIA operatives, and Novak is not an element of the CIA
component of G then we can conclude that Novak did not originally know the identity of
CIA operatives and no amount of communication that respects the graph G can create a
situation in which Novak does know the identity of a CIA operative. Thus Novak’s report
in the Washington Post implied that our original communication graph was incorrect1.
That is, there must be an edge (or a chain) between Novak and some agent inside the
CIA component. Since in principle, Novak could be connected to any member of the CIA
component, much resources and time has been spent discussing the possible edges.

In this paper we develop2 a multi-agent epistemic logic with a communication modality
where agents are assumed to communicate according to some fixed communication graph.
Agents are assumed to have some private information at the outset, but may refine their
information by acquiring information possessed by other agents, possibly via yet other
agents. That is, each agent is initially informed about the truth values of a finite set of
propositional variables. Agents are assumed to be connected by a communication graph.
In the communication graph, an edge from agent i to agent j means that agent i can
directly receive information from agent j. Agent i can then refine its information by
learning information that j has, including information acquired by j from another agent,
k.

In keeping with the CIA-theme, we give an example from [19] of the type of situations
that we have in mind. Let Kiφ mean that according to i’s current information φ is true.
Given a communication graph G = (A, E), we say that a sequence of communications (i
learns a fact from j who learns a fact from k, and so on) respects the communication
graph if agents only communicate with their immediate neighbors in G. Let 3φ mean
that φ becomes true after a sequence of communications that respects the communication
graph. Suppose now that φ is a formula representing the exact whereabouts of Bin
Laden, and that Bob, the CIA operative in charge of maintaining this information knows
φ. In particular, KBobφ, but suppose that at the moment, Bush does not know the
exact whereabouts of Bin Laden (¬KBushφ). Presumably Bush can find out the exact
whereabouts of Bin Laden (3KBushφ) by going through Hayden, but of course, we cannot

1Of course, it could also mean that we were incorrect about the agents’ initial information — Novak
could have had previous knowledge about the identity of CIA agents. In this paper, we are interested in
studying communication and so will not consider this case.

2This framework was first presented in [19].
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find out such information (¬3KEφ ∧ ¬3KRφ) since we do not have the appropriate
security clearance. Clearly, then, as a pre-requisite for Bush learning φ, Hayden will also
have to come to know φ. We can represent this situation by the following formula:

¬KBushφ ∧2(KBushφ→ KHaydenφ)

where 2 is the dual of diamond (2φ is true if φ is true after every sequence of communi-
cations that respect the communication graph).

Section 2 gives the details of our framework and the main results. Section 3 contains
a discussion of some other relevant literature. We conclude the paper by discussing our
underlying assumptions and provide pointers to future work.

2 The Logic of Communication Graphs

This section describes the logic of communication graphs, K(G), introduced in [19]. The
intended application is to reason about the flow of information among a group of agents
whose communication is restricted by some communication graph. We begin by making
some simplifying assumptions about the nature of the communication. Thus the logic
presented here should be viewed as a first step towards a general logic to reason about
the situations described in the Introduction.

Let A be a set of agents. A communication graph is a directed graph GA = (A, E)
where E ⊆ A×A−{(i, i) | i ∈ A}. Intuitively (i, j) ∈ E means that i can directly receive
information from agent j, but without j knowing this fact. Thus an edge from i to j in
the communication graph represents a one-sided relationship between i and j. Agent i
has access to any piece of information that agent j knows (but in a restricted language).
We have introduced this ‘one sidedness’ restriction in order to simplify our semantics, but
also because such situations of one sided learning occur naturally. A common situation
that is helpful to keep in mind is accessing a website. We can think of agent j as creating
a website in which everything he currently knows is available, and if there is an edge
between i and j then agent i can access this website without j being aware that the site
is being accessed. Another important application is spying where one person accesses
another’s information without the latter being aware that information is being leaked.
Naturally j may have been able to access some other agent k’s website and had updated
some of her own information. Therefore, it is important to stress that when i accesses j’s
website, he is accessing j’s current information which may include part of what k knew
initially.

In order for any communication to take place, we must assume that the agents under-
stand a common language. Thus we assume a set At of propositional variables, understood
by all the agents, but with only specific agents knowing their actual values at the start.
Letters p, q, etc, will denote elements of At. The agents will have some information –
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knowledge of the truth values of some elements of At, but refine that information by
acquiring information possessed by other agents, possibly via yet other agents. This im-
plies that if agents are restricted in whom they can communicate with, then this fact will
restrict the knowledge they can acquire.

The assumption that i can access all of j’s information is a significant idealization
from common situations, but becomes more realistic if we think of this information as
being confined to facts expressible as truth functional combinations of some small set of
basic propositions. Thus our idealization rests on two assumptions:

1. All the agents share a common language, and

2. The agents make available all possible pieces of (purely propositional) information
which they know and which are expressible in this common language.

