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Abstract This chapter is an attempt at clarifying the current scene of sometimes
competing action logics, looking for compatibilities and convergences. Current par-
adigms for deliberate action fall into two broad families: dynamic logics of events,
and STIT logics of achieving specified effects. We compare the two frameworks, and
show how they can be related technically by embedding basic STIT into a modal
logic of matrix games. Amongst various things, this analysis shows how the attrac-
tive principle of independence of agents’ actions in STIT might actually be a source
of high complexity in the total action logic. Our main point, however, is the com-
patibility of dynamic logics with explicit events and STIT logics based on a notion
that we call ‘control’—and we present a new system of dynamic-epistemic logic
with control that has both. Finally, we discuss how dynamic logic and STIT face
similar issues when including further crucial aspects of agency such as knowledge,
preference, strategic behavior, and explicit acts of choice and deliberation.

1 Introduction: Logical Frameworks for Agency

The STIT logic of Belnap et al. (2001) and its variants have proven fruitful tools
to help philosophers and computer scientists explore their intuitions about agency
and social interaction. These logics provide a framework to reason about choices,
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abilities and actions of agents, all placed in a temporal setting. And further is-
sues lie just below the surface: what agents know or believe at the time of choice,
how they act based on preferences, and engage in deliberate strategic interaction
(cf. Horty 2001).

But STIT is not the only game in town. Many logical paradigms are active in the
above territory, and they often show clear similarities. This calls for analysis and
reflection. For instance, van Benthem and Pacuit (2006) relate the major varieties
of epistemic temporal logics, coming frommathematical logic, computational logic,
and studies of agency. Continuing in this line, van Benthem et al. (2009) prove
representation theorems linking dynamic-epistemic models with epistemic-temporal
ones, making it possible to enlist ideas from one logic in the service of the other.
In the case of STIT, too, much has been done to clarify its connections with other
frameworks. In fact, Belnap et al. (2001) already pointed out links with earlier work
of Chellas (1992), to which one can add the neighborhood logics of ability in (Brown
1988, 1992). Moreover, connections have been found with coalition logic (Broersen
et al. 2006b) and alternating-time temporal logic (Broersen et al. 2006a), while
Lorini and Schwarzentruber (2010) relates STIT to logics for strategic and extensive
games—a line that we will continue in this chapter (cf. also Herzig and Lorini 2010).
Finally, Ciuni and Zanardo (2010) shows how STIT extends well-known logics of
branching time.

Our aim in this chapter is to continue in the latter vein, and connect STIT models
further with modal models for action from the realm of propositional dynamic logic
(PDL), modal game logics (see van Benthem 2014), and dynamic-epistemic logic
DEL (van Benthem 2011). We start by addressing an initial barrier to making any
comparison between these different logical frameworks.

STIT logics are primarily intended as logics of ontic freedom and indeterminacy
while the logical systems we discuss in this chapter are focused on epistemic uncer-
tainty (i.e., knowledge about what will happen next). The heart of our comparison
is the simple observation that the basic STIT modality turns out to be precisely
the “knowledge” modality found in many epistemically-oriented logical systems.
Importantly, however, we are not suggesting that all discussion about “agency” and
agents making choices in an indeterministic world can or should be replaced with
an analysis of what the agents know about their own choices and the consequences
of their actions in an indeterministic world, or vice versa. Our point is simply that
similar logical frameworks are open to different interpretations. The goal is not to
argue for the primacy of any single interpretation, but rather to demonstrate how two
different perspectives on modeling rational agency can lead to similar insights. This
is in line with a broader goal. The arena of logics for agency appears to be moving
from an initial stage of a “Battle of the Sects” to a more detached understanding of
both similarities and relative advantages of different paradigms, leading to a more
unified sense of purpose and methodology.
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2 Preliminaries: The STIT Framework

In this section, we introduce the basic STIT framework. We will be very brief, only
touching on the key notions we need later in this chapter. For more information, the
reader is invited to consult (Horty 2001; Belnap et al. 2001; Horty and Belnap 1995;
Balbiani et al. 2008).

STIT structuresSTITmodels are based on branching-time frames, structures 〈T,<〉
where T is a nonempty set of “moments”, and < is a strict partial order on T
without backwards branching: for all m, m′, m′′, if m′ < m and m′′ < m, then either
m′ ≤ m′′ or m′′ ≤ m′ (where x ≤ y iff x < y or x = y). A history is a maximal
linearly ordered subset of T . Let Hist denote the set of all histories and for t ∈ T ,
Ht = {h ∈ Hist | t ∈ h} is the set of histories containing moment t .

At each moment, there is a choice available to the agent. Let A be the set of
agents. Formally, the choices available to agent i at moment t are represented by a
partition Choicet

i on the set Ht of histories containing t . Let Choicet
i (h) denote the

cell containing h. Since Choicet
i is a partition, we have for each i ∈ A and t ∈ T ,

Choicet
i �= ∅ and ∅ �∈ Choicet

i . In addition, the choice partitions of the agents must
satisfy one additional condition:

Independence For all t ∈ T and all st : A → ℘(Ht ) with st (i) ∈ Choicet
i ,⋂

i∈A st (i) �= ∅.
Now we define a STIT model as a tuple 〈T,<,A, Choice, V 〉, where 〈T,<〉 is

a branching-time frame, A is a finite set of agents, Choice is a function assigning
to each i ∈ A and t ∈ T a partition on Ht satisfying Independence, and V
is a function assigning to each atomic proposition a set of history/moment pairs
(V : At → ℘(T × Hist)).

STIT language Let At be a set of atomic propositions. The STIT language is the
smallest set of formulas generated by the following grammar

p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | �ϕ

where p ∈ At and i ∈ A. Additional boolean connectives (∨,→,↔) are defined
as usual. Further, 〈i stit〉ϕ is the dual modality ¬[i stit]¬ϕ and ♦ the dual ¬�¬ϕ.
The interpretation of [i stit]ϕ is that “agent i sees to it that ϕ is true” and the historic
necessity �ϕ means that “ϕ is true at all alternative histories”.

STIT Semantics LetM = 〈T,<,A, Choice, V 〉 be a STITmodel. Truth of a STIT
formula ϕ is defined inductively as follows, at pairs t/h of histories h and moments
t on them:

• M, t/h |= p iff t/h ∈ V (p)

• M, t/h |= ¬ϕ iff M, t/h �|= ϕ

• M, t/h |= ϕ ∧ ψ iff M, t/h |= ϕ and M, t/h |= ψ

• M, t/h |= �ϕ iff M, t/h′ |= ϕ for all h′ ∈ Ht

• M, t/h |= [i stit]ϕ iff M, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)
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In addition, one sometimes defines an additional STIT operator (the so-called “de-
liberative STIT”):

• M, t/h |= [i dstit]ϕ iff M, t/h′ |= ϕ for all h′ ∈ Choicet
i (h) and there is a

h′′ ∈ Ht such that M, t/h′′ |= ¬ϕ

This modality is definable in the basic language: [i dstit]ϕ := [i stit]ϕ ∧ ♦¬ϕ.
A number of other STIT-operators can be found in the literature. For example, the
“achievement STIT operator” (see Horty and Belnap 1995, Sect. 2.2 for a definition
and discussion) and the “next time STIT operator” (Broersen 2011) both make use
of the underlying past and future time structure.

