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Abstract One of the goals of social choice theory is to study the group decision
methods that satisfy two types of desiderata. The first type ensures that the group
decision depends in the right way on the voters’ opinions. The second type ensures
that the voters are free to express any opinion, as long as it is an admissible input
to the group decision method. Impossibility theorems, such as Arrow’s Theorem,
point to an interesting tension between these two desiderata. In this paper, we argue
that dependence and independence logic offer an interesting new perspective on this
aspect of social choice theory. To that end, we develop a version of independence
logic that can express Arrow’s properties of preference aggregation functions. We
then prove that Arrow’s Theorem is derivable in a natural deduction system for the
first-order consequences of our logic.

1 Introduction

The modern era in social choice theory started with Kenneth Arrow’s ground-
breaking impossibility theorem [3]. Arrow showed that there is no method that a
group can use to rank a set of alternatives satisfying a minimal set of desirable
properties. Much has been written about this theorem (see, for instance, [20, 30, 43])
and its implications for theories of democracy [9, 27, 36] and beyond [29, 31, 33, 44].
Social choice theory has since grown into a large and multi-faceted research area
(see [26] for an overview). In this chapter, we focus on one type of theorem studied
by social choice theorists: axiomatic characterizations of group decision methods.
We will present a version of independence logic [14] that we use to formalize these
theorems. This is not merely an exercise in applying a logical framework to a new
area. We will argue that dependence and independence logic offers an interesting
new perspective on the axiomatic characterization of group decision methods.
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One of the main goals of social choice theory is to identify principles of group
decision making that ensure that group decisions depend in the right way on the
voters’ preferences.1 That is, group decision methods should be designed in such
a way that no individual voter should have any undue influence over the group
decision. At the same time, it is important to devise a group decision method without
placing any restrictions on the inputs. That is, group decision methods should be
designed under the assumption that the voters’ opinions are independent. From this
perspective, the so-called impossibility theorems in social choice theory highlight
an interesting conflict between dependence and independence.

This chapter is organized as follows. Section 2 briefly recounts the basic
mathematical framework used in social choice theory. Sections 3 and 4 are extended
discussions of the notions of dependence and independence found in social choice
theory. In Section 5, we present a version of independence logic that we use to
formalize Arrow’s Theorem. We show in Section 5.3 that Arrow’s Theorem can be
derived in a natural deduction system for this logic [16, 25]. Section 6 contains some
concluding remarks.

2 The Social Choice Framework

Let us start by recalling some notions concerning relations.

Definition 1. A relation R on X is a subset of X�X. We write a R b when .a; b/ 2 R
and write a 6R b when .a; b/ … R. We write a R b R c when a R b, b R c, and a R c.

Definition 2. Let R � X � X be a relation. R is said to be

• transitive provided for all a; b; c 2 X, if a R b and b R c, then a R c;
• complete provided for all a; b 2 X, either a R b or b R a;
• antisymmetric provided for all a; b 2 X, if a R b and b R a, then a D b;
• linear provided that it is transitive, complete, and antisymmetric.

Throughout this chapter, we fix a set V D fx1; x2; x3; : : : ; xng of n voters (or
individuals) and a (finite2) set X of alternatives (e.g., candidates, restaurants, social
states, etc.). Each voter xi 2 V is asked to rank the elements of X, where a ranking
is a transitive and complete relation on X. Let O.X/ denote the set of all rankings
of X. Each ranking R 2 O.X/ is associated with two special subrelations: The strict
subrelation defined as

PR D f.a; b/ 2 X � X j a R b and b 6R ag;

1In formal work on social choice theory, it is common to identify a voter’s preference over a set of
alternatives X with her ranking over the set of alternatives. In general, a ranking of the alternatives
is only one way in which a voter may express her preference over the set of alternatives. Consult
[17] for a discussion of the main philosophical issues here.
2For simplicity, we restrict attention to a finite set of alternatives. This restriction is not necessary
for what follows, though it does have some implications on the design of the formal language used
to describe a social choice model.
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and the indifference subrelation defined as

IR D f.a; b/ 2 X � X j a R b and b R ag:

Let R 2 O.X/ represents voter xi’s ranking of X. If a R b, then we say that “xi weakly
prefers a to b”; if a PR b, then we say that “xi strictly prefers a to b”; if a IR b, then
we say that “xi is indifferent between a and b.” In case a voter is indifferent between
two alternatives, we say that the two alternatives are tied in the voter’s ranking.
A linear ranking is a ranking that is a linear relation and let L.X/ denote the set of
all linear rankings of X. Clearly, ties are not allowed in linear rankings.

A profile for the set of voters V is a sequence of (linear) rankings of X that
assigns to each voter xi a ranking Ri, denoted R D .R1; : : : ;Rn/. The set of all
profiles of rankings for n voters is denoted O.X/n (similarly for L.X/n). If R D
.R1; : : : ;Rn/ 2 O.X/n, then Pi denotes the strict subrelation PRi of Ri. Similarly,
Ii denotes the indifference subrelation IRi of Ri. For a profile R D .R1; : : : ;Rn/ 2
O.X/n, let VR.a P b/ D fxi 2 V j a Pi bg be the set of voters that rank a strictly
above b (similarly for VR.a I b/ and VR.a R b/).

A group decision method associates an outcome (“the group decision”) with each
profile of ballots. Typically, the ballots are (linear) rankings of the alternatives. The
social choice literature has largely focused on two types of outcomes. The first are
(linear) rankings of X representing the overall group ranking of the alternatives.
The second are non-empty subsets of X representing the “social choice” (or the
“winning” alternatives). As we mentioned in Section 1, the starting assumption in
the social choice literature is that group decisions should be completely determined
by the voters’ reported3 rankings. This means that group decision methods should
be represented by functions from sets of profiles to the possible outcomes. There are
two types of functions corresponding to the two types of group outcomes:

• A preference aggregation function is a function F W B ! O , where O is a
set of relations on X (typically, O is either L.X/ or O.X/) and B � L.X/n or
B � O.X/n.

• A social choice function is a function F W B ! O where O D }.X/ n f;g and
B � L.X/n or B � O.X/n.

We illustrate the above definitions with the following examples. For each profile
of linear rankings P D .P1; : : : ;Pn/, define a relation RP

maj on the set X of candidates
as follows: for all a; b 2 X,

a RP
maj b iff jVP.a P b/j > jVP.b P a/j:

The relation RP
maj is called the majority ordering, ranking candidate a above

candidate b provided more voters rank a above b than b above a. Note that

3In this article, we set aside any game-theoretic issues around whether voters have an incentive to
report their true preferences.
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RP
maj 62 O.X/, since RP

maj is not necessarily transitive.4 This is illustrated by the
famous Condorcet Paradox: Consider a profile P D .P1;P2;P3/ for three voters
V D fx1; x2; x3g and three candidates X D fa; b; cg. Suppose that ranking for voter
x1 is a P1 b P1 c; the ranking for voter x2 is b P2 c P2 a; and the ranking for
voter x3 is c P3 a P3 b. Then, VP.a P1 b/ D fx1; x3g, VP.b P1 c/ D fx1; x2g, and
VP.a P1 c/ D fx1g. Thus, a RP

maj b and b RP
maj c, but it is not the case that a RP

maj c

(in fact, we have c RP
maj a producing a cycle: a RP

maj b RP
maj c RP

maj a).
The Borda ranking is an example of a social ranking that is transitive. Let

P D .P1; : : : ;Pn/ be an arbitrary profile of linear rankings of a k-element set X of
candidates. For each voter xi and each m D 1; : : : ; k, let Pi.m/ be the candidate
ranked in the mth-position by the voter xi. For example, if a Pi b Pi c, then
Pi.1/ D a, Pi.2/ D b, and Pi.3/ D c. For each d 2 X, define the Borda score
BS.P; d/ as

BS.P; d/ D
kX

mD1
.k � m/ � jfxi 2 V j Pi.m/ D dgj:

Now, the Borda ranking RP
b is defined as follows:

a RP
B b iff BS.P; a/ � BS.P; b/:

The function FB W L.X/n ! O.X/, defined as FB.P/ D RP
B, is a preference

aggregation function. An example of a social choice function is plurality rule: Fpl W
L.X/n ! }.X/ n f;g, defined as: for each P D .P1; : : : ;Pn/ 2 L.X/n,

Fpl.P/ D fc 2 X W jfxi j Pi.1/ D cgj � jfxi j Pi.1/ D bgj for all b 2 Xg:

Thus, Fpl selects the candidate(s) ranked first by the most voters. Consult [34] for
an overview of preference aggregation and social choice rules and their properties.