The language is a multi-agent modal language with a communication modality. The
formula Kiφ will be interpreted as “according to i’s current information, i knows φ”, and
3φ will be interpreted as “after some communications (which respect the communication
graph), φ becomes true”. For example the formula

Kjφ→ 3Kiφ

is intended to express the statement: “If agent j (currently) knows φ, then after some
communication, agent i can come to know φ”. Let At be a finite set of propositional
variables. A well-formed formula of K(G) has the following syntactic form

φ := p | ¬ψ | φ ∧ ψ | Kiφ | 3φ

where p ∈ At. We abbreviate ¬Ki¬φ and ¬3¬φ by Liφ and 2φ respectively, and use the
standard abbreviations for the propositional connectives (∨, →, and ⊥). Let LK(G) denote
the set of well-formed formulas of K(G). We also define L0(At), (or simply L0 if At is
fixed or understood), to be the set of ground formulas, i.e., the set of formulas constructed
from At using ¬,∧ only.

2.1 Semantics

The semantics described here combines ideas both from the subset models of [18] and the
history based models of Parikh and Ramanajum (see [21, 22]). We assume that agents are
initially given some private information and then communicate according to some fixed
communication graph G. The semantics in this section is intended to formalize what
agents know and may come to know after some communication.
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Initially, each agent i knows or is informed (say by nature) of the truth values of a
certain subset Ati of propositional variables, and the Ati as well as this fact are common
knowledge. Thus the other agents know that i knows the truth values of elements of Ati,
but, typically, not what these values actually are. We shall not assume that the Ati are
disjoint, but for this paper we will assume that the Ati together add up to all of At. Thus
if Ati and Atj intersect, then agents i, j will share information at the very beginning. Let
W be the set of boolean valuations on At. An element v ∈ W is called a state. We use 1 for
the truth value true and 0 for the truth value false. Initially each agent i is given a boolean
valuation vi : Ati → {0, 1}. This initial distribution of information among the agents can
be represented by a vector ~v = (v1, . . . , vn). Of course, since we are modeling knowledge
and not belief, these initial boolean valuations must be compatible. I.e., for each i, j, vi

and vj agree on Ati ∩ Atj. Call any vector of partial boolean valuations ~v = (v1, . . . , vn)
consistent if for each p ∈ dom(vi)∩dom(vj), vi(p) = vj(p) for all i, j = 1, . . . , n. Note that
there is a 1-1 correspondence between consistent vectors and states w as we defined them
earlier. We shall assume that only such consistent vectors arise as initial information. All
this information is common knowledge and only the precise values of the vi are private.

Definition 1 Let At be a finite set of propositional variables and A = {1, . . . , n} a finite

set of agents. Given the distribution of sublanguages ~At = (At1, . . . ,Atn), an initial

information vector for ~At is any consistent vector ~v = (v1, . . . , vn) of partial boolean
valuations such that for each i ∈ A, dom(vi) = Ati.

We assume that the only communications that take place are about the physical world.
But we do allow agents to learn objective facts which are not atomic, but may be complex,
like p∨ q where p, q ∈ At. Now note that if agent i learned some literal from agent j, then
there is a simple way to update i’s valuation vi with this new information by just adding
the truth value of another propositional symbol. However, if i learns a more general
ground formula from agent j, then the situation will be more complex. For instance if
the agent knows p and learns q ∨ r then the agent now has three valuations on the set
{p, q, r} which cannot be described in terms of a partial valuation on a subset of At.

Fix a communication graph G and suppose that agent i learns some ground fact φ
(directly) from agent j. Of course, there must be an edge from agent i to agent j in G. This
situation will be represented by the tuple (i, j, φ) and will be called a communication
event. For technical reasons we assume that all formulas in a communication event
are expressed in a canonical disjunctive normal form (DNF). That is, we assume φ is
a set {C1, . . . , Ck} where each Ci is a consistent finite set of elements of At and their
negations. Let LDNF (At) be the set of all such sets. Each set {C1, . . . , Ck} represents the
formula

∨
i=1,...,k

∧
Ci. Recall that for each formula ψ ∈ L0(At) there is a unique element

{C1, . . . , Ck} ∈ LDNF (At) such that
∨

i=1,...,k

∧
Ci is logically equivalent to ψ. In what

follows, we will sometimes use φ to mean either a formula (an element of L(At) or L0(At))
or an element of LDNF (At) and trust that this ambiguity of notation will not cause any
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confusion. Of course we could use a unique element of L0(At) to express a member of
LDNF (At) and that too would work.

Definition 2 Let G = (A, EG) be a communication graph. A tuple (i, j, φ), where φ ∈
LDNF (At) and (i, j) ∈ EG, is called a communication event. Then ΣG = {(i, j, φ) | φ ∈
LDNF , (i, j) ∈ EG} is the set of all possible communication events (given the communica-
tion graph G).

The following fact will be needed in what follows. The proof is well-known and is left to
the reader.

Lemma 3 Suppose that there are k elements in At and n elements in A. Then for any
communication graph G, there are at most n× n× (22k

) elements in ΣG.

Given the set of events ΣG, a history is a finite sequence of events. I.e., H ∈ Σ∗
G. The

empty history will be denoted ε. The following notions are standard (see [21, 22] for
more information). Given two histories H,H ′, say H � H ′ iff H ′ = HH ′′ for some
history H ′′, i.e., H is an initial segment of H ′. Obviously, � is a partial order. If H
is a history, and (i, j, φ) is a communication event, then H followed by (i, j, φ) will be
written H; (i, j, φ). Given a history H, let λi(H) be i’s local history corresponding to H.
I.e., λi(H) is a sequence of events that i can “see”. Given our assumption of “one-sided
communication”, for this paper we use the following definition of λi: Map each event of
the form (i, j, φ) to itself, and map other events (m, j, ψ) with m 6= i to the null string
while preserving the order among events.