Logic and axiomaticsThemodels and language are onemajor aspect of current uses
of STIT, as a style of representing action semantically. However, there is also the issue
of syntactic proof rules for reasoning about action. The following axiomatizationwas
proven sound and complete for the class of all STIT models in (Xu 1995; Balbiani
et al. 2008):

• The S5 axioms for � and [i stit]: ©(ϕ → ψ) → (©ϕ → ©ψ), ©ϕ → ϕ,
©ϕ → © © ϕ, ¬ © ϕ → ©¬ © ϕ, for © ∈ {�, [i stit]}

• �ϕ → [i stit]ϕ
• (∧

i∈A ♦[i stit]ϕi
) → ♦

(∧
i∈A[i stit]ϕi

)

• Modus Ponens and Necessitation for �.

It will be clear that these axioms do not reflect, let alone enforce, any particular
view of time, whether branching or linear. This is no accident. The basic ideas of
STIT seem compatible with about every major temporal logic that is on the market.

Now that we have all major components of STIT on the table, we will discuss
its semantics and axiomatics in relation to other approaches for studying agency
coming from the “dynamic logic family”. We will not define these other frameworks
in any detail, but refer the reader to the literature on dynamic logic, game logics, and
dynamic-epistemic logics cited in this chapter.

3 Modeling Choice Situations

3.1 The Modal Heart of Choice

Abstracting from the temporal component that could come from any existing frame-
work, the heart of STIT-style choice is a very simple S5 logic.1 A STIT choice
scenario for a set of agents A is a tuple M = 〈W, {∼i }i∈A, V 〉, where W is a
nonempty set, for each i ∈ A, ∼i is an equivalence relation on W (we write [w]i

1 An earlier modal analysis of STIT scenarios can be found in Herzig and Schwarzentruber (2010),
Balbiani et al. (2008) and follow-up literature—but in this chapter, we will eventually choose a path
of our own.
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for the equivalence class of w under ∼i ) and V is a valuation function. We focus on
two agents (A = {1, 2}) for convenience in what follows. STIT choice scenarios are
standard multi-agent S5 models, and so a simple modal language describes them:
for each i ∈ A, use ‘[ i ]’ for the modality matching the relation ∼i and ‘E’ for
the existential modality.2 The Independence assumption above corresponds to the
validity of the following product axiom:

(E[ 1 ]ϕ ∧ E[ 2 ]ψ) → E(ϕ ∧ ψ)

By standard frame correspondence, this says that any pair of choices for the two
agents overlap.

The key idea of STIT in these models may be called control: the equivalence
relations represent the extent to which agents control outcomes by their choices. The
product axiom says that no agent can prevent any other agent frommaking any of her
choices. There is more to this condition than meets the eye. For instance, assume that
agent 1 has a singleton choice somewhere. Since 2’s choices must always overlap
with this singleton, and different choices are disjoint, it follows that 2 has only one
choice set.

The logic of these models is many-agent S5 plus the product axiom. In this basic
system, we can derive interesting facts, such as

[ 1 ][ 2 ]ϕ ↔ [ 2 ][ 1 ]ϕ ↔ Uϕ

where U is the universal modality dual to E .3 In slightly extended modal languages,
more can be proved. For instance, the previous comment about singleton choices
amounts to the validity of ([ 1 ](ϕ ∧ ¬Dϕ) ∧ E[ 2 ]ϕ) → Uϕ, where Dϕ is the
difference modality true at a world w if there is a v �= w such thatM, v |= ϕ. Thus,
the product axiom packs a lot of punch.

So, basic STIT logic is a nice simple multi-S5-extension. This first natural con-
nection with modal logic shows that we are at least generally in the same world as
modal logics of action.4

2 Truth for these operators is defined as usual: M, w |= [ i ]ϕ iff for all v ∈ W , if w ∼i v then
M, v |= ϕ, and M, w |= Eϕ iff for some v ∈ W , M, v |= ϕ.
3 As observed in Balbiani et al. (2008), this principle can also function as a product axiom by
itself. Also inter-derivable with our version of the product axiom is the stronger-looking (E[ 1 ]ϕ ∧
E[ 2 ]ψ) → E([ 1 ]ϕ ∧ [ 2 ]ψ)., for which Roberto Ciuni has proposed an interesting epistemic
interpretation.
4 These simple modal equivalence models show up when studying many aspects of rational agency:
they work for specifying ranges of knowledge, issues in the logic of questions, etc.
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3.2 An Initial Comparison with Modal Logics of Action

Broadly speaking, there are two general views about how to model the actions avail-
able to an agent. The first is the view found in STIT as presented in Sects. 2 and
3.1 above. Let us now consider the second view, that of modal and dynamic logics
of actions (see Harel et al. 2000 for a discussion), which is also the main model
of action in Situation Calculus (Reiter 2001), Automata Theory, Decision Theory
and Game Theory. Its general idea is to think of actions as transitions moving be-
tween different “states of the system”. This happens again in standard modal models
M = 〈W, {Ra}a∈Act, V, s〉, with worlds in W viewed as states of some process (s
is the initial state), and labeled transition relations Ra ⊆ W × W for each action
label a ∈ Act. Each relation Ra indicates the possible executions of the basic ac-
tion a. Modal languages over these models then describe possible effects of actions,
while real dynamic logics also have an explicit language for speaking about complex
actions defined bymeans of sequential composition, conditional choice, or iteration.5

We use the phrase PDL scenarios for this family of paradigms.
At a first glance, these are very different views. While both perspectives

acknowledge variety in possible outcomes of actions, they also have structure that the
other lacks. In action-labeled approaches, the primary emphasis is on actions or events
themselves and their properties, of which a description of outcome states seems only
one. For instance, dancing a tango involves many features in addition to its end state:
wewould trivialize the process by just having an end state of ‘having danced a tango’.
On the other hand, many daily actions expressed in natural language are largely de-
finedby just post-conditions on their outcomes,witness ‘opening the door’ or ‘posting
a letter’. In that sense, STIT’s approach to describing actions is very natural.

We now proceed to a more technical comparison of the two styles. But to do so,
we need some further touches. For a start, our simple modal picture of STIT choice
situations takes out all of temporal structure. However, for a comparison with PDL,
it seems more concrete to view the above ‘worlds’ as steps emanating from some
root toward next states in a tree, a snap-shot of an ongoing decision process. The
actual world is then the actual transition from the root to some next state:

5 This is just a first intuitive pass. We will have occasion to spell out things further later on.
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What this suggests is introducing a richer modal language for basic STIT, referring
also to the two stages: ‘now’ and ‘next’. This motivates the NEXT-STIT of Broersen
(2011), and we will also encounter this setting in the DEL-style logic of Sect. 6.
But right now, we continue in a semantic mode with worlds viewed intuitively as
transitions.

Likewise, in order to compare STIT with PDL, we must also clarify the intuitive
interpretation of PDL-style models. In particular, there are two broad views in the
literature. One is that of transition models as abstract processes or machines, the
other as unraveled temporal executions. On the process view, worlds are states in a
process, and the relations indicate possible transitions. On this view, the model is a
sort of automaton, perhaps in a very compact form, where many different transition
relations can go from one state to the same next state. By contrast, the second view of
PDL-models is one of unraveled temporal execution. Intuitively, once a process starts
working, it produces a temporal universe of executions, being histories of successive
admissible actions (cf. Clarke et al. 2000; Clarke and Emerson 1981 for this view).
For the usual modal languages of action, the difference between the two views does
not matter, since the execution tree is just a bisimilar unraveling of the process. And
vice versa, we can think of a process as a sort of bisimulation-contracted essence of
what can happen in the execution tree. But in our present setting, comparing with
STIT seems to favor the temporal execution view.6

We therefore continue with the temporal view, where for simplicity, all event
labels are taken to be unique.7 Like with the above basic STIT, we will not take the
full temporal models here, but just the snapshots of a one-step action. A PDL action
scenario is a set of labeled transitions from some initial state s, each leading to a
different successor state. This can be viewed as an obvious special “one-shot” case
of the earlier-mentioned transition models.