3 Dependence in Social Choice Theory

Generally speaking, axiomatic characterization results proceed in two steps. The
first step is to identify an interesting class of functions, each of which is intended
to represent a possible group decision method. Different classes of functions
build in different assumptions about the structure of the group decision problem.
For instance, fix a set X of at least three candidates and a set V D fx1; : : : ; xng of n

4Also, RP
maj may not be complete if there is an even number of voters. There are a variety of ways

to modify the definition of the majority ordering to ensure completeness when there are an even
number of voters.
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voters. Then, the set

F.n;X/ D fF j F W O.X/n ! O.X/g

represents group decision problems in which the n voters are asked to rank the
alternatives, and, based on the voters’ rankings, identify the group ranking of the
alternatives. Furthermore, since the domain of each function F 2 F.n;X/, denoted
dom.F/, is the set O.X/n of all profiles of rankings (i.e., all functions are assumed
to be total), the voters’ input is not restricted in any way. In particular, a voter’s
choice of ranking is independent of the other voters’ choice of rankings (this will be
discussed in more detail in Section 4). The second step is to characterize the desired
set of group decision methods in terms of principles expressible as properties of the
given class of functions. The goal is to find a set of properties of group decision
rules that makes the group decision depend in the right way on the voters’ inputs.
Many different principles of group decision making have been discussed in the
social choice literature. We discuss some of these properties in this section (see
[20, 26, 30, 34] for discussions of additional properties). The statement of these
properties will be tailored to the class F.n;X/ of preference aggregation functions.
We leave it to the reader to adapt the principles to different classes of preference
aggregation functions.

Since group decision methods are assumed to be functions, the output (a group
ranking) does functionally depend on the rankings of the voters. However, this
dependence is much too weak. There are many functions in F.n;X/ that are defective
in some way. For instance, the constant function FR W O.X/n ! O.X/ for a fixed
R 2 O.X/, defined as FR.R/ D R, is in F.n;X/. An obvious problem with a constant
function is that the group decision is insensitive to any unanimous agreement among
the voters. Suppose that X D fa; b; cg and a R b R c, and consider the constant
function FR. If R is a profile in which every voter ranks b strictly above a (i.e.,
VR.b P a/ D V), then FR.R/ D R is an outcome that does not truly reflect the
voters’ opinions (at least with respect to alternatives a and b). This suggests the
following property:

Unanimity For all alternatives a; b 2 X, for all profiles R D .R1; : : : ;Rn/ 2
O.X/n, if a Pi b for all xi 2 V (i.e., VR.a P b/ D V), then a PF.R/ b.

This principle ensures that any unanimous agreement among the voters’ strict
rankings is reflected in the group ranking.5 Unanimity is a fundamental principle of
group decision methods.

An important distinction that was prevalent early on in the burgeoning
social choice literature is between single-profile and multi-profile properties
[21, 35, 37, 38]. Unanimity is an example of a single-profile property. It rules
out specious pairings of group rankings with profiles in terms of properties of

5One can also explore alternative definitions of Unanimity of varying strengths. For example, if all
voters weakly rank candidate a above candidate b, then society does so as well.
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the given profile (e.g., the property that all voters rank candidate a strictly above
candidate b). Thus, as will become clear in Section 5, Unanimity can be formalized
in dependence logic using just a first-order formula without dependency atoms.

The notion of dependency found in dependence and independence logic is best
exemplified by multi-profile properties. The general form of a multi-profile property
runs as follows: If (two or more) profiles are related in a certain way, then the
outcomes associated with these profiles must be related in some way. The most
prominent multi-profile property is independence of irrelevant alternatives (IIA).

Independence of Irrelevant Alternatives For all profiles, R;R0 2 O.X/n, for all
a; b 2 X, if VR.a R b/ D VR0.a R b/ and VR.b R a/ D VR0.b R a/, then
a F.R/ b iff a F.R0/ b.

IIA ensures that the group ranking of two candidates depends only on how the
individual voters rank those candidates. That is, if all voters agree on the relative
rankings of a and b in two profiles, then the group rankings under each profile must
rank a and b in the same way. IIA plays a crucial role in Arrow’s impossibility
theorem and many other results in social choice theory. Intuitions vary about the
reasonableness of the IIA requirement for group decision methods. Many well-
known voting methods do not satisfy IIA (the most prominent such example is
the Borda’s ranking that we defined in Section 2, see [39, 40] for an extensive
argument in favor of using the Borda score to make group decisions, and see [34]
for a discussion and further examples). Nonetheless, there are persuasive arguments
that IIA is a natural requirement for a group decision method (see, for instance,
[51, pg. 58] and [3, Chapter III, section 3]). Furthermore, Muller and Satterthwaite
[32, 41] showed that IIA is equivalent to strategy proofness (strategy proofness
means that voters do not have an incentive to misrepresent their preferences6).

Various authors have explored the implications of weakening IIA. An important
result along these lines is from Blau [4]. Given a profile R 2 O.X/n and Y � X,
let RY D ..R1/Y ; : : : ; .Rn/Y/, where each .Ri/Y D Ri \ .Y � Y/, i.e., .Ri/Y is the
restriction of Ri to Y. Then, IIA can be reformulated as follows:

Binary Independence For all profiles, R;R0 2 O.X/n, for all a; b 2 X, if
Rfa;bg D R0

fa;bg, then F.R/fa;bg D F.R0/fa;bg.

Blau studied the following generalization of IIA:

m-ary Independence For all profiles, R;R0 2 O.X/n, for all m-element sets Y �
X, if RY D R0

Y , then F.R/Y D F.R0/Y .

Of course, if m D jXj, then m-ary independence simply amounts to the usual
requirement for any function. Blau showed that if a preference aggregation function
satisfies m-ary independence (where 2 � m < jXj), then it must also satisfy
binary independence (the converse is obvious). An alternative way to define m-ary

6A full discussion of this result is beyond the scope of this article. See [46] for a precise statement
of the Müller-Satterthwaite Theorem (including the additional assumptions needed to prove the
equivalence) and a discussion of the relevant literature.
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independence is as follows: Let Sm D fY � X j jYj D mg be the collection of all
sets of m candidates from X. Then, m-ary independence says that for any S 2 Sm,
if the relative rankings of all candidates in S are the same in two profiles, then the
outcomes associated with these profiles must agree on the rankings of all candidates
in S. Recently, Susumo Cato [7] showed that Blau’s results hold for any collection
S of sets of candidates satisfying the following connectedness property: For all
candidates a; b 2 X there are sets S1; : : : ; Sk 2 S such that fa; bg D Tk

iD1 Si.
Preference aggregation rules that do not satisfy IIA take a global perspective

when determining the social ranking of the candidates. For example, the Borda
ranking of candidates a and b depends on the voters’ rankings of all the candidates.
A weaker version of IIA requires that the group ranking of candidates a and
b depends on the voters’ rankings of some subset of candidates (which may
contain more candidates than just a and b). Campbell and Kelly studied preference
aggregation methods that satisfy this weaker version of IIA together with additional
multi-profile properties [6, 20].

