Chapter 13
Towards a Logical Analysis of Adjusted Winner

Eric Pacuit

13.1 Introduction

It is often convenient to view a computational procedure, or a program, as a relation
on a set of states, where a state can be thought of as a function that assigns a value to
every possible variable and a truth value to all propositions. This idea was proposed
by Pratt [19] and extends the work of of Floyd [4] and Hoare [6]. Harel, Kozen and
Tiuryn [5] provide a very thorough discussion of computational procedures from
this point of view. In [12], Rohit Parikh suggests that a similar framework can be
developed for studying social procedures, such as fair division algorithms or voting
protocols.

In fact, the first example of such an analysis can be found in an earlier paper of
Parikh [11]. In [11], a PDL-style logic, called game logic, is developed for reason-
ing about multi-agent strategic situations. It is then used to show that the Banach-
Knaster last diminisher procedure to fairly divide a cake is “correct”. Here “correct”
means that each agent has a straregy to ensure that it receives a piece of the cake
that is fair from its point of view. See [11, 16] for a discussion of this result and the
current state of affairs of game logic.

Recently, there have been a number of attempts to answer Parikh’s challenge to
develop logical methods for studying social procedures. The different approaches
can roughly be divided into two categories. The first category makes use of model
checking techniques to verify that a given game-theoretic mechanism satisfies a
particular specification (written in some logical language). The idea is to draw an
analogy with the formal verification of computer systems via model checking tech-
niques where the desired specifications are expressed in some temporal logic. In
the game-theoretic setting, modal strategy logics, such as alternating temporal logic
(see [1]) or coalitional logic (see [14]), are used to express the desired specification.
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See (Pauly M., and Wooldridge M. Logic for Mechanisam Design — a Main festo.
Unpublished Manuscript.) [19], the recent dissertation [18] and references therein
for details of this approach.

The second category of papers follow in the footsteps of Floyd [4], Hoare [6] and
Pratt [19] and develops a formal calculus to reason about social procedures. This is
the direction that Parikh took in [11] and more recently Pauly in [15]. A discussion
of this approach can be found in Section 13.3.

In this paper, we apply the methods of [15] to fair division algorithms. In partic-
ular, we look at Adjusted Winner (AW) — an algorithm for “fairly ” dividing n goods
among two people invented by Steven Brams and Alan Taylor. See [2] for a discus-
sion of AW and an excellent overview of other fair division algorithms. We will see
that the techniques from [15] cannot be directly applied to the analysis of Adjusted
Winner. The paper is organized as follows. The next section describes the Adjusted
Winner procedure to “fairly” divide n divisible goods between two people. Section
13.3 outlines how to extend Pauly’s framework to reason about Adjusted Winner
and raises some difficulties.

13.2 The Adjusted Winner Procedure

We begin with an example that illustrates how AW works. Suppose there are two
players, called Ann (A) and Bob (B), and n (divisible') goods (G, ...,G,) which
must be distributed to Ann and Bob. The goal of the Adjusted Winner algorithm is
to fairly distribute the n goods between Ann and Bob. We begin by discussing an
example which illustrates the Adjusted Winner algorithm.

Suppose Ann and Bob are dividing three goods: Gy, G2, and G3. Adjusted Winner
begins by giving both Ann and Bob 100 points to divide among the three goods.
Suppose that Ann and Bob assign these points according to the following table.

Item Ann Bob

G, 10 7
G, 65 43
G; 25 50

Total 100 100

The first step of the procedure is to give G| and G, to Ann since she assigned more
points to those items, and item G3 to Bob. However this is not an equitable outcome
since Ann has received 75 points while Bob only received 50 points (each according
to their personal valuation). We must now transfer some of Ann’s goods to Bob. In
order to determine which goods should be transfered from Ann to Bob, we look at
the ratios of Ann’s valuations to Bob’s valuations. For G| the ratio is 10/7 ) 1.43

! Actually all we need to assume is that one good is divisible. However, since we do not know
before the algorithm begins which good will be divided, we assume all goods are divisible. See
[2, 3, 9] for a discussion of this fact.



13 Towards a Logical Analysis of Adjusted Winner 231

and for G, the ratio is 65/43 ) 1.51. Since 1.43 is less than 1.51, we transfer as
much of G| as needed from Ann to Bob? to achieve equitability.