3.3 Merging the Two Perspectives on Action

Our goal in this chapter is not to reduce STIT models to PDL models, or vice versa.
We find it more rewarding to show connections between the two perspectives leading
to merged systems.

For better focus,we startwith the single-agent case.Consider a simpleSTITchoice
situation with two states W = {w1, w2} and two equivalence classes: [w1] = {w1}
and [w2] = {w2}. Thus, there are two choices for the agent, which we label c1 and
c2, respectively. A simple corresponding PDL action scenario has two transitions
from the root state s labeled by c1 and c2, respectively:

6 However, the process view of PDL may be closer to the dynamics of agents making choices and
performing actions. We do not claim that our take in this chapter is the only way to go.
7 This uniqueness is standard modeling practice in many temporal formalisms: if histories differ at
a point, then there should be a difference in the next event.
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This seems straightforward, but we have not yet found the real structure that we
need. To get at this, consider a STIT choice situation with the same two states, but
now only one equivalence class [w1] = [w2] = {w1, w2}. Now the agent only has
one choice c. We cannot label the two transitions by c now, since that gives a PDL
model with the same event, and it is unclear how this would fit the scenario. Here
the difficulty is not that we cannot label the transitions: We can introduce different
events for them, say e and f . In fact, this makes sense even in STIT, since histories
consist of events, and as we said earlier, if two histories are different, this is because
different events take place on them. But this still does not address the matter of
the choice structure, and crucially related to this: how we interpret the branching in
our PDL model.8 What emerges here is an ambiguity in the usual talk about PDL
models. In particular, what do branchings mean? Sometimes, people talk as if these
are conscious choices a process or an agent can make, sometimes as if they are
variations that cannot be predicted. What we need to distinguish the two senses is
precisely the notion provided by STIT, that of control. In our first scenario, the two
labels c1 and c2, when added to events, divide them into two control equivalence
classes. In the second scenario, adding the label c to both e and f indicates how the
events belong to the same control class. The agent cannot choose between the events.

8 We could view the branching as “non-determinism” in PDL, but this does not clarify the issues
very much. Non-determinism usually means that a process has several options, ‘ways of doing c’,
but that is not the situation in the STIT model: it is not up to the agent to non-deterministically
chose one or the other transition.
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Action as ‘events under control’ To us, the preceding discussion suggests that it
make sense to pool ideas. PDL has labeled events, and this makes sense, if we want
to describe what happens on histories regardless of agents’ choices. But STIT adds
the notion of control, which also makes sense as a key feature of agency, and this
helps remove a potential ambiguity in thinking about PDL models. The resulting
view of actions is this:

Action = events + control

In line with this, it makes sense to merge the basic ideas of PDL and STIT into a
logic with both features. Its models can have pair labels: (event, choice) for transi-
tions, thinking of equivalence relations of control on either whole transition relations,
or on concrete state transitions. Such structures support a joint language with PDL
event modalities [ e ] and STIT modalities 〈[i]〉. We will not pursue technical details
here, since we will discuss concrete systems of this kind later in this chapter in the
modal game logics of Sect. 4, and the dynamic epistemic logic of Sect. 6. For the
moment, it suffices to note that it is quite possible to have the best of both worlds, in
combined logics that might be called “eventful STIT” or “controlled PDL”.

We end with two more general comments about this encounter.

More on interpretations of PDL The confrontation with STIT leads to some useful
clarification. We already mentioned the two main views of models as representing
‘process’ structure versus ‘execution space’. We also discussed a major ambiguity
in how one interprets branching. As a final point, we mention the issue of events
versus actions. There is a lot of loose talk in the PDL literature about action and
choice. For instance, back-and-forth clauses in bisimulation are justified by looking
at ‘internal choices’ that a process has, and one often talks about events in PDL
models as actions performed by agents.9 But really, PDL talks about arbitrary events,
all further meaning for these has to be supplied additionally in different settings. In
particular, actions by agents are events with special further structure, and if it matters,
these need to be made explicit. The above case of ‘control’ is one clear instance.10

A caveat about framework comparison In this section, we have engaged in high-
level framework comparison. But rarefied air can exaggerate ideological differences,
and it is important to also think of applied experience. In modeling practice, frame-
work differences often prove much less dramatic than expected, as is well-known
from the fact that the same real process can often be specified very happily in quite
different computational paradigms. For instance, in our setting, dealing with con-
crete scenarios of choices and actions requires an explicit modeler’s decision as to
individuating states and actions: formal frameworks themselves do not tell us how

9 The same is true in the dynamic epistemic logic literature: notice the terminology ‘action models’
versus ‘event models’ for its core update rules.
10 By itself our point is not new. Adding internal structure is crucial when modeling simultaneous
action, where one endows PDL events with internal vector structure, as in the ‘interpreted systems’
of Fagin et al. (1995) or the parallel games of van Benthem et al. (2008).
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to do that. But then, differences between STIT and PDL tools may just amount to
different legitimate decisions on how one individuates actions.11 The problem of
individuating actions has been discussed extensively in philosophy (see footnote 3
on pg. 588 of Horty and Belnap (1995) for a concise explanation), and it also shows
in modeling practice in computer science.

This brings us to an important philosophical issue which we have thus far swept
under the rug. In PDLmodels, actions are labels of transitions and this basic sorting of
transitions by their labels seems to suggest a particular ontology of actions and events.
In STIT models, there is no such sorting and, indeed, the only way to characterize
an action is by reference to the outcomes. This raises an important question for the
philosophical logician: Does adopting PDL as a logic of actions force one to take
sides in philosophical debates about the ontology of events and actions?Our response
is to bracket this question since we feel that both STIT and PDL models are open
to a wide range of philosophical interpretations, regardless of the original intended
interpretation of these logical frameworks. However, we certainly admit that this
rather mathematical “formal modeling” view is itself controversial and we welcome
(and enjoy) debates on this issue. Nonetheless, we hope that the comparative points
we are making in this chapter still make sense.

4 A Merged System: Matrix Game Logic

Now, we want to make our comparisons and merges more concrete by looking
at a concrete modal logic that already existed independently, and that turns out
to shed some additional light on the semantic and axiomatic aspects of STIT
meeting PDL.