A second multi-profile property, Neutrality, requires that the aggregation method
treats all the candidates equally. To state this formally, suppose that � W X ! X is a
permutation of the candidates (i.e., a one-to-one function from X onto X). Given a
relation R on X, define the relation R� as follows: For all a; b 2 X,

�.a/ R� �.b/ iff a R b

For any profile R D .R1; : : : ;Rn/ 2 O.X/n, a permutation � applied to R is defined
as R� D .R�1 ; : : : ;R

�
n /. Now, we define Neutrality as follows:

Neutrality For all profiles R 2 dom.F/ and all permutations � W X ! X,
F.R�/ D F.R/�.

Neutrality ensures that a social ranking of the candidates depends only on where the
candidates fall in the rankings in a given profile. Suppose that there are two profiles
R and R0 and two candidates a and b such that the positions that a occupies in the
rankings in R are the same as the positions that b occupies in R0. That is R0 D R�

where � is the permutation such that �.a/ D b, �.b/ D a and for all c ¤ a; b,
�.c/ D c. Then, the social ranking of a given the profile R must be the same as the
social ranking of b given the profile R0.

While Neutrality requires that the candidates are treated equally, another prop-
erty, Anonymity, requires that the voters are treated equally. A permutation of the
voters is a one-to-one function � W V ! V . Anonymity requires that the group
decision does not depend on the name of the voters.

Anonymity For all profiles R 2 dom.F/ and all permutations of � W V ! V ,
F.R/ D F.�.R//, where �.R/ D .R�.1/; : : : ;R�.n//.

Anonymity is a fundamental requirement of the democratic process and is strictly
enforced in most elections. The overall tally of a ranking R 2 O.X/ in a profile
R is the number of voters that submitted the ranking R (i.e., the tally of R in
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R D .R1; : : : ;Rn/ is jfxi 2 V j Ri D Rgj). Anonymity requires that group decisions
depend on the tallies of the rankings in a profile rather than the profiles themselves
(which identify the voter associated with each ranking).

In many voting situations, anonymity is dropped when the group decision results
in a tie. Often, one voter is chosen (perhaps at random) to be the designated “tie-
breaker.” In such a case, the tie-breaker imposes her strict ranking of the candidates
on the rest of the group. An egregious failure of anonymity occurs when there is a
voter that imposes her strict rankings of the candidates on the group no matter what
rankings the other voters submit. Of course, in any given profile, there will often be
a number of voters that completely agree with the social ranking. There is nothing
wrong with this. Indeed, it may very well be that, for every profile, there is some
voter that completely agrees with the group ranking associated with that profile. It
is a problem only when the quantifiers are reversed: there is a voter xd such that for
all profiles, voter xd’s strict rankings of the candidates agree with the social ranking.
Such a voter is called an Arrovian dictator.

Non-Dictator There is no xd 2 V such that for all profiles R 2 dom.F/, for all
a; b 2 X, if a Pd b, then a PF.R/ b.

Non-Dictatorship ensures that the strict social ranking does not depend on only one
voter (cf. the discussion in Section 6).

****

The properties introduced in this section ensure that group decisions depend in
the right way on the voters’ reported rankings. Arrow’s ground-breaking theorem
identified a surprising conflict between these principles:

Theorem 1 (Arrow [3]). There are no preference aggregation functions F W
O.X/n ! O.X/, with jXj > 2, satisfying Independence of Irrelevant Alternatives,
Unanimity, and Non-Dictatorship.

Much of the subsequent work in social choice theory has focused on finding
properties7 that characterize interesting group decision rules. Amartya Sen adeptly
explains the social choice problem in his Nobel Prize lecture:

When a set of axioms regarding social choice can all be simultaneously satisfied, there
may be several possible procedures that work, among which we have to choose. In order
to choose between different possibilities through the use of discriminating axioms, we have
to introduce further axioms, until one and only one possible procedure remains. This is
something of an exercise in brinkmanship. We have to go on and on cutting alternative
possibilities, moving—implicitly—towards an impossibility, but then stop just before all
possibilities are eliminated, to wit, when one and only one option remains. [42, pg. 354]

7Properties of group decision methods are often called “axioms” in the social choice literature.
However, the principles studied in the social choice literature do not have the same status as the
axioms of, for example, Peano arithmetic or the axioms defining a group. As should be clear from
the discussion in this section, many of the so-called axioms of social choice are certainly not “self-
evident,” and may require extensive justification.
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There is much more to say about Arrow’s Theorem (cf. [5, 20, 30]). We return to this
theorem in Section 5.3, showing how it can be formalized in independence logic.

4 Independence in Social Choice Theory

Arrow’s Theorem is directed at preference aggregation functions F W O.X/n !
O.X/. A key assumption, which we only briefly mentioned in the previous section,
is that the domain of F is O.X/n. This is the Universal Domain (UD) assumption.
Thus, F must assign a group ranking to any possible profile of rankings. Arrow
argued that, without specialized knowledge about the group decision problem,
preference aggregation functions must be designed to handle any possible input:

If we do not wish to require any prior knowledge of the tastes of individuals before
specifying our social welfare function, that function will have to be defined for every
logically possible set of individual orderings. [3, pg. 24]

There are two aspects of UD that can be studied separately. The first is that there are
no restrictions on the rankings available to a voter. This imposes a richness condition
on the domain of a preference aggregation function F W B ! O , where B is a set
of profiles of (linear) rankings of X:

All rankings For any voter xi 2 V and any (linear) ranking R, there is a profile
R D .R1; : : : ;Rn/ 2 dom.F/ such that Ri D R.

Consider the following set of profiles of linear rankings for three candidates X D
fa; b; cg and three voters V D fx1; x2; x3g. To simplify the notation, we write a b c
to denote the ranking a P b P c. Let E be the profiles displayed in Table 1 (each
row corresponds to a profile).

As the reader is invited to check, E satisfies the all rankings property. Of course,
E does not contain all possible profiles of linear rankings (i.e., E ¨ L.X/n). In
particular, voters x1 and x3 have the same ranking in each profile. This means that
for each P 2 E , the majority ordering RP

maj is transitive. Thus, Fmaj W E ! L.X/
is a well-defined preference aggregation rule. The problem with this domain is that
voters x1’s and x3’s rankings are not chosen independently. They form a winning
coalition ensuring that the group decision always agrees with their rankings. Thus,
both x1 and x3 are Arrovian dictators. This suggests an additional constraint on
domains of preference aggregation functions.

Independence For any profiles R D .R1; : : : ;Rn/;R0 D .R0
1; : : : ;R

0
n/ 2 dom.F/

and any voter xi 2 V , there is a profile R00 D .R00
1 ; : : : ;R

00
n / 2 dom.F/ such that

R00
i D Ri and R00

j D R0
j for all j ¤ i.