However, even giving all of item G| to Bob will not create an equitable division
since Ann still has 65 points, while Bob has only 57 points. In order to create equi-
tability, we must transfer part of item G, from Ann to Bob. Let p be the proportion
of item G, that Ann will keep. p should then satisfy

65p = 100—43p

yielding p = 100/108 = 0.9259, so Ann will keep 92.59% of item G, and Bob will
get 7.41% of item G,. Thus both Ann and Bob receive 60.185 points. It turns out
that this allocation (Ann receives 92.59% of item G, and Bob receives all of item G|
and item G3 plus 7.41% of item G») is envy-free, equitable and efficient, or Pareto
optimal. In fact, Brams and Taylor show that Adjusted Winner always produces
such an allocation [2]. We will discuss these properties in more detail below.

Suppose that Gy,...,Gy is a fixed set of goods, or items. A valuation of these
goods is a vector of natural numbers )aj,...,a,) whose sumis 100. Let o, o),o),...
denote possible valuations for Ann and o, o), G>>, ... denote possible valuations for
Bob. An allocation is a vector of n real numbers where each component is between
0 and 1 (inclusive). An allocation ¢ = )s1,...,s,) is interpreted as follows. For each
i=1,...,n, s; is the proportion of G; given to Ann. Thus if there are three goods,
then )1,0.5,0) means, “Give all of item 1 and half of item 2 to Ann and all of item 3
and half of item 2 to Bob.” Thus AW can be viewed as a function that accepts Ann’s
valuation ¢ and Bob’s valuation ¢ and returns an allocation o. It is not hard to
see that every allocation produced by AW will have a special form: all components
except one will be either 1 or 0.

We now give the details of the procedure. Suppose that Ann and Bob are each
given 100 points to distribute among n goods as he/she sees fit. In other words, Ann
and Bob each select a valuation, 0 = )ay,...,a,) and 6 = )by,...,b,) respectively.
For convenience rename the goods so that

ai/by) ay/ba) ---a,/by) 1>a, 1/bry1) ---an/by,

Let 6 /0 be the above vector of real numbers (after renaming of the goods). Notice
that this renaming of the goods ensures that Ann, based on her valuation &, values

the goods G1,...,G, at least as much as Bob; and Bob, based on his valuation o,
values the goods G, 1, ..., G, more than Ann does. Then the AW algorithm proceeds
as follows:

1. Give all the goods G, ...,G, to Ann and G,41,...,G, to Bob. Let X,Y be the
number of points received by Ann and Bob respectively. Assume for simplicity
thatX ) Y.

2. If X =7, then stop. Otherwise, transfer a portion of G, from Ann to Bob which
makes X =Y. If equitability is not achieved even with all of G, going to Bob,
transfer G,_1,G,_»,...,G1 in that order to Bob until equitability is achieved.

2 When the ratio is closer to 1, a unit gain for Bob costs a smaller loss for Ann.
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Thus the AW procedure is a function from pairs of valuations to allocations. Let
AW(0,0) = 0 mean that o is the allocation given by the procedure AW when Ann
announces valuation ¢ and Bob announces valuation ¢. In [2, 3], it is argued that AW
is a “fair” procedure, where fairness is judged according to the following properties.

Let 0 = )ay,...,a,) and o = )by,...by,) be valuations for Ann and Bob respec-
tively. An allocation ¢ = )sy,...,sy) is

e Proportional if both Ann and Bob receive at least 50% of their valuation. That
is, Y7 sia; ) S0and Y7 (1 —s:)b; ) 50.

e Envy-Free if no party is willing to give up its allocation in exchange for the
other player’s allocation. Thatis, Y7 s1a; ) Y5 (1 —s;)a;and Y7 (1 —s;)b; )
Z?: 1 S,‘b,’.

e Equitable if both players receive the same total number of points. That is
Liysiai = iy (1—si)bi.

o Efficient if there is no other allocation that is strictly better for one party without
being worse for another party. That is for each allocation ¢/ = >s>1,...,s2,> if
Y ais) > Y aisi, then Y7, (1 —s)b; < Y7, (1 —s;)b;. (Similarly for Bob).