Choices and pair events Let us return to the STIT choice situation for two agents.
There is an actual world with the choices that were actually made. It makes sense to
think of the worlds here as pairs of actions chosen. Note that each world w can be
mapped to a unique pair of equivalence classes containing it, one for each agent, and
by the product axiom, this map to pairs of equivalence classes is surjective. What
we do not know is whether the map is injective, and indeed it may not be, unless
we modify the product axiom to require that different choices for all the agents have
singleton intersections. The latter constraint says that all slack in choices has been
explained by introducing enough agents—perhaps including the ‘environment’ to
take up all remaining slack. There is some simple arithmetic involved here. Assume
that our model is finite. The product axiom with the singleton clause forces all

11 As a concrete example, suppose there are two histories h, h′ where an agent refrains from
choosing either. Presumably, refraining means she could have made a choice for h or for h′. One
way of viewing this involves three actions: choosing h, choosing h′, or ‘leaving things be’: h, h′. This
would violate the disjointness constraint of STIT. But we can also individuate events differently,
with four histories: one where h is chosen, one where h′ is chosen, and two copies of these except
for the fact that no choice was made.
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equivalence classes for agent 1 to have the same size n, as they need room for
representatives of all choices of 2. The total size will be n × k, with k the fixed
size for 2 that exists similarly. But this suggests a viewpoint in terms of “matrix
models” for joint actions that is well-known from logics of games in strategic form
(cf. Osborne and Rubinstein 1994). We will develop this analogy here, using a logic
proposed in (van Benthem 2007) that provides a particularly apt comparison for
STIT, while also doing full justice to the PDL perspective.12

4.1 Modal logic of matrix games

Games induce natural models for epistemic, doxastic and preference logics, as well
as conditional logics and temporal logics of action. See van der Hoek and Pauly
(2006) for an overview of many such systems. Our discussion just takes a small
slice.

Recall the definition of a strategic game for a set of players N : (1) a set Ai of
actions for each i ∈ N , and (2) a utility function or preference ordering on the set of
outcomes. For simplicity, one often identifies the outcomes with the set S = �i∈N Ai

of strategy profiles. Given a strategy profile σ ∈ S with σ = (a1, . . . , an), σi is the
i th projection (i.e., σi = ai ) and σ−i lists the choices of all agents except agent i :
σ−i = (a1, . . . , ai−1, ai+1, . . . , an).

Now, from a logical perspective, it is natural to treat the set S of strategy profiles
as a universe of “possible worlds”.13 Following (van Benthem et al. 2011) for the
rest of this subsection, two natural relations can be defined on these worlds. For each
σ, σ ′ ∈ S, set for each player i ∈ N :

• σ ∼i σ ′ iff σi = σ ′
i : this epistemic relation represents player i’s “view of the

game” at the ex interim stage where i’s choice is fixed but the choices of the
other players’ are unknown,

• σ ≈i σ ′ iff σ−i = σ ′−i : this relation of “action freedom” (a term taken from
Seligman (2010)) gives the alternative choices for player i when the other play-
ers’ choices are fixed.

Control can be freedom Our earlier discussion of STIT was in terms of control,
including the lack of it inside players’ equivalence classes. But in a multi-agent
perspective, one person’s lack of control is another person’s freedom, and labels can
switch easily.

This can all be packaged in a standard relational structure

M = 〈S, {∼i }i∈N , {≈i }i∈N 〉

12 What follows here has strong resemblances to earlier work by a number of authors, including
(Herzig and Lorini 2010; Balbiani et al. 2008; Lorini 2010; Lorini et al. 2009).
13 One can also have more abstract worlds in so-called ‘models of games’, as is usual in epistemic
game theory, see (Aumann 1999)—but this generality is not needed in what follows.
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with S the set of strategy profiles and the relations just defined. Adding a valuation
function interpreting a set At of atomic propositions that represent basic facts about
strategy profiles (physical, or game-internal), we get standardmulti-modal models.14

Such game models support many logical languages, from simple modal for-
malisms to ‘hybrid modal logics’, first-order logic, or even non-first-order fixed-
point logics. Cf. van Benthem (2010) and Blackburn et al. (2002) on the balance of
expressive power and computational complexity that arises in such design choices,
a topic that will return below. However, the simplest system will do for us here. In
particular, here are the key modalities for a modal logic of strategic games:

• σ |= [∼i ]ϕ iff for all σ ′, if σ ∼i σ ′ then σ ′ |= ϕ.

• σ |= [≈i ]ϕ iff for all σ ′, if σ ≈i σ ′ then σ ′ |= ϕ.

The first modality expresses the knowledge a player has once her choice is made,
and given her uncertainty about what others will do, the secondmodality refers to her
freedom of choice. As is well-known, combining the two modalities makes ϕ true
in each world of a matrix game model: [∼i ][≈i ]ϕ acts as a universal modality U .15

This reflects an earlier observation about STIT—and that is no coincidence, witness
the observations in Sect. 4.2 below.

What is the deductive power of the basicmodal logic of strategic games?Asbefore,
we restrict attention to two-player games. First, given the nature of our relations, the
separate logics are standard modal S5 for epistemic outlook and action freedom. In
addition, the interaction of these modalities validates further laws. In particular, the
above fact about the universal modality is reflected in the following law:

the equivalence [∼i ][≈i ]ϕ ↔ [≈i ][∼i ]ϕ is valid in all matrix game models.

This validity depends on, and in fact it expresses, the geometrical “grid property”
of game matrices that, if one can go on a path x ∼i y ≈i z, then there also exists
a point u with x ≈i u ∼i z. We will discuss what this feature means in some more
detail in Sect. 4.3.

This concludes our brief introduction to the modal logic of matrix games. For
details and further issues, the reader is referred to (van Benthem 2014).

4.2 STIT in Modal Matrix Logic

Given our discussion in Sect. 3, it will be evident how to translate the basic STIT
operators into our modal language of matrix games:

14 For example, a proposition pa
i might say “agent i plays action a in the current profile”—but

atomic propositions could also encode utility values for players.
15 As noted in (van Benthem 2007), another interesting feature of our models is that ‘distributed
knowledge’ DGϕ for a group of players accesses those profiles where only players outside the group
still have options.
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[i stit]ϕ := [∼i ]ϕ, �ϕ := [∼i ][≈i ]ϕ

This connection gives just the right combination of what we have called freedom
plus knowledge.

Fact 4.1. Our translation embeds STIT logic faithfully into the modal logic of full
matrix games.

Proof. First consider the direction from STIT theoremhood to modal game logic.
Our translation validates the earlier STIT axioms, where the action modality refers to
all consequences of the choice actually made, while the freedommodality looks at all
alternative histories passing through the current profile. In particular, the quantifier
combination employed in the Freedom axiom now becomes derivable through the
theorems that are derivable for the STIT modality plus the existential modality E
defined as 〈≈1〉〈≈2〉:
Fact 4.2. The formula (E[∼1]ϕ ∧ E[∼2]ψ) → E(ϕ ∧ψ) is derivable in multi-S5
plus the commutation law for the two modalities.

Conversely, to prove that the embedding is faithful, we need to refute each non-
valid STIT law in ourmatrixmodels. To do so, take anySTIT temporal counter-model
in the sense of Sect. 2, and note that it suffices to look at the current moment and
the next moments only (recall, that our STIT language does not contain temporal
modalities). Furthermore, without loss of generality, we assume that this model is
finite. More precisely, as in Sect. 3.1, we can abstract a finite two-agent basic STIT
S5-model out of the temporal structure by letting histories be worlds, and defining
agent’s equivalence relations respecting their choice partitions. Now, the historic
necessity operator is the universal modality while the two STIT modalities are the
modalities for the equivalence relations. The last step is to show that we can transform
this model into a matrix model.

If the intersections of the equivalence classes, one from each agent, are singletons,
then we are done. Otherwise, we proceed as follows. A cell is an intersection of the
agents’ equivalence classes (i.e., C = [w]1 ∩ [v]2 for some states w and v). Since
the model is finite, there are finitely many cells and each cell has only finitely many
states in them. Furthermore, by the independence assumption, each cell is non-empty.
Let m be the number of elements in the largest cell. Without loss of generality, we
can assume that all cells contain exactly m states (this may require adding copies of
states to the model).