Definition 4 Fix a finite set of agents A = {1, . . . , n} and a finite set of propositional
variables At along with subsets (At1, ...,Atn). A communication graph frame is a pair

〈G, ~At〉 where G is a communication graph, and ~At = (At1, ...,Atn) is an assignment of

sub-languages to the agents. A communication graph model based on a frame 〈G, ~At〉
is a triple 〈G, ~At, ~v〉, where ~v is an initial information vector for ~At.

Now we address two issues. One is that not all histories are legal. For an event (i, j, φ) to
take place after a history H, it must be the case that (i, j) ∈ EG, and that after H (and
before (i, j, φ)), j already knew φ. Clearly i cannot learn from j something which j did
not know. Whether a history is justified depends not only on the initial valuation, but
also on the set of communications that have taken place prior to each communication in
the history.

The second issue is that the information which an agent learns by “reading” a formula
φ may be more than just the fact that φ is true. For suppose that i learns p ∨ q from j,

6



but j is not connected, directly or indirectly, to anyone who might know the initial truth
value of q. In this case i has learned more than p ∨ q, i has learned p as well. For the
only way that j could have known p ∨ q is if j knew p in which case p must be true. Our
definition of the semantics below will address both these issues.

We first introduce the notion of i-equivalence among histories. Intuitively, two histo-
ries are i-equivalent if those communications which i takes active part in, are the same.

Definition 5 Let w be a state and H a finite history. Define the relation ∼i as follows:
(w,H) ∼i (v,H ′) iff w|Ati

= v|Ati
and λi(H) = λi(H

′).

Formulas will be interpreted at pairs (w,H) where w is a state (boolean valuation)
and H is a history (a finite sequence of communication events).

To deal with the notion of legal or justified history we introduce a propositional symbol
L which is satisfied only by legal pairs (w,H). (We may also write L(w,H) to indicate that
the pair (w,H) is legal.) Since L can only be defined in terms of knowledge, and knowledge
in turn requires quantification over legal histories, we shall need mutual recursion.

Definition 6 Given a communication graph and the corresponding model M = 〈G, ~At, ~v〉,
and pair (w,H), we define the legality of (w,H) and the truth |=M of a formula as follows:

• w, ε |=M L

• w,H; (i, j, φ) |=M L iff w,H |=M L, (i, j) ∈ E and w,H |=M Kjφ

• w,H |=M p iff w(p) = 1, where p ∈ At

• w,H |=M ¬φ iff w,H 6|=M φ

• w,H |=M φ ∧ ψ iff w,H |=M φ and w,H |=M ψ

• w,H |=M 3φ iff ∃H ′, H � H ′, L(w,H ′), and w,H ′ |=M φ

• w,H |=M Kiφ iff ∀(v,H ′) if (w,H) ∼i (v,H ′), and L(v,H ′), then v,H ′ |=M φ

Unless otherwise stated, we will only consider legal pairs (w,H), i.e., pairs (w,H) such
that w,H |= L. We say φ is valid in M, |=M φ if for all (w,H), w,H |=M φ. Finally,
we say φ is valid in the communication graph frame F if φ is valid in all models
based on F .

There are two notions of validity relevant for our study. The first is relative to a fixed
communication graph. Let G be a fixed communication graph. We say that a formula
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φ ∈ LK(G) is G-valid provided φ is valid in all communication graph frames F based on
G. A formula φ ∈ LK(G) is valid if φ is G-valid for all communication graphs G. Of course
validity implies G-validity, but not vice versa. We write |=G φ if φ is G-valid and |= φ if φ
is valid.

Some comments are in order concerning the above definition of truth. L is defined in
terms of the knowledge operator, and the knowledge operator uses L in its definition. This
definition is of course fine since the definition uses recursion on the length of the formula.
Still, is not clear that the process of determining whether a history is legal will terminate
in a finite amount of time. For whether or not the history-state pair (w,H; (i, j, φ)) is
legal depends on whether (w,H) satisfies Kjφ which, in turn, depends on a set of histories
which may be longer than H. We now show that the process of determining whether a
history is legal will terminate.

We first need some notation. A one-step compression of H is a history H ′ which is
obtained by deleting one second or subsequent occurrences of an event (i, j, φ) from H.
I.e., if (i, j, φ) has occurred twice, then eliminate some later occurrence. Let c(H) denote
the maximally compressed history. c(H) is generated by including each (i, j, φ) event of
H exactly once according to the following order on events: e comes before e′ iff the first
occurrence of e in H came before the first occurrence of e′ in H. The key observation is
that the legality of a history-state pair (w,H) depends only on the legality of the pair
(w, c(H)).

Lemma 7 Let G be a communication graph, ΣG a set of events and H be any history
over ΣG. Suppose that w is a state. Then

• For all φ, and all j, w,H |= Kjφ iff w, c(H) |= Kjφ

• (w,H) is legal iff (w, c(H)) is legal.

Proof Clearly it is sufficient to prove the two conditions when c(H) is replaced by an
H ′ obtained from H by the elimination of one extra event. Therefore we shall make this
assumption in the rest of the proof. Thus H = H1eH2eH3 and H ′ = H1eH2H3. Here e is
some event (i, j, φ).

We show that (w,H), (w,H ′) satisfy the same formulas ψ.