This constraint ensures that the voters’ choice of rankings is not correlated in any
way. The domain in Table 1 does not satisfy the independence property: There are
profiles P D .a b c; a b c; a b c/ and P0 D .a c b; a b c; a c b/, but no
profile P00 D .P00

1 ;P
00
2 ;P

00
3 / such that P00

1 D a b c D P00
2 and P00

3 D a c b.
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Table 1 A set E of profiles
satisfying the All rankings
property.

x1 x2 x3
a b c a b c a b c

a c b a b c a c b

b a c a b c b a c

b c a a b c b c a

c a b a b c c a b

c b a a b c c b a

a b c b a c a b c

a c b b a c a c b

b a c b a c b a c

b c a b a c b c a

c a b b a c c a b

c b a b a c c b a

a b c c a b a b c

a c b c a b a c b

b a c c a b b a c

b c a c a b b c a

c a b c a b c a b

c b a c a b c b a

x1 x2 x3
a b c a c b a b c

a c b a c b a c b

b a c a c b b a c

b c a a c b b c a

c a b a c b c a b

c b a a c b c b a

a b c b c a a b c

a c b b c a a c b

b a c b c a b a c

b c a b c a b c a

c a b b c a c a b

c b a b c a c b a

a b c c b a a b c

a c b c b a a c b

b a c c b a b a c

b c a c b a b c a

c a b c b a c a b

c b a c b a c b a

It is not hard to see that imposing both All rankings and Independence ensures
that the domain of the preference aggregation function is the set of all profiles of
(linear) rankings. However, the All rankings and Independence constraints are
stronger than what is needed to prove Arrow’s Theorem. A weaker constraint on the
domain that is sufficient to prove Arrow’s Theorem was identified by Kalai, Muller,
and Satterthwaite [19]. Their approach is to weaken the All rankings property while
maintaining the Independence property.

We say that the Independence property is satisfied for a domain B whenever
there is a set ˝ � O.X/ of “admissible” rankings for each voter and B D ˝n.
The following example from [19] illustrates this. Suppose that Y D A [ B, where
A D fa1; a2; a3g and B D fb1; b2; b3g, and let

˝ D fR 2 O.Y/ j a PR b for a 2 A and b 2 Bg:

So, ˝ is the set of all rankings that rank all candidates in A strictly above all
candidates in B. Then, E D ˝n satisfies Independence. Note that there is a
preference aggregation function F W E ! O.Y/ satisfying Unanimity, IIA, and
Non-Dictatorship: For each R D .R1; : : : ;Rn/ 2 E , let F.R/ D .R1/A [ .R2/B [
f.a; b/ j a 2 A and b 2 Bg. That is, F ranks all candidates in A strictly above
all candidates in B, ranks the candidates in A according to voter x1, and ranks the
candidates in B according to voter x2. Thus, voter x1 is an Arrovian dictator over
the set A and x2 is an Arrovian dictator over the set B, but there is no dictator for
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the entire set of candidates. This example shows that Independence alone is not
sufficient to prove Arrow’s Theorem.

To see that All rankings is not necessary to prove Arrow’s Theorem, consider
the following variant of the above example. Define ˝ 0 � O.Y/ as follows:

˝ 0 D fR 2 O.Y/ j a PR b for a 2 A and b 2 B, and b1 PR b2 PR b3g:

Thus, ˝ 0 contains any ranking R that ranks all candidates in A strictly above all
candidates in B, ranks b1 strictly above b2 and b3, and ranks b2 above b3. Suppose
that E 0 D .˝ 0/n. Then, E 0 satisfies Independence but not All rankings. By
inspecting the proof of Arrow’s Theorem, it is not hard to show that there is no
preference aggregation function F W E 0 ! O.Y/ satisfying Unanimity, IIA, and
Non-Dictatorship.

The difference between the two domains is that E 0 is based on a set of admissible
rankings that satisfies a “saturation” property. We need some notation to formally
state this property. Suppose that˝ � O.X/ is a set of rankings for a set X of at least
three candidates. A set of three candidates fa; b; cg � X is called a free triple for˝
provided a, b, and c are distinct (i.e., a ¤ b ¤ c ¤ a) and for each R 2 O.fa; b; cg/
there is a R0 2 ˝ such that R0

fa;b;cg D R. A pair of distinct candidates fa; bg is said
to be trivial in ˝ provided for all R;R0 2 ˝ , Rfa;bg D R0

fa;bg (i.e., all rankings in
˝ agree on the ranking of a and b). Two non-trivial pairs of candidates A D fa; bg
and B D fc; dg are strongly connected in ˝ provided jA [ Bj D 3 and A [ B is a
free triple for˝ . Two pairs of candidates A and B are said to be connected provided
there is a sequence of B1; : : : ;Bk of pairs of candidates such that A D B1, B D Bn,
and for all i D 1; : : : k � 1, Bi and BiC1 are strongly connected. Finally, say that ˝
is saturated provided there are at least two non-trivial pairs of candidates and every
two non-trivial pairs of candidates are connected. Saturated domains are sufficient
to prove Arrow’s Theorem:

Theorem 2 (Kalai, Muller, and Satterthwaite [19]). There is no F W E !
O.X/, where E D ˝n and ˝ is saturated, satisfying Unanimity, Independence of
Irrelevant Alternatives, and Non-Dictatorship.

5 Dependence and Independence Logic for Social
Choice Theory

In this section, we use dependence and independence logic to formalize the notions
of dependence and independence discussed in Sections 3 and 4. The initial idea
to use dependence and independence logic to formalize results from social choice
theory, such as Arrow’s Theorem, is from Jouko Väänänen [49].

We think of the set of voters V D fx1; : : : ; xng as a set of distinguished first-order
variables. In addition, we include a fresh first-order variable y that is intended to
represent the group decision. Suppose that R D .R1; : : : ;Rn/ 2 O.X/n is a profile for
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V and F W B ! O is a preference aggregation function with R 2 B. The pair .R;F/
induces an assignment on VC D fx1; : : : ; xn; yg, denoted sR;F W VC ! B [ O ,
defined as follows:

sR;F.x1/ D R1; : : : ; sR;F.xn/ D Rn and sR;F.y/ D F.R/: (1)

Then, any group decision function F is associated with a set of assignments:

SF D fsR;F j R 2 dom.F/g (2)

Such a set of assignments is called a team, which is the central object of study
in dependence and independence logic. Thus, there is a natural link with social
choice theory: The properties of preference aggregation functions discussed in
Sections 3 and 4 can be viewed as properties of teams, expressible in the language
of dependence and independence logic.

Teams of assignments for the variables fx1; : : : ; xn; yg are intended to represent
election scenarios. Each assignment in the team represents a choice of ballot
(typically, a ranking of the set of candidates) for each voter and the resulting group
decision. Of course, not every team corresponds to some preference aggregation
function. In particular, the rankings associated with y must be a function of the
rankings associated with fx1; : : : ; xng. In the language of dependence logic, this
means that y depends on fx1; : : : ; xng. Consider the team of assignments displayed
in Table 2 assigning to fx1; x2; yg linear rankings over the set X D fa; b; cg. That is,
each assignment is a map s W fx1; x2; yg ! L.X/. (Recall that we write a b c for the
ranking a P b P c.)

Since the rankings associated with y do functionally depend on the rankings
associated with the variables fx1; x2g, this team does represent possible election
scenarios for 2 voters and 3 candidates. In the remainder of this section, we show
how to use dependence and independence logic to reason about group decision
methods.

Table 2 An example of a
team for 2 voters.

x1 x2 y

s1 a b c c b a b a c

s2 a c b b c a c b a

s3 c a b b a c a c b

s4 b c a a c b c a b

s5 a b c b c a b a c
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5.1 The Logic

In this section, we define the syntax and semantics of the version of independence
logic (IndS) that we use to formalize Arrow’s Theorem.