In order to simplify notation, let V4 (o, o) be the total number of points Ann receives
according to valuation ¢ and allocation ¢ and V(0, o) the total number of points
Bob receives according to valuation ¢ and allocation ©.

It is not hard to see that for two-party disputes, proportionality and envy-freeness
are equivalent. For a proof, notice that

n n n n n
ZaiSiJr Za,‘(l 7Si) = Za,’SiJr Zai — Zaisi =100
i=1 i=1 i=1 i=1 i=1

Then if o is envy free for Ann, then Y a;s; ) Y, a;(1—s;). Hence, 2 | ais; )
Y ,a; =100. And so, Y7, a;s; } 50. The argument is similar for Bob.

Conversely, suppose that o is proportional. Then since Y, a;s; ) 50, Y% | a;si+
Yiaisi) 100=Y7 a;. ThenY ! a;si+ Y} aisi— Y a;) 0.Hence, ¥ as;—
Y? 1ai(l1—s;)) 0.Andso, Y7 a;isi) Y1 ;ai(1—s;). The proof is similar for Bob.

Returning to AW, it is easy to see the AW only produces equitable allocations
(equitability is essentially built in to the procedure). Brams and Taylor go on to
show that AW, in fact, satisfies all of the above properties.

Theorem 13.1 (Brams and Taylor [2]) AW produces an allocation of the goods
based on the announced valuations that is efficient, equitable and envy-free.

A formal proof of this Theorem is provided in [2]. See also [9] for a number of new
results about the Adjusted Winner procedure.
13.3 Towards a Logical Analysis

Hoare logic contains expression of the form {P}c{Q} where o is intended to be a
program and P and Q are intended to be pre- and post-conditions respectively. The
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intended interpretation is that if ¢ starts in some state satisfying P, then ¢ halts
(if it does halt) in a state satisfying Q. Here the program ¢ is a formal expression
in some programming language (for example, the WHILE-language) and P and
Q are formulas in some logical language (say first-order logic). Details are given
below. Pauly’s key idea in [16] is to extend the formal programming language with
expressions ch,({x; | i) %/}) intended to mean

“each agent i) of independently chooses a value for the variable x;.”

It is assumed that the agents make their choice simultaneously. Thus, ch ({x; | i)
2/'}) is best thought of as a strategic game form (cf. [8]) where the choices for each
agent i) < is the set of possible values for the variable x;.

13.3.1 Relevant Details

Pauly extends the work of Hoare to develop a formal calculus for reasoning about
game theoretic mechanisms. In the interest of space, we will not go into full details
of Pauly’s framework, but rather sketch the main ideas (the interested reader can
consult [15]).

The Mechanism Programming Language: The mechanism programming language
(MPL) is a simple extension of the well-known WHILE-language (cf. [7]). Assume
</ is a non-empty set of agents, ¥ a set of variables, [F a set of function symbols
and Z a set of relation symbols. Terms ¢ and boolean expressions ¢ are defined in

the usual way:

t =qget X | (1. 1x)
G:def> ‘Rk(tlw"atk) | _‘G‘Gl> 02

where ) Fand R) % have arity k) N. These boolean expressions and terms are
used to create game expressions.

Definition 13.1 A game expression of MPL is generated according to the following
grammar:

O=gef x:=1 | 0;6 | if 0 then g else G | while o do o]
chy({xi i) #/})

where ¢ is a term and © a boolean expression.

Pauly shows that this language is quite general in the sense that it can be used to
describe a large number of game-theoretic mechanisms. For example, a solution to
Solomon’s Dilemma and various auctions can be described in this language (see
[15] for details).
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Semantics: As in Hoare logic, a partial correctness assertion has the form {P}o{Q},
where P and Q are predicates. The intended interpretation is: given an initial state
s0, there is a subgame perfect equilibrium® of the game described by G consistent
with the predicate Q. We now make this precise.