Clearly this is true if ψ is atomic and the argument also goes through for boolean
combinations.

Suppose ψ = 3θ and w,H |= ψ. Then there is H4 such that w,H;H4 |= θ. By
induction hypothesis w,H ′;H4 |= θ (it is not hard to see that it is legal) and hence
w,H ′ |= 3ψ. The converse is similar.
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Suppose ψ = Krθ and w,H |= ψ where r 6= i. This case is easy as H,H ′ are r-
equivalent.

What if r = i? w,H |= Kiθ iff for all v,H ′′ such that (v,H ′′) ∼i (w,H), v,H ′′ |= θ.
But since e has already occurred in both H,H ′, the possible v in question are the same
for both. The H ′′ will have two e events and eliminating the second e will yield an H ′′′

such that v,H ′′′ |= θ iff w,H ′′ |= θ. Thus the case r = i also works.

The proof that compression preserves the legality of illegality is now immediate for it
depends on some knowledge formulas being true. But that issue is not affected by the
elimination of extra events e. 2

With this Lemma we can show that the process of determining if a state-history pair
(w,H) is legal terminates. More formally,

Proposition 8 Let M = 〈G, ~At, ~v〉 be a communication graph model. For any H ∈ Σ∗
G

and state w, the question “Does (w,H) |= L?” terminates in a finite amount of time.

Proof This is now immediate by the previous lemma. When asking whether w,H |= Kiφ
we need to look at pairs (v,H ′) which are i-equivalent to w,H. But now we can confine
ourselves to H ′ is which no (r, j, ψ) event with r 6= i occurs twice, and these are bounded
in length. 2

2.2 Some Results

We now state the basic results about the logic of communication graphs.

We already defined c(H) earlier. We say that two histories are c-equivalent, written
C(H,H ′), if c(H) = c(H ′). Clearly H,H ′ have the same semantic properties as c(H) =
c(H ′) and hence as each other. Moreover, one is legal iff the other is legal. It follows also
that for every H1, H;H1 is legal iff H ′;H1 is. Thus C is a bisimulation.

In the following, a history H is called w-maximal if (w,H) is legal and all possible
(finitely many) communication events have taken place at least once. Another conse-
quence of the above lemma is the existence of a maximal history (relative to some
w).

Theorem 9 1. If a formula φ is satisfiable in some graph model (G, ~At) then it is
satisfiable in a history in which no communication (i, j, φ) occurs twice.
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2. If H is w-maximal, then for all formulas φ ∈ LK(G), |= φ→ 2φ.

3. If H is w-maximal and H ′ is any history compatible with w such that H � H ′, then
for all formulas φ ∈ LK(G), if w,H ′ |= φ then w,H |= φ.

4. If H and H ′ are w-maximal, then for each formula φ ∈ LK(G), w,H |= φ iff w,H ′ |=
φ.

Proof The first three parts follow from lemma 7. We will prove the last statement: for
any state w, if H and H ′ are w-maximal histories, then (w,H) and (w,H ′) satisfy the
same formulas. The proof is by induction on φ.

The base case and boolean connectives are straightforward. Suppose that φ is of the
form 3ψ. Let w be an arbitrary state and suppose thatH andH ′ are w-maximal histories.
Suppose that (w,H) |= 3ψ. Then there is some H ′′ such that H � H ′′, (w,H ′′) is legal
and (w,H ′′) |= φ. By part 3 above, w,H |= φ and by the induction hypothesis, w,H ′ |= φ.
Hence, w,H ′ |= 3φ. Thus if w,H |= 3ψ then w,H ′ |= 3ψ. The other direction is similar.

For the knowledge case we need the following claim:

Claim Let w be a state. Suppose H1 and H2 are w-maximal and (v,H3) is legal. If
(w,H1) ∼i (v,H3), then there is a history H4 which is v-maximal such that (w,H2) ∼i

(v,H4).

Proof of claim Let w be a states and suppose that H1 and H2 are w-maximal histories
and (v,H3) is a legal history-state pair such that (w,H1) ∼i (v,H3). Then v and w must
agree on every atom which is not only known to i, but also on every atom known to some
other agent whom i can read directly or indirectly. For at maximality, i already knows
the truth values of all the sets Atj where j is directly or indirectly accessible from i. Thus
we can find a legal history-state pair (v,H ′

4) such that (w,H2) ∼i (v,H ′
4). It is not hard

to see that H ′
4 can be extended to a v-maximal history.

Returning to the induction proof. Suppose that φ is of the form Kiψ, w is an arbitrary
state, and H and H ′ are w-maximal histories. Suppose that (w,H) |= Kiψ and (w,H ′) 6|=
Kiψ. Then there is a history state pair (v,H ′′) such that (w,H ′) ∼i (v,H ′′), (v,H ′′) is
legal and v,H ′′ 6|= ψ. Note that without loss of generality we can assume that H ′′ is v-
maximal (every legal history-state pair can be extended to a maximal history, furthermore
this extension cannot differ on the truth value of φ since H ′′ already contains all events
of the form (i, j, χ).). By the above claim (let H1 = H ′, H2 = H and H3 = H ′′), there
is a v-maximal history H ′′′ with (w,H) ∼i (v,H ′′′). By the induction hypothesis, (v,H ′′)
and (v,H ′′′) satisfy the same formulas. Hence (w,H) ∼i (v,H ′′′) and v,H ′′′ 6|= ψ. This
contradicts the assumption that w,H |= Kiψ. Hence, for any w-maximal histories H and
H ′, w,H |= Kiψ iff w,H ′ |= Kiψ. 2
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This result immediately gives us a decision procedure as we can limit the length of the
history which might satisfy some given formula φ.