Suppose that Var is an infinite set of variables with distinguished elements
x1; : : : ; xn and y (where n is the number of voters). We use u; v;w; : : : (with or
without subscripts) as metalanguage symbols that stand for first-order variables.
Suppose that X is a finite set of candidates containing at least three elements. To
simplify the presentation of the logical framework, we focus on logics for reasoning
about preference aggregation functions. Note that both n (the number of voters)
and X (the set of candidates) are parameters in the definition of our language. For
simplicity, in this section, we restrict attention to linear orders. Recall that L.X/ is
the (finite) set of all linear relations on X. Thus, our language is intended to describe
properties of functions of the form F W L.X/n ! L.X/. The definitions below can
be adapted to reason about other types of group decision functions, such as social
choice functions or functions where the domain and/or range is O.X/ (the set of all
rankings on X).

The signature LX contains an equality symbol D, unary predicate symbols ER

for each ranking R 2 L.X/ and unary predicate symbols Rab for each pair .a; b/ of
elements from X. Since our signature does not contain function symbols or constant
symbols, variables are the only L -terms. A first-order atomic L -formula is a
string of the form u D v, ER.w/ or Rab.w/.

Definition 3 (Syntax). A well-formed L -formula of independence logic for
social choice theory (IndS) is a string generated by the following grammar:

' WWD ˛ j :˛ j ? j D.w1; : : : ;wk; u/ j w1 : : :wk ? u1 : : : um j w1 : : :wk � u1 : : : uk

j ' ^ ' j ' _ ' j 8x' j 9x';

where ˛ is an LX-atomic first-order formula.

The formulas D.w1; : : : ;wk; u/, w1 : : :wk ? u1 : : : um, and w1 : : :wk � u1 : : : uk

are called dependence atom, independence atom and inclusion atom, respectively.
We refer to them in this chapter as atoms of dependence and independence. The
original independence logic as introduced in [14] does not have dependence atoms
or inclusion atoms in the language. Since these two atoms are definable in Ind ([11,
14]), we will include these atoms in the language of our logic IndS.

The set Fv.'/ of free variables of a formula ' of IndS is defined in the
standard way except that we have the new cases for the atoms of dependence and
independence:

• Fv.D.w1; : : : ;wk; u// D fw1; : : : ;wk; ug
• Fv.w1 : : :wk ? u1 : : : um/ D fw1; : : : ;wk; u1; : : : ; umg
• Fv.w1 : : :wk � u1 : : : uk/ D fw1; : : : ;wk; u1; : : : ; ukg
A formula ' is called a sentence if Fv.'/ D ;.



248 E. Pacuit and F. Yang

Formulas of IndS are interpreted in standard first-order models M. We assume
that the domain of a model M, denoted dom.M/, always has at least two elements.

Our formalization of Arrow’s Theorem requires that the domain contains all
linear rankings of (at least three) candidates. An intended LX-model for IndS
is an LX-model M where dom.M/ D L.X/. The set of intended models is first-
order definable using the unary predicates ER (this will be shown in Section 5.2).
For any e 2 dom.M/ and any linear ranking R 2 L.X/, the intended interpretation
of EM

R .e/ is that e is the linear ranking R, i.e., EM
R D fe 2 dom.M/ j e D Rg.

For each e 2 dome.M/, the intended interpretation of RM
ab.e/ is that the ranking

associated with the element e ranks a above b. More formally, for a; b 2 X,
the unary RM

ab D fR 2 L.X/ j a R bg. For example, if X D fa; b; cg, then
M D .L.X/; fER j R 2 L.X/g; fRM

de j d; e 2 Xg/ is an intended LX-model for
IndS. Suppose that R1 is the relation a R b R c; R2 is the relation a R c R b; R3 is
the relation b R a R c; R4 is the relation b R c R a; R5 is the relation c R a R b; and
R6 is the relation c R b R a. Then:

• EM
Ri

D fRig, for i D 1; : : : ; 6; and
• RM

ab D fR1;R2;R5g, RM
ac D fR1;R2;R3g, RM

bc D fR1;R3;R4g, . . .

Definition 4 (Assignments, Teams). An assignment on M is a map s W Var �!
dom.M/. A team S on M is a set of assignments on M.

For any assignment s and any element a 2 dom.M/, we write s.a=w/ for the
assignment defined as s.a=w/.w/ D a and s.a=w/.u/ D s.u/ if u ¤ w. We now
define the team semantics for our logic IndS.

Definition 5 (Semantics). Suppose that M is an L -model for IndS and S is a team
on M. For each LX-formula ' of IndS, we define M ˆS ' inductively as follows:

• M ˆS ˛ with ˛ a first-order atomic formula iff for all s 2 S, M ˆs ˛ in the usual
sense;

• M ˆS :˛ with ˛ a first-order atomic formula iff for all s 2 S, M 6ˆs ˛ in the
usual sense;

• M ˆS ? iff S D ;;
• M ˆS D.w1; : : : ;wk; u/ iff for all s; s0 2 S,

if hs.w1/; : : : ; s.wk/i D hs0.w1/; : : : ; s0.wk/i; then s.u/ D s0.u/I

• M ˆS w1 : : :wk ? u1 : : : um iff for all s; s0 2 S, there is s00 2 S such that

hs00.w1/; : : : ; s00.wk/i D hs.w1/; : : : ; s.wk/i

and

hs00.u1/; : : : ; s00.um/i D hs0.u1/; : : : ; s0.um/iI

• M ˆS w1 : : :wk � u1 : : : uk iff for all s 2 S, there is s0 2 S such that
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hs0.w1/; : : : ; s0.wk/i D hs.u1/; : : : ; s.uk/iI

• M ˆS ' ^  iff M ˆS ' and M ˆS  ;
• M ˆS ' _ iff there exist teams S0; S1 � S with S D S0 [ S1 such that M ˆS0 '

and M ˆS1  ;
• M ˆS 8w' iff M ˆS.M=w/ ', where S.M=w/ D fs.a=w/ j s 2 S and a 2 Mg;
• M ˆS 9w' iff M ˆSŒF=w� ' for some function F W S �! }.M/ n f;g, where

SŒF=w� D fs.a=w/ j s 2 S and a 2 F.s/g;

A sentence ' is said to be true in M if the team f;g of the empty assignment satisfies
', i.e., M ˆf;g '. We say that a formula ' is a logical consequence of a set � of
formulas provided, for all models M and all teams S on M, if M ˆS  for all 2 � ,
then M ˆS ' . We write  ˆ ' for f g ˆ '. If ' ˆ  and  ˆ ', then we say
that ' and  are logically equivalent, in symbols ' �  .

For any team S on a model M and any set V � Var of variables, the set S � V D
fs � V W s 2 Sg is called a team on V . It is straightforward to check that our logic
IndS has the Locality Property and the Empty Team Property:

(Locality Property) If S � Fv.'/ D S0 � Fv.'/, then M ˆS ' ” M ˆS0 '.
(Empty Team Property) M ˆ; ' for all models M.

We refer the reader to [11, 16, 24, 25, 48] for other properties of the logic. In our
formalization of Arrow’s Theorem, most formulas will have free variables only from
the set VC D fx1; : : : ; xn; yg of the distinguished variables that we fixed. By the
Locality Property, in most cases, it is then sufficient to consider teams on the set
VC only. These teams, as discussed, are in one-to-one correspondence to the sets
of profiles together with a preference aggregation rule (which may or may not be a
function).