Start with a standard first-order model containing a domain D and an interpre-
tation .# (which interprets elements of F and % as functions and relations over
D respectively). A state is a function s : #°) D. Given an interpretation .# and
an initial state so, game expressions are interpreted as extensive game forms,* de-
noted G(sp, 0;.#). Instead of giving a formal definition, we work through a simple
example. Suppose that the domains consists of two elements D = {a,b}, there are
four variables #" = {x,x;,x;,x} and three agents &/ = {i, j,k}. Consider the game
expression

(x = a)schgy (fxi})sehag (£, 06))-

Suppose the initial state is so : ¥") D is given by so(v) = b forall v) ¥ . The game
form corresponding to this game expression is pictured below:

k k
a b a b
cal, |y cal, |
ey J
b1y b
T /T
S1 S9 S3 Sy S5 Sg ST S8

Note that the matrices in the above tree represent the fact that agent j and agent
k must simultaneously choose values for the variables x; and x; respectively. In the
above picture, each s; is a state where, for example, s; is the following function:
x) a;x;) a;x;) b; andx;) a. The if and while expressions have the usual
interpretation (branching and iteration). Formally, game expressions are interpreted
as extensive game forms with perfect information and simultaneous moves (cf. [8],
Section 6.3.2).

As we just noted, game expressions do not provide any information about the
agents’ preferences over the terminal histories. This information is provided by the

3 A strategy profile in an extensive game is a subgame perfect equilibrium if no agent has a
reason to deviate from the profile and this is true for all subgames. Consult [8] for details.

4 That is, an extensive game (i.e., a game tree) without the preferences over the outcomes.
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pre- and post-conditions (P and Q above). To that end, elements of the domain are
interpreted as possible outcomes and it is assumed that each agent has a (reflexive,
transitive and complete) preference over the domain. A predicate is any> collection
of states. Let o be an element of the domain. An e-state is a pair (s,0) and a e-
predicate is any set of e-states. An e-predicate P can be used to turn a semi-game
into a game as follows. For each (s,0) ) P, let f, be the function that assigns o to
each terminal history whose last state is s. Given an e-predicate P, let P denote the
set of such functions. In general, for a given semi-game and e-predicate P, P may be
empty or contain more than one function. What is important is that each f, ) P turns
the semi-game under consideration into a game. Let P and Q be e-predicates. Given
this machinery we can be more precise about what it means to say that {P}o{Q} is
valid in some first-order model:
For each (s,0) ) P there is a outcome function f ) Q and a strategy profile ¢ such that in

the game generated from oand f, o is a subgame perfect equilibrium and the last state on
o is mapped by f to o.

13.3.2 Formalizing AW

Describing AW in the above mechanism programming language is straightforward:

che ({xa, 25 });

s 1= wta(xg,Xp);

while —Eq(s,xq,xp) do
§:=t(8,%4,%p);

In the above program, o/ = {a,b} is the set of agents (Ann and Bob), the variables
X, and x;, are intended to represent Ann and Bob’s valuations respectively and s
represents the current allocation. To make this formal, it will be convenient to work
in a two-sorted first-order structure with an allocation sort and a valuation sort.
In what follows, we use s,7,51,52,... for allocation variables and x,y,x;,x2, ... for
valuation variables. The intended interpretation of the functions wta and t and the
relation Eq is as expected:

e wta(x,,xp) is intended to represent the winner take all initial allocation given
Ann’s valuation x, and Bob’s valuation x;. That is, wta will be interpreted as a
function from pairs of valuations to allocations where the agent who assigns the
most points to a particular item receives that item.

e t(s,x1,x) is intended to represent the one-step transfer of goods as described in
Section 13.2. The exact details of which good is transfered from which agent is
described Section 13.2, so we will not repeat it here.

3 Note that Pauly does not restrict to definable sets here. Thus he is provided an extensional se-
mantics rather than an intensional semantics. Issues related to this, such as whether or not certain
properties are expressible in a logical language (say first-order logic), is left for future work. We
agree with Pauly that, although this raises some interesting questions, it will only complicate the
current discussion.
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e The relation Eq is intended to represent equality of each agents’ valuation with
respect to the current allocation. That is, Eq(s,x,,x,) will hold whenever the
allocation s is equitable with respect to the valuations x, and x;. Again, see Sec-
tion 13.2 for details.

We also include in our language relation symbols E f and Pe intended to mean envy-
free and Pareto-efficient respectively. Formally, E f will hold between an allocation
o and a pair of valuations ¢ and o provided o is envy-free with respect to ¢ and ¢
(see the definition in Section 13.2). Similarly for Pareto efficiency: Pe will hold® for
0,0 and o provided the allocation o is Pareto efficient with respect to ¢ and ©.