Notice that if we restrict our attention to maximal histories, then the following property
will be satisfied: for any two agents i and j if there is a path in the communication graph
from i to j, then any ground fact that j knows, i will also know. In this case, we can say
that j dominates i. This is Fitting’s “dominance” relation discussed in section 3.

The following simple result demonstrates that given any sequence of communications
H, the agents know at least the set of formulas that are implied by the set of formulas
in H. That is, given a legal pair (w,H), let Xi(w,H) be the set of states that agent
i considers possible if the actual state is w and the communication between the agents
evolved according to H. Given a formula φ ∈ L0(At), let φ̂ = {w | w ∈ W, w(φ) = 1}.
Now we formally define Xi(w,H) recursively as follows

1. Xi(w, ε) = {v | v|Ati
= w|Ati

}

2. Xi(w,H; (i, j, φ)) = Xi(w,H) ∩ φ̂

3. if i 6= m then Xi(w,H; (m, j, φ)) = Xi(w,H)

The following theorem shows that agents know at least the formulas implied by the
set Xi(w,H). The proof can be found in [19] and will not be repeated here.

Theorem 10 Let M = 〈G, ~At, ~v〉 be any communication graph model and φ a ground

formula. If Xi(w,H) ⊆ φ̂, then (w,H) |=M Ki(φ).

As we saw above, the converse is not true. That is, there are formulas that an agent can
come to know which are not implied by the set Xi(w,H). These are the formulas that
agents can deduce given their knowledge of the communication graph.

The following axioms and rules are known to be sound and complete with respect to
the family of all subset spaces ([18]). Thus they represent the core set of axioms and rules
for any topologic.

1. All propositional tautologies

2. (p→ 2p) ∧ (¬p→ 2¬p), for p ∈ At.

3. 2(φ→ ψ) → (2φ→ 2ψ)

4. 2φ→ φ
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5. 2φ→ 22φ

6. Ki(φ→ ψ) → (Kiφ→ Kiψ)

7. Kiφ→ φ

8. Kiφ→ KiKiφ

9. ¬Kiφ→ Ki¬Kiφ

10. (Cross axiom) Ki2φ→ 2Kiφ

We include the following rules: modus ponens, Ki necessitation and 2 necessitation. It is
easy to verify that the above axioms and rules are valid, i.e., valid in all frames based on
any communication graphs. We only demonstrate that the cross axiom Ki2φ → 2Kiφ
is valid. It is easier to consider it in its contrapositive form: 3Liφ → Li3φ. This is
interpreted as follows: if there is a sequence of updates that lead agent i to consider φ
possible, then i already thinks it possible that there is a sequence of updates after which
φ becomes true.

Proposition 11 The axiom scheme 3Liφ→ Li3φ is valid.

Proof Let G be an arbitrary communication graph and M = 〈G, ~At, ~v〉 any communica-
tion graph model based on G. Suppose that (w,H) is a legal state-history pair. Suppose
that w,H |= 3Liφ. Then there exists H ′ with H � H ′ such that w,H ′ |= Liφ. Hence
there is a pair (v,H ′′) such that (w,H ′) ∼i (v,H ′′) and v,H ′′ |=M φ. Let H ′′′ be any
sequence such that λi(H) = λi(H

′′′) and H ′′′ � H ′′. Such a history must exist since
H � H ′ and H ′ ∼i H

′′. Since H � H ′, λi(H) � λi(H
′) = λi(H

′′). Therefore, we need
only let H ′′′ be any initial segment of H ′′ containing λi(H). By definition of L, all initial
sequences of a legal history are legal. Therefore, since v,H ′′ |=M φ, v,H ′′′ |= 3φ; and
since H ∼i H

′′′, w,H |=M Li3φ. 2

The next lemma follows from the existence of maximal histories.

Lemma 12 The axiom 23φ↔ 32φ is valid.

Proof Let G be an arbitrary communication graph, M = 〈G, ~At, ~v〉 any communication
graph model based on G and (w,H) a legal history-state pair. Suppose that w,H |=M
23φ. Let H ′ be a w-maximal history extending H, then w,H ′ |=M 3φ and hence there
is a history H ′′ such that H ′ � H ′′ and w,H ′′ |=M φ. Since H ′ is maximal, by theorem 9
w,H ′ |= φ. By theorem 9 again, w,H ′ |= 2φ. Hence w,H |= 32φ.
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Conversely, suppose that w,H |=M 32φ. Then there is a history H ′ such thatH � H ′

and w,H ′ |=M 2φ. Let H ′
m be a w-maximal history that extends H ′. Then w,H ′

m |=M φ.
Let H ′′ be any history that extends H and H ′′

m be a w-maximal history that extends
H ′′. By theorem 9, since w,H ′

m |=M φ, w,H ′′
m |=M φ. Hence w,H ′′ |=M 3φ and hence

w,H |=M 23φ. 2

If we fix a communication graph, then there are more formulas which are valid.