Organize the cells so that they form a matrix where each row contains all the cells
making up a 1-equivalence class and each column contains all cells making up a
2-equivalence class. Label each cell by its position in the matrix (so, the pair (x, y)

corresponds to the cell in row x and column y). There may be more than one way
to organize the cells so that the rows correspond to a 1-equivalence class and the
columns correspond to a 2-equivalence class. Our construction does not depend on
the choice of labeling. For the remainder of the proof, fix such a r × c matrix.
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Now, construct an m × m matrix for each cell. Fix a cell C labelled with (x, y)

containing states w1, . . . , wm . Worlds in the new model with be 4-tuples (i, j, x, y)

where (i, j) denotes the position in the matrix and (x, y) denotes the cell containing
the world. Formally, let (i, j, x, y) be a copy of wi+ j−1 mod m . So, for example, if
m = 3, then the world (2, 3, x, y) is a copy of w1. Note that each row and each
column contains a copy of all the worlds in C .

The model is M = 〈W ′,∼′
1,∼′

2, V ′〉 where W ′ = {(i, j, x, y) | i, j ≤ m, x ≤
r, y ≤ c} (where r and c are the number of rows and columns respectively in the
outer matrix). We define the uncertainty relations for the agents as follows:

• (i, j, x, y) ∼0
1 (i, j ′, x, y) for all j, j ′ ≤ m

• (i, j, x, y) ∼0
2 (i ′, j, x, y) for all i, i ′ ≤ m

So ∼′
1 runs along the rows of each inner matrix, and ∼′

2 runs along the columns. We
extend this relation as follows:

• (i, j, x, y) ∼0
1 (i, 0, x, y + 1), where the addition is taken modulo m

• (i, j, x, y) ∼0
2 (0, j, x + 1, y), where the addition is taken modulo m

Let ∼′
1 and ∼′

2 be the reflexive and transitive closure of ∼0
1 and ∼0

2, respectively.
Finally, the valuation V ′ is copied from the original valuation in the obvious way.
We note the following two facts about the construction:

1. If (i, j, x, y) ∼′
1 (i ′, j ′, x ′, y′), then i ′ = i and x ′ = x . If y′ = y, then

wi+( j−1) mod m and wi+( j ′−1) mod m are both in the cell labeled by (x, y), and
so wi+( j−1) mod m ∼1 wi+( j ′−1) mod m . If y′ �= y, then wi+( j−1) mod m and
vi+( j ′−1) mod m are in different cells. However, we still havewi+( j−1) mod m ∼1
vi+( j ′−1) mod m since we assume that cells in the same row are in the same 1-
equivalence class.

2. If (i, j, x, y) ∼′
2 (i ′, j ′, x ′, y′) then j ′ = j and y′ = y. If x ′ = x , then

wi+( j−1) mod m and wi+( j ′−1) mod m are both in the cell labeled by (x, y), and
so wi+( j−1) mod m ∼2 wi+( j ′−1) mod m . If x ′ �= x , then wi+( j−1) mod m and
vi+( j ′−1) mod m are in different cells. However, we still havewi+( j−1) mod m ∼2
vi+( j ′−1) mod m since we assume that cells in the same column are in the same
2-equivalence class.

These observations show immediately that the newly constructed model is bisimilar
to the original STIT model. Hence, they satisfy the same formulas in our language.

The last thing we need to check is that the intersection of agents’ equivalence
classes are singletons. Suppose that (i0, j0, x0, y0) ∼′

1 (i ′, j ′, x ′, y′), (i0, j0, x0, y0)
∼′

1 (i ′′, j ′′, x ′′, y′′), (i1, j1, x1, y1) ∼′
2 (i ′, j ′, x ′, y′) and (i1, j1, x1, y1) ∼′

2 (i ′′, j ′′,
x ′′, y′′). Then, by construction, i ′ = i ′′ = i0, x ′ = x ′′ = x0 and j ′ = j ′′ = j1 and
y′ = y′′ = y1. Hence, (i ′, j ′, x ′, y′) = (i ′′, j ′′, x ′′, y′′), as desired.

We have shown that our translation is both correct and faithful.16 QED

16 Note that the construction given in this proof is only needed because the singleton intersection
property (the intersection of all the agents equivalence classes are singletons) is not definable in our
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This proof exploits the fact that matrix game models are close to the multi-S5
models for basic STIT defined in Sect. 3.1. Still, the geometrical matrix perspective
is useful, since it links up with a body of existing results. We will see a number of
examples as we proceed.

4.3 Complexity and Correlation

While the preceding embedding makes sense, it does embed STIT in a system whose
behavior is potentially complex. Richer modal logics of matrix games may well be
unaxiomatizable and worse. The reason is the above commutation law for the two
equivalence relations. While this may look like a pleasant structural feature of matri-
ces, its logical effects are delicate. It is well-known that the general logic of bi-modal
languages plus a universal modality on ‘grid models’ with two immediate successor
relations is not decidable, and not even axiomatizable: indeed, it is “�1

1-complete”
(cf. Halpern andVardi 1989;Marx 2007; Gabbay et al. 2003; vanBenthem and Pacuit
2006). The reason is that grid structure can be exploited to encode computations of
Turingmachines on successive rows, or geometrical “tiling problems” of known high
complexity.

Now, it is not clear whether our most basic modal game logic falls into this trap,
since ourmodels only have two equivalence relations, one horizontal andonevertical.
Indeed, its closeness to STIT may suggest that it remains decidable–even though this
does not follow from our earlier embedding result, that went in the opposite direction.
Still, Halpern and Vardi (1989) and Spaan (1990) show high complexity of modal
logics on grid models with reflexive transitive relations, using an encoding trick with
alternating proposition letters.17

This potential high complexity, while not directly threatening to STIT, does raise
an interesting issue in modeling action. A standard way of defusing high complexity
results is by allowing more models. In the present setting, the resulting structures are
general game models where certain strategy profiles may be absent. Then general
modal game logic becomes much simpler, being just multi-agent modal S5 without
any connecting axioms (van Benthem 1997).18

(Footnote 16 continued)
language. However, if the language contains group STIT operators [G stit]ϕ meaning that the group
G can see to it that ϕ is true, then the singleton intersection property is definable via the formula
[A stit](ϕ∨ψ) → [A stit]ϕ∨[A stit]ψ , whereA is the set of all agents. Furthermore, the argument
would be very different once we consider STIT formulas with temporal operators shifting moments
along histories, as is suggested in Sect. 7.
17 Such encodings also work with two equivalence relations and common knowledge in one di-
mension of the grid model, while time provides the other dimension. See van Benthem and Pacuit
(2006) for an extensive survey.
18 For a concrete counter-example, note that the formula in Fact 4.2 is not valid on such
models. Suppose that ≈i and ∼i are arbitrary equivalence relations for each i . Consider
a model where w ≈1 v and w ≈2 v′ with v �= v′, and both v and v′ are dead-
end states (i.e., we only have v ∼1 v and v′ ∼2 v′). Suppose that ϕ is true at v only
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Now this is not just a technicalmove: “profile gaps” encode something interesting,
namely correlations between behavior of agents. In a general game model, if player
i changes her move, then the only available profiles for this may now be ones where
some other player j has changed his move as well. Game theorists have studied
correlations extensively: cf. (Aumann 1987; Brandenburger and Friedenberg 2008).
But the same notion has come up in logic, since correlations provide “information
channels” where the behavior of one agent can carry information about that of an-
other (Barwise and Seligman 1997). And more recently, generalized forms of such
dependencies have become the focus of attention in “dependence logics” (Väänänen
2007). In other words, independence may be costly, and the Product Axiom that
seemed the pride of STIT may eventually stand in the way, being just an extreme
case of a more sophisticated theory of agent behavior.19

In the rest of this chapter, we look at extensions of the current framework with
features that seem essential to rational agency, and that have been the subject of study
in dynamic logics.