13.3.3 Discussion

After Ann an Bob make their choice, it is clear what we have to prove in order to
show AW is “correct”: we must show that after the while-loop the allocation con-
tained in s is envy-free, equitable and Pareto efficient (with respect to the allocations
chosen by Ann and Bob). This is exactly what Theorem 13.1 says.

The proof from [2] proceeds by first showing that AW produces a Pareto effi-
cient allocation then noting that all Pareto efficient and equitable outcomes must be
envy-free. Thus the real work is in showing that AW produces and Pareto efficient
allocation. In this setting, this amounts to finding an appropriate loop-invariant.
Here we can use the predicate Pe(s,x;,x;) defined above. Thus the crucial part of
the proof of Theorem 13.1 is showing that the winner takes all procedure produces
a Pareto efficient allocation and that Pareto efficiency is preserved under repeated
applications of the transfer function. Although not phrased this way, the relevant
details can be found in [2] (Theorem 4.1, pp. 85-94).

Note that the discussion above is relevant after Ann and Bob have made their
choices. However, the correctness assertions in both Parikh’s framework and Pauly’s
framework are about outcomes that the agents can achieve. In [11], the Banach-
Knaster last diminisher procedure’ is proven correct by showing that a certain for-
mula (in the language of game logic) is derivable. This formula essentially states
that if certain preconditions are satisfied (i.e., the cake is big enough for the group)
then each agent has a strategy to ensure it receives a piece of the cake that is fair
from its point of view. Pauly’s notion of correctness is similar except that there is

6 Note that Pe is an atomic relation symbol. Alternatively, we may first define a relation (¢, 0, 5) )
(0),0),0) iff either ¥; 0;0; > ¥, G)G,- and Y;(1—0;)0; ) Yi(1— 6})6,— orY;0,0;) Y, 6}6,— and
Y:(1—0;)0; > ¥;(1 — 6/)0;. Then the we can define the predicate Pe as follows: Pe(c,0,0) 1=
ys((o,0,0)) (s,0,0)). However, this formula is not in the language we described above as a
quantifier is involved.

7 In this cake-cutting algorithm, the first agent cuts a slice of the cake he considers fair. This piece
is then inspected by each of the remaining agents in turn. Each agent can decide either leave the
piece as is or diminish the piece and return the extra portion to the main part of the cake. The last
person to diminish the piece receives that piece of the cake (or if no-one diminishes the piece, the
cutter receives the piece). See [2] for details.
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an additional requirement that the strategy profile must satisfy a certain equilibrium
concept.

Formally verifying the correctness of Adjusted Winner in Pauly’s framework pro-
vides us with an interesting challenge. The main issue is finding the correct notion of
equilibrium for Ann and Bob. Verifying AW is the above framework can be broken

down into two different tasks:

1. Given two valuations from Ann and Bob, prove that AW produces a equitable,
envy-free and efficient allocation.

2. Argue that there is a joint strategy which is a subgame perfect equilibrium in
the game generated by the AW program as described above. Of course, stating
precisely what this means requires specifying a pre- and post-condition.

As argued above, the first step is relatively straightforward. However, solving the
second problem raises some interesting issues. The central problem is making pre-
cise what it means to say that Ann and Bob have a strategy to ensure a fair outcome.
A strategy for an agent amounts to choosing a particular valuation. Now if we as-
sume that for each agent there is one valuation that is that agent’s “true” valuation,’
then Pauly’s notion of correctness may not be applicable. The reason is because
truthful announcement of valuations is not a Nash equilibrium.” This is illustrated
from the following example from [2]. Suppose that Ann and Bob are dividing two
paintings: one by Matisse and one by Picasso. Suppose that Ann and Bob’s actual
valuations are given by the following table.

Item Ann Bob
Matisse 75 25
Picasso 25 75
Total 100 100

Ann will get the Matisse and Bob will get the Picasso and each gets 75 of his or her
points. However, this is not a Nash equilibrium. Suppose that Ann announces here
valuation according to the following table.