Lemma 13 Let G = (A, E) be a communication graph. Then for each (i, j) ∈ E, for all
l ∈ A such that l 6= i and l 6= j and all ground formulas φ, the scheme

Kjφ ∧ ¬Klφ→ 3(Kiφ ∧ ¬Klφ)

is G-valid.

Proof Let G be an arbitrary communication graph and M a communication graph model
based on G. Suppose that w,H |=M Kjφ ∧ ¬Klφ. Then j knows φ and hence i can
read φ directly from j’s website. More formally, H; (i, j, φ) is a legal history (provided
that H is legal). The agent l is none the wiser as λl(H) = λl(H; (i, j, φ)). Therefore,
w,H; (i, j, φ) |=M Kiφ ∧ ¬Klφ. 2

The converse is not quite true. For suppose that agent i is connected to agent j via
(exactly) two other agents l1, l2. Then a fact known to j can be learned by i without l1
finding out about it, ditto for l2 and for any agent beside l1, l2. However, in this scenario,
it is impossible for i to find out some φ from j with neither of l1, l2 knowing φ.

3 Related Literature

Communication graphs, or communication networks, and more generally social networks3

have been studied by a number of different communities. Most notably, social networks
are an important topic in sociology. But computer scientists have also had quite a lot to
say about networks. The goal of this section is not to survey this vast amount of literature,
but rather to give some details about a few papers most relevant to the framework which
will be discussed in the rest of this paper. Needless to say, this list of topics is not meant
to be complete.

3A social network is a graph on a set of agents where edges represent some social interaction such as
acquaintances, coauthors on a mathematical paper, costars in a movie, and so on.
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Coordination Problems Suppose there are two generals A and B with armies at
the top of two mountains with a valley in between them. As the story goes, the generals
attempt to coordinate their action by sending messages back and forth. However, since
the communication channel is unreliable (the messengers must travel through dangerous
territory), common knowledge of the time to attack cannot be achieved. This puzzle,
called the generals problem, has been topic of much discussion. See [8] for a formal treat-
ment and discussion of relevant literature and [17] for a discussion of common knowledge
as it relates to coordination problems. Of course, if there was a reliable communication
channel between the two generals, then they could easily coordinate their actions. Thus
the existence of a communication graph (in this case just an edge between the two gen-
erals) facilitates coordination. This raises some interesting questions about the structure
of the communication graph on a group of agents and its affect on coordination.

In [7, 6], Michael Chwe investigates the general question of when the structure of
the communication graph can facilitate coordination among a group of agents. Chwe
considers the following situation. There is a finite set of agents A. Each agent must
decide whether or not to revolt against the current government. That is, assume that
agents choose between r (revolt) and s (stay at home). The agents are assumed to use
the following decision rule: “I’ll go if you go”. That is, for a particular agent i, the greater
the number of agents i believes will choose r, the higher the utility i assigns to r, provided
agent i is willing to revolt. More formally, it is assumed that each agent is either willing to
revolt (w) or not willing to revolt (nw). Then a utility function for agent i maps elements
of {w, nw} × {r, s}n to real numbers with the constraint that if an agent is not willing
to revolt, then the utility of revolting is zero regardless the opinions of i’s neighbors. It
is assumed that the agents are connected by a communication graph G = (A, E). Here
(i, j) ∈ E is intended to mean “agent i talks to agent j”. That is i informs j as to whether
or not he will revolt. Thus the set Bi = {j | (j, i) ∈ E} is the set of agents for which
i knows which action they will perform. Finally, it is assumed that the communication
graph is common knowledge and that each agent has a prior belief4 about which agents
will revolt.

Chwe considers the question “which communication graphs enable the group to re-
volt?” To that end, a strategic game Γ(G, {π}i∈A) is defined, where πi is agent i’s prior
beliefs. In this game, an agent i’s decision to revolt depends on its prior beliefs πi and
the set Bi of agents that i has communicated with. Of course if agent i’s prior belief
assigns high enough probability to a large enough group of agents revolting, then that
agent will revolt regardless of the communication graph. Thus the interesting question is
which communication graph will enable the group to revolt regardless of the agents prior
probabilities. Chwe calls such communication graphs a sufficient network.

The main result of the paper [7] is a characterization of minimal sufficient networks.
First of all, it should be obvious that if a communication graphs G enables a group to
revolt, then so will any communication graph G ′ which is just like G except with additional

4Beliefs are represented by probability functions over the set {r, s}n.
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edges (it is straightforward to prove this in Chwe’s framework). Chwe showed that any
sufficient network has the following property: there is a finite set of cliques such that

1. Each agent is in at least one clique,

2. there is a relation → between the cliques that characterizes the edge relation in the
graph. That is there is an edge from i to j iff there is some clique containing i and
some clique containing j that are related by →, and

3. the cliques are totally ordered by →.

This result provides an interesting perspective on collective action. The communi-
cation graph facilitates the group’s ability to share information and thus enabling group
action. The logic presented in Section 2 is intended to make clear precisely how an agent’s
information can change in situations similar to the one described above.

Agreeing to Disagree In 1976, Aumann proved a fascinating result [1]. Suppose
that two agents have the same prior probability and update their probability of an event
E with some private information using Bayes’ rule. Then Aumann showed that if the
posterior probability of E is common knowledge, then they must assign the same posterior
probability to the event E. In other words, if agents have the same prior probability and
update using Bayes’ rule, then the agents cannot “agree to disagree” about their posterior
probabilities. See [4] for a nice discussion of this result and the literature that it generated.
An immediate question that comes to mind is “How do the posterior probabilities become
common knowledge?” Starting with Geanakoplos and Polemarchakis [11], a number of
papers have addressed this issue [5, 2, 20, 16, 13].