We say that a formula of IndS is first-order, if it does not contain any atoms of
dependence and independence. First-order formulas have the Flatness Property:

(Flatness Property) M ˆS ' if, and only if, M ˆfsg ' for all s 2 S:

For any first-order formula ', we write :' for the (first-order) formula inductively
defined as follows:

:.˛/ WD :˛ :. ^ �/ WD : _ :� :.8x'/ WD 9x:'
:.:˛/ WD ˛ :. _ �/ WD : ^ :� :.9x'/ WD 8x:'

where ˛ is an atomic first-order formula. The reader is invited to check that for any
first-order formulas ' and  , the following clause holds:

M ˆS :' _  ” for all s 2 S; if M ˆfsg '; then M ˆfsg  : (3)

In this sense, the formula :' _  , abbreviated as ' 	  , expresses a type of
classical material implication that will play a role in the sequel.
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It is known that independence logic has the same expressive power as existential
second-order logic (˙1

1 ) [11]. Therefore, all ˙1
1 -properties of social choice theory

can be expressed in our logic. In what follows, we will demonstrate how to express
the properties needed to prove Arrow’s Theorem.

Our goal is to find a set of formulas �Arrow expressing the assumptions of
Arrow’s Theorem and a first-order formula �D expressing that there is an Arrovian
dictator such that �Arrow ` �D. That is, �D is derivable in independence logic
using the assumptions in �Arrow. Due to its strong expressive power, the full
independence logic is not axiomatizable (see [16] and also [25]). However, the
first-order consequences of IndS are axiomatizable. A complete natural deduction
system for the first-order consequence relation over sentences of IndS was given
in [16]. More recently, Kontinen [23] generalized this result to open formulas by
adding an extra predicate symbol to the signature. Our main goal in this section is
to demonstrate that Arrow’s Theorem not only can be formalized in IndS, but also
can be derived syntactically using the system of [16] and [23].

5.2 Expressing Arrow’s Conditions

There are three types of properties that we need to express in order to formalize
Arrow’s Theorem. The first type consists of properties that do not involve any
atoms of dependence or independence. These are expressible using first-order
formulas only. The second type is intended to capture the notion of dependence
from Section 3. The third type captures the notion of independence from Section 4.

First-Order Properties
The first step is to find formulas guaranteeing that the domain contains all linear

rankings of the set of candidates X. Let �DM of be the following set of sentences:

(Domain Requirement)

˚9w.ER.w// j R 2 L.X/
� [ ˚8w

_
fER.w/ j R 2 L.X/g�

[ ˚8w8u
�
.ER.w/ ^ ER.u// 	 .w D u/

� j R 2 L.X/
�

[ ˚8w
^

f:ER.w/ _ :ER0.w/ j R;R0 2 L.X/ and R ¤ R0g�

Any model M of �DM has the property that (1) each linear ranking R 2 L.X/
corresponds to a unique element e in the model and (2) each element e of the model
corresponds to a unique ranking R 2 L.X/.

The next step is to characterize the intended meaning of the unary predicates Rab.
Recall that the atomic formula Rab.xi/ is intended to express the property that voter
xi ranks a above b. Let �RK be the following set of sentences:

(Ranking)
[

P2L.X/

f8w
�
.EP.w/ 	 Rab.w// ^ .Rab.w/ 	 EP.w//

� j a P bg

It is not hard to see that for any model M of �DM [ �RK and any a; b 2 X, the
interpretation of the predicate Rab is RM

ab D fP 2 L.X/ j a P bg: Thus, any model
M of �DM [ �RK is an intended LX-model for IndS. Note that the order-theoretic
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properties of the relations are logical consequences of �DM [ �RK . For instance, if
M is a model of �DM [ �RK , then the following formula that defines transitivity is
true:

8w
�^

f.Rab.w/ ^ Rbc.w// 	 Rac.w/ j a; b; c 2 Xg
�

We introduce the following notation to express strict preference and indifference,
respectively:

(Strict preference) For each a; b 2 X, let Pab.w/ WD Rab.w/ ^ :Rba.w/
(Indifference) For each a; b 2 X, let Iab.w/ WD Rab.w/ ^ Rba.w/

Thus, Pab.xi/means that voter xi strictly ranks a above b and Iab.xi/means that voter
xi is indifferent between a and b. Similarly, Pab.y/ means that society strictly ranks
a above b and Iab.y/ means that the society is indifferent between a and b.

Another property that is expressible using only first-order formulas is Unanimity.

(Unanimity) �U WD
^

f.Pab.x1/ ^ � � � ^ Pab.xn// 	 Pab.y/ j a; b 2 Xg.

To see why the above formula expresses Unanimity, suppose that SF is a team
induced by a preference aggregation function F. If M ˆSF �U , then for each
a; b 2 X, we have M ˆSF .Pab.x1/ ^ � � � ^ Pab.xn// 	 Pab.y/. According to
equation (3), this means that for all a; b 2 X and all sR;F 2 SF,

if M ˆfsR;Fg Pab.x1/ ^ � � � ^ Pab.xn/; then M ˆfsR;Fg Pab.y/:

Unpacking the above definitions gives us the definition of Unanimity for a pref-
erence aggregation function F: For all candidates a; b 2 X, and all profiles R D
.R1; : : : ;Rn/ 2 dom.F/, if a Pi b for all voters xi, then a PF.R/ b.

Dependence Properties
The first dependence property we will express concerns the functional depen-

dence of the group decision on the voters’ rankings. In our setting, this non-trivial
property is easily expressed using a simple dependence atom:

(Functionality of Preference Aggregation Rule) �F WD D.x1; : : : ; xn; y/

Recall that a team S on a model M satisfies �F iff for any two assignments s; s0 2 S,

if s.xi/ D s0.xi/ for all 1 � i � n, then s.y/ D s0.y/:

To see that any team SG induced by a preference aggregation function G satisfies
�F, the key observation is that if s; s0 2 SG, then s D sR;G and s0 D sR0 ;G for some
profiles R;R0 2 dom.G/. If sR;G.xi/ D sR0 ;G.xi/ for all 1 � i � n, then R and
R0 are the same profile, and, since G is a function, sR;G.y/ D G.R/ D G.R0/ D
sR0;G.y/. We leave it for the reader to check that, conversely, any team satisfying �F

is associated with a preference aggregation function.
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As we argued in Section 3, the notion of dependence found in social choice
theory goes beyond simple functional dependence of the group decision on the
voters’ inputs. The principles from Section 3 are defined to ensure that properties
of the group ranking depend only on properties of the voters’ rankings. To express
this stronger form of dependence, for any first-order formulas '1; : : : ; 'k;  , we
introduce a new formula D.'1; : : : ; 'k;  /. To define the semantics of this formula
we need some notations. Suppose that � is a set of first-order formulas and s; s0 are
two assignments for a model M. We write s 
� s0 when

for all � 2 � ;M ˆfsg � if, and only if, M ˆfs0g �:

The semantics for D.'1; : : : ; 'k;  / is given by the clause:

• M ˆS D.'1; : : : ; 'k;  / iff for all s; s0 2 S, if s 
f'1;:::;'kg s0, then s 
f g s0.

Without going into any detail, we remark that this new formula D.'1; : : : ; 'k;  / is
definable in our logic IndS, as

D.'1; : : : ; 'k;  / � 9w1 : : : 9wk9u9v09v1
�

D.w1; : : : ;wk; u/^ D.v0/^ D.v1/

^ .v0 ¤ v1/ ^
k̂

iD1

�
�.wi; v0; v1/ ^ ı.wi; 'i; v0; v1/

� ^ �.u; v0; v1/ ^ ı.u;  ; v0; v1/
�
;

where �.v; v0; v1/ WD .v D v0/ _ .v D v1/ and

ı.v; �; v0; v1/ WD �
� 	 .v D v1/

� ^ �:� 	 .v D v0/
�
:

Now, using this generalized dependence formula, we can state IIA in our logic.