5 The Roles of Knowledge

Our connection betweenSTITandmatrix games introduced a notion of knowledge, of
agents that havedecided, but donot knowyetwhat the others have chosen.Knowledge
is not mentioned explicitly in STIT framework, but it seems to be lurking behind the
scenes here. In fact, it is present in more than one way: choice and action naturally
come with varieties of knowledge. Here is how this can happen, even in the simple
setting that we have considered.

Consider a one-step action. Before I have made my choice, I only know that one
of the available future histories will occur: and in that sense, the STIT tree modality
already acts as a form of knowledge about how the whole future can unfold. This
knowledge can be significant, since the tree encodes the “protocol” of all possible
runs of the current process.

Next, right after I have chosen my action, I know what I am going to do, but I still
do not know what the others will do, and this was the sort of knowledge based on
personal decisions that was made explicit in the matrix models for games of Sect. 4.

Finally, once both our actions have actually taken place, agents do know what
was chosen, if we assume that they observe these actions publicly. Knowledge from
observation of events is amajor source of information in a temporalworld. It is is often
encoded in epistemic uncertainty relations between moments of time that are used to
model information-driven processes, such as games with imperfect information (cf.
Binmore 2009; Parikh and Ramanujam 2003; Fagin et al. 1995). As for its driving

(Footnote 18 continued)
and ψ is true at v′ only. Then the antecedent is true, but the consequence is not.
19 Also relevant to the issue of generalized “profile models” is recent work by Roberto Ciuni on
connections between generalized STIT models and notions of effectivity in games, and on actions
whose effects are only given probabilistically: Ciuni (2013).
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forces, updating knowledge from public observation or more private sources is the
key topic in dynamic-epistemic logics (van Benthem 2011).

It is natural to add epistemic operators of all these sorts to logics of decision and
action, and in fact, this is happening in logics of games (cf. van Benthem 2014).
Many kinds of knowledge relevant to action scenarios are local, having to do with
what agents know temporarily as they make a choice. But more global “procedural
knowledge” about the future of the process is essential, too, and then the trees of STIT
may lose their grip. If I know something about your space of possible strategies, the
informational situation will need “STIT forests” rather than trees to distinguish the
alternatives (cf. van Benthem et al. 2009). The same complication arises in genuine
multi-agent scenarios. One cannot assume that agents know everything about others,
and to cope with this variation, again, models have to be complicated beyond the
basic STIT format.

Pursuing these matters is beyond the scope of this chaper, but explicit modeling of
knowledge seems inescapable in a serious theory of choice and action. For a discus-
sion along these lines, see Pacuit and Simon (2011) for a logical system that merges
ideas from STIT and PDL while explicitly representing the agents’ knowledge. We
see it as one virtue of our linking up STIT and PDL that experiences in the latter area
can then be enlisted for the former. Our next section will present a case study, of one
particular dynamic epistemic logic with added STIT features.

6 Dynamic Epistemic Logic Meets STIT

Temporal treeswith epistemic featuresmaybeviewed as a record of actions unfolding
over time, while marking local uncertainties (or information) that agents had. If we
want to understand the dynamics that gives rise to such a record, we need an account
of information update in a temporal universe. A typical system where PDL-style
events and knowledge come together is dynamic epistemic logic (DEL). We assume
the reader is familiar with its basics, and so, we only give the key definitions here
(see van Benthem 2011 for more details and motivation).

The basics of DEL update The basic structures are epistemic models, tuples
〈W, {Ri }i∈I , V 〉 with W a (finite) set of worlds, Ri ⊆ W × W an equivalence
relation, and V : At → ℘(W ) a valuation function marking at which worlds the
atomic propositions inAt are true. Over these models the basic language of epistemic
logic LE L can be interpreted, including universal modalities Kiϕ for “agent i knows
that ϕ. This much is completely standard.

The central idea of dynamic epistemic logic is now to describe social interac-
tion, including agents’ uncertainty about the events they witness, in so-called event
models. These are tuples E = 〈E, {Si }i∈I , pre〉 with E a (finite) set of basic events,
Si ⊆ E × E is an uncertainty relation, and pre : E → LE L assigns to each event
e ∈ E a formula that serves as a precondition for that event.
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Now, dynamic changes in agents’ information can be described by means of
product update transforming a current pointed20 epistemic modelM using the event
model E. The product model M ⊕ E = 〈W ′, {R′

i }i∈I , V ′〉 is defined as follows:

• W ′ = {(w, e) ∈ W × E | M, w |= pre(e)};
• (w, e)R′

i (w
′, e′) iff wRiw

′ and eSi e′; and
• (w, e) ∈ V ′(p) iff w ∈ V (p)

More precisely, the understanding is that M has an actual world w, while E has
an actual event e. Product update works for many epistemic scenarios, while it has
also been extended to deal with belief and preference change. The language of DEL
then adds dynamic modalities 〈E, e〉ϕ that describe at worlds w in M what is true
one step later in the product model with E and actual event e. The resulting logic of
informational events can be axiomatized completely by a compositional technique of
‘recursion axioms’ analyzing compounds 〈E, e〉Kiϕ in terms of conditional knowl-
edge that agents had before the update. The details of this are beyond our needs here,
but see van Ditmarsch et al. (2007), van Benthem (2011) for more extensive analysis.

Our aim in this section is just to show how, in line with our analysis of Sect. 3,
STIT ideas of control fit quite well in this PDL stronghold.

Extending DEL with control A first easy task is adding the earlier control rela-
tions for different agents to event models, which just requires adding equivalence
relations.21 Now we can set up a calculus of reasoning. Our dynamic-epistemic lan-
guage still has its basic event modalities 〈E, e〉ϕ, but now we can also introduce a
STIT operator

〈E, e, i〉ϕ

saying in M, w that ϕ is true in all product models (M, w) ⊕ (E, f ) for all events
f that are control equivalent to e for agent i . This is formally quite similar to an
operator that would already make sense in DEL as it stands, namely, stating the
‘observational knowledge’ that an agent has acquired after product update with the
current event model E.

The complete dynamic logic of this expanded system lies embedded in the base
logic of DEL in an obvious manner. Its laws for the new control operator will be
essentially those of STIT. But what we obtain in this way is a much richer logic
of one-step information flow plus an explicit account of agents’ choices of actions
where relevant. However, it should be noted that this logic still runs on the usual
analysis of DEL’s standard dynamic modality.

One crucial feature is that, unlike standard DEL logics, this new system does
not have a modality reflecting its dynamic control relations in the static epistemic

20 A pointed epistemicmodel is a model with a distinguished state intended to represent the “actual”
state of the world.
21 This may have to be modified when we want some events to just happen without agency. Also,
there are problems of intuitive interpretation for control in private-information scenarios, but we
ignore these here.
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base modelsM.22 One might think of this negatively as limiting the logical status of
control, reflecting its ephemeral nature.Our ownmorepositive view is that this feature
makes event models really come into their own, as carrying crucial information that
is sui generis.