The key idea is that common knowledge arises through communication. Suppose there
are two agents who agree on a prior probability function. Suppose that each agent receives
some private information concerning an event E and updates their probability function
accordingly. Geanakoplos and Polemarchakis [11] show that if the agents each announce
their posterior probabilities and update with this new information, then the probabilities
will eventually become common knowledge and the probabilities will be equal. Similar to
Chwe’s analysis described above, the existence of a communication graph (with an edge
between the two agents) enables consensus about the posterior probabilities.

Parikh and Krasucki [20] look at the general situation where there may be more than
two agents5 and communication is restricted by a communication graph. They show that
under certain assumptions about the communication graph, consensus can be reached
even though the posterior probabilities of the agents may not be common knowledge6.

5Cave [5] also considers more than two agents, but assumes all communications are public announce-
ments.

6This point was formally clarified by Heifetz in [13]. He demonstrates how to enrich the underlying
partition space with time stamps in order to formalize precisely when events become common knowledge.
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Before stating their result, some clarification is needed. Note that a communication
graph tells us which agent can communicate with which agent, but not when two agents
do communicate. To represent this information, Parikh and Krasucki introduce the
notion of a protocol. A protocol is a pair of functions (r, s) where r : N → A and
s : N → A. Intuitively, (r(t), s(t)) means that r(t) receives a message from s(t) at time
t. Say a protocol (r, s) respects a communication graph G = (A, E) if for each t ∈ N,
(r(t), s(t)) ∈ E. A protocol is said to be fair provided every agent can send a message
to any other agent, either directly or indirectly, infinitely often7. Parikh and Krasucki
show that if the agents are assumed to have finitely many information sets, then for any
protocol if the agents sends the current probability8 (conditioned on the agent’s current
information set) of proposition A, then after a finite amount of time t for each agent i,
the messages received after time t will not change i’s information set. Furthermore, if the
protocol is assumed to be fair (i.e., the communication graph is strongly connected) then
all the agents will eventually assign the same probability to A. Krasucki takes the analysis
further in [16] and provides conditions on the protocol (and implicitly on the underlying
communication graph) which will guarantee consensus regardless of the agents’ initial
information.

Similar to Chwe’s analysis, Parikh and Krasucki’s analysis shows that the structure
of the communication graph is a key aspect of consensus in a group. We end this section
with a different interpretation of a communication graph that provides a very interesting
perspective on many-valued modal logic.

Many-Valued Modal Logic In [9, 10], Fitting discusses various families of many-
valued modal logics. In these frameworks, Fitting assumes that both the valuation of the
formulas and the accessibility relation are many-valued. The frameworks are motivated
in [10] with the help of a structure similar to a communication graph. As in this paper,
it is assumed that there is a graph with the set of agents as nodes. However, Fitting
interprets an edge in this graph as follows: “i is related to j” means that i dominates
j, where ‘dominate’ means that “j says that something is true whenever i says it is”. It
is assumed that this relation is a partial order. Each agent is assumed to have its own
valuation and accessibility relation on a set of possible worlds. Fitting is interested in
which modal formulas the agents will agree on in a particular world. Two semantics are
presented that solve this problem.

Deciding which agents agree on a particular formula in a common language naturally
suggests a many-valued modal logic where formulas are assigned subsets of agents. Sup-
pose that φ is assigned the set B ⊆ A in a state w, then the intended interpretation

7Consult [20] for a formal definition of “fairness”.
8Actually, Parikh and Krasucki consider a more general setting. They assume agents communicate

the value of some function f that maps events to real numbers. Intuitively, f should be thought of as
the probability of an event given some information set. The only condition imposed on f is a convexity
condition: for any two disjoint close subsets X and Y , f(X ∪ Y ) lies in the open interval between f(X)
and f(Y ). Here closed is defined with respect to the agents information sets. This generalizes a condition
imposed by Cave [5] and Bacharach [2].

16



is that each agent in B agrees on the truth value of φ in w. The domination relation
outlaws certain subsets of agents as truth values. For example, if i dominates j, then
{i} cannot be a possible truth value since j is assumed to always agree with i on the
set of true formulas. The domination relation also provides an intuitionistic flavor to the
underlying logic. For example, consider the formula ¬φ and suppose i dominates j. Now
it is consistent with the notion of domination that i can consider φ false and j considers φ
true. In this case, if we interpret ¬ classically, then i considers ¬φ true while j considers
¬φ false, which contradicts the fact that i dominates j. Thus, we are forced to say that
i considers ¬φ true if i and all agents that i dominates consider that φ is false. Fitting
offers two semantics which take these observations into account. One is a combination
of Kripke intuitionistic models and Kripke muli-modal models and the second is a many-
valued Kripke modal model. The two semantics are shown to be equivalent and a sound
and complete axiomatization is offered.