(Independence of Irrelevant Alternatives)

�IIA WD
^

f D.Rab.x1/;Rba.x1/ : : : ;Rab.xn/;Rba.xn/;Rab.y// j a; b 2 Xg:

To see that this corresponds to binary independence, note that

if sR;F.xi/ D Ri 2 RM
ab , sR0;F.xi/ D R0

i 2 RM
ab and

sR;F.xi/ D Ri 2 RM
ba , sR0;F.xi/ D R0

i 2 RM
ba; then .Ri/fa;bg D .R0

i/fa;bg;

where R D .R1; : : : ;Rn/ and R0 D .R0
1; : : : ;R

0
n/.

Remark 1 (Alternative Definitions of IIA). One may be tempted to simplify the
definition of IIA as follows:

� 0
IIA WD

^
f D.Rab.x1/; : : : ;Rab.xn/;Rab.y// j a; b 2 Xg
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This formulas says that, for each pair of alternatives a; b 2 X, the truth of Rab.y/
depends only on the truth of Rab.x1/; : : :Rab.xn/.

Suppose that SF is a team on a model M induced by a preference aggregation
function F that satisfies the formula D.Rab.x1/; : : : ;Rab.xn/;Rab.y//. Then, for any
sR;F; sR0;F 2 SF,

if sR;F.xi/ D Ri 2 RM
ab , sR0;F.xi/ D R0

i 2 RM
ab for all 1 � i � n;

then F.R/ 2 RM
ab , F.R0/ 2 RM

ab;

where R D .R1; : : : ;Rn/ and R0 D .R0
1; : : : ;R

0
n/. While this does express a sense

in which the social ranking of a and b depends on the individual rankings of a and
b, it does not express Arrow’s IIA property from Section 3. In particular, the above
property is more demanding than binary independence. To see why, suppose that a
team S contains two assignments sR;F and sR0;F , where

• R D .R1; : : : ;Rn/ with for all i, a Ii b; and
• R0 D .R0

1; : : : ;R
0
n/ with for all i, a P0

i b.

Since a Ii b is defined as a Ri b and b Ri a, a P0
i b is defined as a R0

i b and b 6R0
i a, it

is true that for all i, Ri 2 RM
ab iff R0

i 2 RM
ab. If �IIA is satisfied in the team, this would

require that F.R/2 RM
ab iff F.R0/2 RM

ab. However, since for all 1 � i � n,

.Ri/fa;bg D f.a; b/; .b; a/g ¤ f.a; b/g D .R0
i/fa;bg;

binary independence does not impose any constraints on the social ranking of a
and b.

We leave a full discussion of different versions of IIA, including a formalization of
m-ary independence and a derivation in our logic of Blau’s Theorem mentioned in
Section 3, for an extended version of this paper.

We conclude this subsection by finding a formula that expresses the existence
of an Arrovian dictator. The existence of an Arrovian dictator means that there is a
strong form of dependence of the social outcome on a single voter. In particular, if
xd is an Arrovian dictator, then all of xd’s strict rankings are reflected in the social
ranking. This is characterized by the following first-order formula:

• �D0 .xd/ WD
^

a;b2X

.Pab.xd/ 	 Pab.y//.

To express that there exists a dictator among the n voters, we need a new
connective: The intuitionistic disjunction, denoted by

>

, whose semantics is given
by the clause:

• M ˆS '

>

 iff M ˆS ' or M ˆS  .

Without going into any detail, we remark that the intuitionistic disjunction is
definable in our logic IndS:

'

>

 � 9w9u
�

D.w/^ D.u/ ^ �
.w D u/ _ '� ^ �

.w ¤ u/ _  ��
;
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where w; u … Fv.'/ [ Fv. /. The following formula expresses the existence of an
Arrovian dictator among the n voters:

(Dictator) �D WD
n>

iD1
�D0 .xi/.

Independence Properties
As explained in Section 4, a key assumption in Arrow’s Theorem is the Universal

Domain condition. This is characterized by the All Rankings condition and the
Independence condition. Our logic IndS can express these two properties:

(All Rankings) �AR WD
^

f8u.u � xi/ W 1 � i � ng
(Independence) �I WD

^ ˚hxjij¤i ? xi W 1 � i � n
�

To see that �AR corresponds to the All Rankings condition, let M be a model and
SF be a team on M induced by a preference aggregation function F. Suppose that
M ˆSF �AR. Then, for each voter xi, we have M ˆSF.M=u/ u � xi. The value of
u ranges over all possible elements of the domain of M. Since the domain of (an
intended model) M is the set of all (linear) rankings, the values of u range over
all (linear) rankings. The inclusion atom ensures that each such (linear) ranking
must occur in the team SF as a value for the voter xi. That is, for each ranking
R 2 dom.M/, there is an s 2 SF such that s.xi/ D R. This is exactly the All ranking
property. The correspondence between �I and the Independence condition is more
straightforward, so we leave it for the reader to verify. Note that in our formalization
of the Universal Domain assumption, we make essential use of the dependence and
independence atoms.

5.3 Arrow’s Theorem

There are two additional necessary assumptions for the proof of Arrow’s Theorem.
The first is that there are at least three candidates (i.e., jXj � 3). Indeed, if
there are only two candidates, then majority rule satisfies Unanimity, Independence
of Irrelevant Alternatives, Non-Dictatorship, and Universal Domain (cf. May’s
Theorem [28] for a characterization of majority rule). This is not a property that
can be expressed in our logic. Rather, it is an implicit assumption built into the
definition of our logic, as we have fixed a set X containing at least three alternatives
and assumed that our signature LX has predicate symbols Rab for each pair a; b 2 X.

The second assumption is that there are only finitely many voters. It can be shown
that Arrow’s Theorem does not hold (if the Axiom of Choice is assumed) when there
are infinitely many voters (see [10, 22]). However, there are analogues of Arrow’s
Theorem for countably many voters ([46, Chapter 6] and [18]). Again, this is an
assumption that is built into the definition of our logic. In the above presentation
of our logic IndS, we started by distinguishing a finite set VC D fx1; : : : ; xn; yg
of variables. The fact that VC is a finite set of variables was implicitly used when
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we showed that the Arrow conditions are expressible in our logic. In particular, our
logic IndS is finitary and we do not see a way to define the propositional dependence
formula D. N'; / when N' is an infinite sequence of formulas.

A complete discussion of the different ways in which these last two assumptions
can be formally represented in independence logic will be left for an extended
version of this paper. For the remainder of this paper, we assume that our logic IndS
satisfies the above two assumptions which are needed to prove Arrow’s Theorem.

Theorem 3 (Arrow’s Theorem, semantic version). �Arrow ˆ �D, where �Arrow D
�DM [ �RK [ f�U; �F; �IIA; �AR; �Ig.

The proof of this theorem follows by adapting the standard proofs of Arrow’s
Theorem (see, for instance, [12] or [1] for a category-theoretic perspective). In the
remainder of this section, we will demonstrate that Arrow’s Theorem can also be
derived syntactically in the natural deduction system of [16] and [23].

We write � ` ' if the formula ' can be derived from the set � of formulas in
the natural deduction system given in [16] and [23]. 8

Theorem 4 ([16, 23]). If ' is a first-order formula and � a set of formulas of
independence logic, then we have � ˆ ' iff � ` '.

Unfortunately, the above completeness theorem cannot be directly applied to
Theorem 3 to show that Arrow’s Theorem is derivable in our logic IndS. The
problem is that the formula �D, which expresses the existence of an Arrovian
dictator, is not a first-order formula. Nonetheless, it is possible to transform the
formalization of Arrow’s Theorem so that we can apply Theorem 4.