While our proposal for merging enriches DEL with STIT ideas, what good does
it do in the opposite direction? One effect is that we now have a logic that describes
both steps in the fork models of Sect. 3, before and after the choice. Thus, it is a logic
of choosing and moving ahead, like the NEXT-STIT system of (Broersen, 2011).
But the main virtue is that, given the long experience in DEL, our merged system
plugs STIT into theworld of private versus public information, imperfect information
games, and much more.

Dynamifying STIT But the DEL perspective also suggests a more radical move,
affecting our view of the scenarios that motivated STIT in the first place. STIT is
a logic of deliberate choice and action, but remarkably, it does not analyze any of
these activities explicitly, recording only their outcomes.23 By contrast, the DEL
methodology follows a main principle of Logical Dynamics:

Where there is a change, there is an event.

Taking this line, can we ‘dynamify’ STIT in DEL style?What are the main events
that take place in a choice scenario? Here are the main stages as we see them:

deliberation, decision, action, and observation

In a first deliberation stage, we analyze our options, and find optimal choices.
Next, at the decision stage, we make up our mind and choose an action of our own.
Then at the action stage, everyone acts publicly, and this gets observed, something
that we can also model as a separate observation stage, though things happen simul-
taneously.

All these stages can be analyzed using DEL-style models. Perhaps the easiest is
the final stage, where an event model will do with all possible events, marking the
actual one, and giving agents the right amount of observational powers: totally public
in STIT, perhapsmoremixed in other settings. But the intermediate stage, too, invites
event models.We can have pair events with control relations, as we just introduced in
Sect. 6, and then get the matrix models of Sect. 4 as an output. Finally, modeling the
initial deliberation stage is more complex, since many factors can weigh in here that
are not represented in basic STITmodels, such as agents’ preferences over outcomes.
Still, there is a growing body of work on deliberation analyzed in terms of DEL-style
updates (van Benthem 2007; Pacuit and Roy 2011), and this might inform an account
of deliberation that seems a natural companion to any logic of “deliberate action”.

22 This makes our DEL system with control different, e.g., from DEL logics of questions with issue
relations: see van Benthem and Minicǎ (2012).
23 This output orientation on choice is of course precisely the official STIT view of actions.
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7 Further Directions

There are many follow-up topics to our analysis, of which we mention three.
The first is the addition of agents’ preferences. Clearly, this further structure is

crucial to the game logics of Sect. 4, and existing modal systems do incorporate
preferences in order to define and reason about notions like ‘best response’, Nash
equilibrium, and rational behavior generally (cf. van Benthem 2011, 2014 for such
notions analyzed in DEL). In particular, the interplay of actions and preferences has
already been studied in the matrix logics of Sect. 4, using techniques from (Liu 2012;
van Benthem et al. 2009).24

Adding preferences seems a necessity for STIT as well, since rational agency is
about best actions rather than just any actions, and agents may also prefer ensuring
ϕ rather than ψ for other reasons, including deontic norms. This need not be a
simple matter, since best action is not just a matter of, say, finding Pareto-optimal
simultaneous choices for all agents. As we know from game theory, more complex
deliberation methods are needed, such as iterated removal of dominated actions.25

All this seems a happy marriage with STIT, and indeed, many of the relevant issues
are addressed in Horty’s book (Horty 2001).

The next extensionwould be the study of long-term temporal evolution. Our logics
so far described single steps in a larger process, but it has long been acknowledged that
the proper stage for studying agency is that of a linear- or branching-time temporal
logic (Fagin et al. 1995; Parikh and Ramanujam 2003). The same is true for STIT,
and one question that seems of interest is whether our one-step event models with
control relations can be related systematically to epistemic temporal universes via
representation theorems extending those of van Benthem et al. (2009).

Our final topic is strategic interactive behavior. We started our presentation of
STIT with its basic properties for agents’ choices: for each agent, these formed a
partition of all possible outcomes (call this the Partition property), and also, any two
choices for different agents have to overlap. This level of stating constraints is similar
to that of representation theorems for games characterizing players’ strategic powers,
forcing the game to end in certain sets of outcomes by playing one of their strategies
against any counterplay of the opponent. The latter type of result, however, usually
refers to powers in a longer extensive game that can take many individual steps.
For instance, van Benthem (2001) characterizes players’ powers in finite determined
two-player games in terms of three constraints: Monotonicity (powers are upward
closed), Consistency (any two powers of different players overlap), and Determinacy
(if a set of outcomes is not a power for one of the players, then its complement is
a power for the other player). Of these three, Determinacy is typically lost in the

24 Many interesting new problems arise in this area. One is finding a formalization of basic game-
theoretic reasoning thatmakes sense for rational action generally: as initiated in (vanBenthem2007).
Another unresolved issue is whether introducing preference structure increases the computational
complexity of the modal logic of action, an issue known as the “price of rationality”.
25 Thus one might first iteratively prune a given choice situation in this way, and only follow the
standard STIT-style format once an equilibrium has been reached.
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STIT setting of simultaneous action. Nevertheless, it seems significant that there are
extended representation results for players’ powers in extensive games with imper-
fect information that require only Monotonicity and the typical STIT constraint of
Consistency (cf. again van Benthem 2001).26

We end with just one simple observation. What happens to the key STIT
constraints when we consider iterated simultaneous action? Most importantly, the
crucial property of Partition disappears, and the reason is very instructive. When
we make consecutive choices, our available strategies get enriched. In a one-step
scenario, agents could only choose one of their actions ab initio. But now, they can
have strategies letting their next action depend on the observed behavior of the other
agents. A standard example of this is the famous strategy Tit for Tat in evolutionary
game theory: one copies the opponent’s preceding move. Hence, the strategies avail-
able at the second level do not just consist of choosing an action uniformly, they can
depend on the behavior of others. It is easy to see that the disjointness property for
sets of outcomes (i.e., the powers matching these strategies) are no longer disjoint.27

On the other hand, this richer set of strategies does depend crucially on a special
feature of the STIT scenario, namely the public observation of everyone’s moves. If
there were no such observation, then players’ could not make their choices depen-
dent on what others have done, and we would get a simple product model of two
consecutive actions that does satisfy the Partition condition. Put differently, one-step
simultaneous action does not allow for sequential dependence of actions, though it
may allow for correlation as we saw in Sect. 4. But it is precisely the observation fea-
ture built into STIT that does make more sophisticated dependent behavior possible
as actions get repeated.

8 Conclusion

In this chapter, we have lightly compared the STIT approach to choice and action
with that offered by dynamic logic, broadly conceived (including dynamic-epistemic
logics).We found that, despite differences in style and presentation, these frameworks
are much more congenial than is often thought. Indeed, key ideas from STIT about
actions and control merged well with modal logics of games, and in particular, they
led to natural dynamic-epistemic logics of information and events that incorporate
the crucial STIT notion of control. We have only proposed a few such bridges here,
without any sustained development, suggesting how ideas might flow across, and
further directions pursued. Even so, we hope to have put to rest some views about
vast chasms separating STIT and PDL that are sometimes found in the literature.