Rasiowa and Marek offer a similar interpretation of a communication graph [25, 24].
In their framework an edge from i to j means that “j is more perceptive than i”. If this is
the case, then j’s valuation of a proposition p is “better than” i’s valuation of that same
variable. Rasiowa and Marek provide a framework to reason about formulas on which
there is consensus among the agents. The framework discussed in the rest of this paper
can be seen as an attempt to explain how an agent i can come to dominate another agent
j. That is, assuming the agents start with consistent (partial) theories, i can dominate j
if there is a (possibly indirect) communication channel from i to j and j asks i about the
truth value of all formulas in the language.

Dynamic Epistemic Semantics The study of Dynamic Epistemic Logic at-
tempts to combine ideas from dynamic logics of actions and epistemic logic. The main
idea is to start with a formal model that represents the uncertainty of an agent in a social
situation. Then we can define an ‘epistemic update’ operation that represents the effect
of a communicatory action, such as a public announcement, on the original model. For
example, publicly announcing a true formula φ, converts the current model to a submodel
in which φ is true at each state. Starting with [23] and more recently [3, 15, 29, 12, 27],
logical systems have been developed with the intent to capture the dynamics of informa-
tion in a social situation. Chapter 4 of Kooi’s dissertation [15] and the forthcoming book
[30] contain a thorough discussion of the current state of affairs.

These logics use PDL style operators to represent an epistemic update. For example,
if !φ is intended to mean a public announcement of φ, then 〈!φ〉Kiψ is intended to mean
that after φ is publicly announced, agent i knows ψ. From this point of view, our com-
munication modality 3 can be understood as existentially quantifying over a sequence of
private epistemic updates. However, there are some important differences between the
semantics presented in this paper and the semantics found in the dynamic epistemic logic
literature. First of all, in our semantics, communication is limited by the communica-
tion graph. Secondly, we do not consider general epistemic updates as is common in the
literature, but rather study a specific type of epistemic update and its connection with
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a communication graph. Most important is the fact that the history of communications
plays a key role in the definition of knowledge in this paper. The general approach of
dynamic epistemic semantics is to define update operations mapping Kripke structures
to other Kripke structures intended to represent the effect of an epistemic update on the
first Kripke structure. For example, a public announcement of φ selects the submodel of
a Kripke structure in which φ is true at every state. The definition of knowledge after an
epistemic update is the usual definition, i.e., φ is known by i at state w if φ is true in all
states that i considers possible from state w in the updated Kripke structure.

Floris Roelofson introduces communication graphs to the dynamic epistemic logic
setting in [26]. The framework is more general than the one presented in this paper in
three respects. First, the communication graph is a relation on the collection of subsets
of A, where an edge between B1 ⊆ A and B2 ⊆ A means that group B1 can communicate
with group B2. Thus a communication event in this framework is a tuple (B1,B2, φ)
intended to mean that group B1 sends a message whose content is φ to group B2; and a
precondition for an event (B1,B2, φ) to take place is that φ is common knowledge among
group B1

9. Second, there is no assumption that messages between groups be restricted
to ground formulas. Finally, Roelofson does not assume that the communication graph is
common knowledge. Therefore, there may be messages that can “update” the agent’s view
of the communication graph. So, should our models be viewed as an interesting special
case of these more general model? The answer to this question is not straightforward
as the history of communication plays a crucial role in the semantics presented in this
paper. A full comparison between these two approaches can be found in [14] (cf. [28] for
a comparison between history based semantics and dynamic epistemic semantics).

4 Conclusions

In this paper we have introduced a logic of knowledge and communication. Communica-
tion among agents is restricted by a communication graph, and idealized in the sense that
the agents are unaware when their knowledge base is being accessed. We have shown that
the communication graph is characterized by the validities of formulas in models based
on that communication graph, and that our logic is decidable.

Moving on to future work. Standard questions such as finding an elegant complete
axiomatization will be studied. The semantics described in the Section 2 rests on some
strong underlying assumptions. Below we briefly sketch how to remove some of these
assumptions.

One-way communication As discussed in the introduction, an edge from i to j means
that i can read j’s website without j knowing that it’s website is being read. Thus a

9We could of course consider other cases where some members of B1 communicate with some members
of B2
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communication event (i, j, φ) only changes i’s knowledge. This can be formally verified
by noting that if H and H; (i, j, φ) are w-legal histories, then by the definition of the λj

function, λj(H) = λj(H; (i, j, φ)). Thus (w,H) ∼j (v,H ′) iff (w,H; (i, j, φ)) ∼j (v,H ′)
and so j’s knowledge is unchanged by the presence of the event (i, j, φ). We can model
conscious communication by changing the definition of the local view function. Define
the λ∗i as follows: given a history H, let λ∗i (H) map events of the form (i, j, φ) and (j, i, φ)
to themselves and all other events in which i does not occur in the first two components
to the null event.

Starting with theories Another natural extension is to consider situations in which
agents have a preference over which information they will read from another agent’s
website. Thus for example, if one hears that an English Ph.D. student and his adviser
recently had a meeting, then one is justified in assuming that they probably did not discuss
the existence of non-recursive sets, even though the adviser may conceivably know this
fact. Given that this preference over the formulas under discussion among different groups
of agents is common knowledge, each agent can regard some (legal) histories as being more
or less likely than other (legal) histories. From this ordering over histories, we can define
a defeasible knowledge operator for each agent. The operator is defeasible in the sense
that agents may be wrong, i.e., it is after all possible that the English student and his
adviser actually spent the meeting discussing the fact that there must be a non-recursive
set.
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