Consider a unary connective 
, called weak classical negation, whose semantics
is given by the clause:

• M ˆS 
 ' iff M 6ˆS ' whenever S ¤ ;.9

We invite the reader to check the following crucial fact. Note that since our logic
has the empty team property, the additional condition “whenever S ¤ ;” in the
semantics of 
 is essential to establish this fact.

Fact 5. �Arrow ˆ �D ” �Arrow;
 �D ˆ ?.

Since the atom ? (falsum) is a first-order formula, we are almost ready to apply
Theorem 4. The remaining issue is that we need to make sure that the formula 
 �D

is definable in our original independence logic Â IndS, or, equivalently, that it is
˙1
1 .

8The interested reader can consult [16] and [23] for the details of the natural deduction system. We
do not include the system here since we are only proving the existence of a derivation of Arrow’s
Theorem rather than providing a derivation. We will take up this challenge in the extended version
of this paper.
9Note that a slightly different connective �0 with the semantics M ˆS�0 ' iff M 6ˆS ' is known
as classical negation in the dependence logic literature.
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To establish this, let us take a closer look at the formula 
 �D, which expresses
the fact that there is no dictator. Unpacking the definitions, we obtain


 �D D

n>

iD1
�D0 .xi/ �

n̂

iD1

 �D0 .xi/ �

n̂

iD1

>

a;b2X 
 .Pab.xi/ 	 Pab.y//:

This means that the problem reduces to defining the formula 
 .Pab.xi/ 	 Pab.y//
in our logic IndS. We present this translation in the following proposition, whose
proof is left to the reader.

Proposition 6. 
 .Pab.xi/ 	 Pab.y// � 9w9u
�
.wu � xiy/ ^ Pab.xi/ ^ :Pab.y/

�
.

Now, since �A;
 �D ˆ ? and all the formulas in the set �A [ f
 �Dg are
expressible in IndS, by Theorem 4 we conclude that �A;
 �D ` ?. In order to
derive that �A ` �D, we need a weak classical negation elimination rule (
 E)
defined as follows:

'

Œ
  �

:::

? 
 E
 

We do not see how to derive this rule from the natural deduction system given in
[16, 23]. Our solution is to add this rule (which is sound) to the natural deduction
system of [16, 23]. We write � `�E ' if ' can be derived from � in this extended
system. This gives us a syntactic version of Arrow’s Theorem:

Theorem 7 (Arrow’s Theorem, syntactic version). �Arrow `�E �D.

6 Concluding Remarks

One of the goals of social choice theory is to develop group decision methods that
satisfy two main desiderata. The first is that the group decision should depend in
the right way on the voters’ opinions. The second is that the voters should be free
to express any opinion, as long as it is an admissible input to the group decision
method. Impossibility theorems, such as Arrow’s Theorem, point to an interesting
tension between these two desiderata. Properties of group decision methods that
ensure that group decisions depend on voters’ opinions and that the voters’ opinions
are independent cannot be simultaneously satisfied. We argued that dependence and
independence logic offers an interesting new perspective on this aspect of social
choice theory.

Our main focus in the chapter was Arrow’s ground-breaking theorem. We
developed a version of independence logic that can express Arrow’s properties of
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Table 3 An example of the
reasoning of Arrow’s
Theorem.

x1 x2 y

s1 a P1 b P1 c c P2 b P2 a b P a I c

s2 a P0

1 c P0

1 b c P0

2 b P0

2 a ??

preference aggregation functions. We then proved that Arrow’s Theorem is derivable
in a natural deduction system for the first-order consequences of our logic. Our work
highlights a number of topics that deserve further study.

The most pressing topic is to find a derivation of Arrow’s Theorem in the natural
deduction system for our logic. This would not only lead to a potentially new proof
of Arrow’s Theorem, but it could also identify interesting patterns of reasoning used
throughout the social choice literature. To illustrate, consider the following example.
Suppose that S D fs1; s2g is a team on a model M for the set V D fx1; x2g of two
voters and the set X D fa; b; cg of three candidates. The assignments are given in
Table 3.

Assuming that S satisfies Unanimity and IIA, the question is: What are the
possible social ranking for s2 (i.e., what are the possible values for s2.y/?). Since
Unanimity holds for S, i.e., M ˆS �U , we have M ˆfs2g Pcb.x1/^ Pcb.x2/ 	 Pcb.y/.
From Table 3 we know that M ˆfs2g Pcb.x1/ ^ Pcb.x2/, thus we must conclude that
M ˆfs2g Pcb.y/, i.e., s2.y/ 2 PM

cb.
Now, since IIA holds for S, i.e., M ˆS �IIA, we have

M ˆS D.Rac.x1/;Rca.x1/;Rac.x2/;Rca.x2/;Rac.y// (4)

and

M ˆS D.Rba.x1/;Rab.x1/;Rba.x2/;Rab.x2/;Rba.y// : (5)

Let us examine (4). By examining Table 3, we have

M ˆfs1g Rac.x1/ ^ :Rca.x1/; M ˆfs2g Rac.x1/ ^ :Rca.x1/;

M ˆfs1g :Rac.x2/ ^ Rca.x2/ and M ˆfs2g :Rac.x2/ ^ Rca.x2/:

Thus, s1 
fRac.x1/;Rca.x1/;Rac.x2/;Rca.x2/g s2. Hence, we conclude that s1 
fRac.y/g s2.
Now, since M ˆfs1g Rac.y/, we obtain M ˆfs2g Rac.y/, meaning s2.y/ 2 RM

ac. By
a similar reasoning, since, s1 
fRba.x1/;Rab.x1/;Rba.x2/;Rab.x2/g s2, we conclude from (5)
that s1 
fRba.y/g s2. Thus, s2.y/ 2 RM

ba.
Putting everything together, we have s2.y/ 2 PM

cb and s2.y/ 2 RM
ac \ RM

ba. If,
in addition, the team satisfies the transitivity axiom, then s2.y/ cannot be assigned
any element of the domain of M. The general approach is to use the dependence
and independence properties to generate constraints on the group decision. These
constraints may or may not be jointly satisfiable, depending on the form of the group
decision (e.g., whether the group decision is a ranking).
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A second topic for further investigation is to explore to what extent our logic
can be a unifying framework to reason about principles of group decision making.
Our analysis has identified three types of dependence found in the social choice
literature. Suppose that w1; : : : ;wk and v are variables, and ' is a first-order
formula.

1. D.w1; : : : ;wk; v/: The value assigned to v is completely determined by the values
assigned to the wi.

2. D.'.w1/; : : : ; '.wk/; '.v//: The truth value of '.v/ is completely determined by
the truth values of the '.wi/.

3. .
k̂

iD1
'.wi// 	 '.v/: If each of the wi satisfy ', then v must also satisfy '.

The logic from Section 5 is ideally suited to explore the relationship between these
different levels of dependence, especially in conjunction with the independence
properties discussed in Section 4. We further conjecture that our logic can capture
the reasoning underlying many results related to Arrow’s Theorem (e.g., the Muller-
Satterthwaite Theorem [32], Wilson’s Theorem [50], the Gibbard-Sattherthwaite
Theorem [13, 41], and versions of Arrow’s Theorem for an infinite population
[10, 22]).

Finally, it is important to compare our formalization of Arrow’s Theorem with
other approaches using modal logic [2, 8, 47], first-order logic [15], and computer-
aided proofs [45]. A complete comparison with these different logics for social
choice will be left for future work.
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