26 There is also a literature with more sophisticated representation results that are significant here,
of which we mention Bonanno (1992), Pauly (2001) and Goranko et al. (2013).
27 It is an interesting problemwhether some special properties remain for STIT powers. In particular,
the temporal logic of Ciuni and Zanardo (2010) seems relevant to analyzing these matters, including
the special constraints imposed on STIT models if we do insists on the above properties of powers
for single agents, or groups of these: cf. Zanardo (2013).
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We are by no means the first to have observed the compatibility of STIT and
ideas from the world of PDL and DEL. Notably, Horty articulates many of the idea
sketched in this chapter in his important book (Horty 2001). Also, Xu (2010, 2012)
are interesting examples of STIT systems that have borrowed notions of action and
strategy from the PDL tradition to form richer frameworks for strategic agency. We
see our analysis as making a small push in the same direction.

Finally, we recall an earlier point made at the start of our analysis. A paradigm is
not just a set of definitions of structures and axioms for reasoning. It is also a belt
of applications, in the terminology of Kuhn (1962), a growing family of successful
“exemplars”. This makes frameworks harder to compare and merge, since their suc-
cess does not just depend on their formal backbone, but also on the “art of modeling”
that has been invested by skilled practitioners. In a practical setting, choices between
paradigms may just be choices of taste and life-style, and these of course will not
be affected much by theoretical analysis. Still, tastes can at least be diversified—and
we hope to have contributed at least to what is on the menu in the logical study of
deliberate action.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

Aumann, R.J. 1987. Correlated equilibrium as an expression of bayesian rationality. Econometrica
55: 1–18.

Aumann, R. 1999. Interactive epistemology I: Knowledge. International Journal of Game Theory
28: 263–300.

Balbiani, P., A. Herzig, and N. Troquard. 2008. Alternative axiomatics and complexity of deliber-
ative STIT theories. Journal of Philosophical Logic 37(4): 387–406.

Barwise, J. and J. Seligman. 1997. Information flow: The logic of distributed systems. Cambridge:
Cambridge University Press.

Belnap, N., M. Perloff, and M. Xu. 2001. Facing the future: Agents and choice in our indeterminist
world. Oxford: Oxford University Press.

Binmore, K. 2009. Rational decisions. Princeton: Princeton University Press.
Blackburn, P., M. de Rijke, and Y. Venema. 2002. Modal logic. Cambridge: Cambridge University
Press.

Bonanno, G. 1992. Set-theoretic equivalence of extensive-form games. International Journal of
Game Theory 20: 429–447.

Brandenburger, A., and A. Friedenberg. 2008. Intrinsic correlations in games. Journal of Economic
Theory 141(1): 28–67.

Broersen, J., A. Herzig, and N. Troquard. 2006a. Embedding alternating-time temporal logic in
strategic STIT logic of agency. Journal of Logic and Computations 16(5): 559–578.

Broersen, J., A. Herzig, and N. Troquard. 2006b. From coalition logic to stit. Electronic Notes
Theoretical Computer Science 157(4): 23–35.

Broersen, J. 2011. Deontic epistemic STIT logic distinguishing modes of mens rea. Journal of
Applied Logic 9(2): 127–152.

Brown, M.A. 1988. On the logic of ability. Journal of Philosophical Logic 17(1): 1–26.



Connecting Logics of Choice and Change 313

Brown, M.A. 1992. Normal bimodal logics of ability and action. Studia Logica 51(3/4): 519–532.
Chellas, B.F. 1992. Time and modality in the logic of agency. Studia Logica 51(3/4): 485–518.
Ciuni, R. 2013. Ought implies can, omission, and probabilistic deliberative STIT Lecture at the
Institute for Logic, Language and Computation, LIRa Session, 30 March 2013.

Ciuni, R., and A. Zanardo. 2010. Completeness of a branching-time logic with possible choices.
Studia Logica 96(3): 393–420.

Clarke, E.M., and E.A. Emerson. 1981. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Logic of programs, ed. D. Kozen, 52–71. Berlin: Springer.

Clarke, E.M., O. Grumberg, and D.A. Peled. 2000. Model checking. Cambridge: The MIT Press.
Fagin, R., J. Halpern, Y. Moses, and M. Vardi. 1995. Reasoning about knowledge. Cambridge: The
MIT Press.

Gabbay, D., A. Kurucz, F. Wolter, and M. Zakharyaschev. 2003. Many-dimensional modal logics:
Theory and applications. Amsterdam: Elsevier.

Goranko, V., W. Jamroga, and P. Turrini. 2013. Strategic games and truly playable effectivity
functions. Autonomous Agents and Multi-Agent Systems 26(2): 288–314.

Halpern, J., and M. Vardi. 1989. The complexity of reasoning about knowledge and time. Journal
of Computer and System Sciences 38: 195–237.

Harel, D., D. Kozen, and J. Tiuryn. 2000. Dynamic logic. Cambridge: The MIT Press.
Herzig, A., and F. Schwarzentruber. 2010. Properties of logics of individual and group agency.
In Proceedings of advances in modal logic, vol. 7, eds. C. Areces, and R. Goldblatt, 133–149.
London: College Publications.

Herzig, A., and E. Lorini. 2010. A dynamic logic of agency I: STIT, capabilities and powers. Journal
of Logic, Language and Information 19(1): 89–121.

Horty, J. 2001. Agency and deontic logic. Oxford: Oxford University Press.
Horty, J.F., and N. Belnap. 1995. The deliberative stit: A study of action, omission, ability, and
obligation. Journal of Philosophical Logic 24(6): 583–644.

Kuhn, T. 1962. The structure of scientific revolution. IL: The University of Chicago Press.
Liu, F. 2012. Reasoning about preference dynamics. Synthese library. Berlin: Springer.
Lorini, E., F. Schwarzentruber, and A. Herzig. 2009. Epistemic games in modal logic: Joint ac-
tions, knowledge and preferences all together. In LORI-II Workshop on Logic, Rationality and
Interaction, Chongqing, China, eds. X. He, J. Horty, and E. Pacuit, 212–226. Berlin: Springer.

Lorini, E. 2010. A dynamic logic of agency II: Deterministic DLA, coalition logic, and game
theory. Journal of Logic, Language and Information 19(3): 327–351.

Lorini, E., and F. Schwarzentruber. 2010. Amodal logic of epistemic games. Games 1(4): 478–526.
Marx, M. 2007. Complexity of modal logic. In Handbook of modal logic, eds. P. Blackburn, J. van
Benthem, and F. Wolter, 139–189. New York: Elsevier.

Osborne, M., and A. Rubinstein. 1994. A course in game theory. Cambridge: The MIT Press.
Pacuit, E., and O. Roy. 2011. A dynamic analysis of interactive rationality. In LORI, Volume 6953 of

lecture notes in computer science, eds. H.P. van Ditmarsch, J. Lang, and S. Ju, 244–257. Berlin:
Springer.

Pacuit, E., and S. Simon. 2011. Reasoning with protocols under imperfect information. The Review
of Symbolic Logic 4(3): 412–444.

Parikh, R., and R. Ramanujam. 2003. A knowledge based semantics of messages. Journal of Logic,
Language and Information 12: 453–467.

Pauly,M.2001.Logic for social software. Ph.D. thesis, ILLCUniversity ofAmsterdam(Dissertation
Series 2001–10).

Reiter, R. 2001.Knowledge in action: Logical foundations for specifying and implementing dynamic
systems. Cambridge: The MIT Press.

Seligman, J. 2010. Hybrid logic for analyzing games. Lecture at the Workshop Door to Logic,
Beijing, May 2010.

Spaan, E. 1990. Nexttime is not necessary. In Proceedings of TARK, ed. R. Parikh, 241–256.
Väänänen, J. 2007. Dependence logic. Cambridge: Cambridge University Press.



314 J. van Benthem and E. Pacuit
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