Item Ann Bob
Matisse 26 25
Picasso 74 75
Total 100 100

So Ann will get the Matisse, receiving 26 of her announced (and insincere) points
and Bob gets 75 of his announced points. Let p be the fraction of the Picasso that
Ann will get, then we want

8 This assumes that there are valuations which are, as a matter of fact, the agents’ actual valuations.
However, it may very well be that the players themselves cannot point to a valuation which they
consider their “true” valuation. After all, valuations are simply a way to represent the players’
preferences or utilities over the set of goods. See (Parikh R., and Pacit E. Safe Votes, Sincere Votes,
and Strategizing. Unpublished Manuscript, 2005.) for a relevant discussion in the context of voting.
Nonetheless, for this paper we assume that each player is associated with a unique “true valuation”.

9 Here we need only consider Nash equilibrium and not subgame perfect equilibrium as there is
only one point in AW when the agents make a choice.
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26+74p =75—175p

Solving for p gives us p =0.33 and each gets 50 of his or her announced preference.
In terms of Ann’s true preference, however, the situation is very different. She is
getting from her true preference 75+ 0.33) 25 = 83.33.

There are two directions one can follow to extend Pauly’s analysis to take into
account the above issue. We do not go into details in this essay, but only sketch the
main ideas.

Imperfect Information In order for Ann (or Bob) to take advantage of the fact that
she is not playing her best response in the above example, she must know Bob’s
actual valuation and that he will in fact play that valuation. Note that this second
point is important. For suppose that in the above example, that Bob has knowledge
of Ann’s valuation and decides to deceive Ann in the same way as Ann is deceiv-
ing him: Bob announces 74 for the Matisse and 26 for the Picasso. In this case,
Ann will get the Picasso and Bob will get the Matisse each receiving 74 of their
announced points. However, according to their actual valuations both Ann and Bob
receive only 25 points! Thus, the information that each agent has about the other
agent’s valuation is relevant. This suggests two extensions to Pauly’s framework.
The first is to extend the basic model to include the information each agent has
about the other agents’ preferences.'” The second is to allow agents to misrepresent
their preferences and include “truthfulness” as a post-condition.

Safe Strategies As argued above, if Ann attempts to deceive Bob and is wrong about
Bob’s choice of valuation, then this can lead to devastating results for Ann (i.e.,
receiving less than 50 points). Thus while the honest strategy profile (each agent
reports his/her “true” preference) is not necessarily a Nash equilibrium, it is a safe
strategy, i.e., a strategy that guarantees at least 50 points. This is discussed in [2] and
(Parikh R., and Pacuit E. Safe Votes Sincere Votes, and Strategizing. Unpublished
Manuscript, 2005.). Using this notion of a safe strategy we can be more precise
about what it means to say that a fair division algorithm is “correct”. A fair division
algorithm is correct if there is a safe strategy such that the outcome is envy-free,
Pareto efficient and equitable.

13.4 Conclusion

Evidence of the usefulness of a rigorous analysis of social procedures can already
be seen in many areas of economics and social choice theory. Classic results such
as Arrow’s Theorem have had profound effects on social choice theory and voting
theory. A more concrete example is the analysis of the procedure used by King
Solomon in the well-known biblical story. King Solomon is faced with two women
each claiming that a baby is her own child. Solomon threatens to cut the baby in
half causing one of the mothers to rescind her claim of motherhood; thus revealing

10 Note that this does not mean moving to imperfect information games. Although this may be
an interesting direction for future research, all that is needed here is a formal model of the agents
information about the other agents’ preferences.
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herself as the true mother. However a formal analysis of this procedure reveals a
mistake: it is possible for the false mother to misrepresent her actual preference and
claim, as the true mother would, that the baby should be given to the other woman.
What is often missing from the game-theoretic analyzes of social procedures is a
clear and rigorous analysis of what it means for the social procedure to be correct.

The logics discussed in [15, 18, 19] (Pauly M., and Wooldridge M. Logic for
Mechanism Design — a Manifesto. Unpublished Manuscript.) are all intended to be
tools for providing such a rigorous analysis of social procedures. Focusing on the
framework from [15], this essay highlights an important aspect of the analysis of
many social procedures. This key component is the information, or knowledge, the
agents have during the execution of the procedure (cf. [13] and [10] for an extended
discussion of this point).
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