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Plan

Day 1 Introduction to belief revision, AGM, possible worlds models,
Bayesian models (time permitted)

Day 2 Bayesian models (continued), Justifying Bayesian models
(Dutch books, Accuracy-based arguments), Updating
probabilities

Day 3 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Context shifts, Becoming aware

Day 4 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Context shifts, Becoming aware (continued)

Day 5 Iterated Belief Revision, Agreement Theorems
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I Epistemic states: AGM, Plausibility Models, Bayesian Model
(and the many variations)

I “Finding out that ϕ”

• Learn that ϕ
• Suppose that ϕ
• Accept ϕ
• ...

I How did you find out that ϕ?

• Directly observed ϕ
• Indirectly observed ϕ
• Told ‘ϕ’ (by an epistemic peer, by an expert, by a trusted

individual)
• ...

I Belief change over time
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p0

E
p0(E ) > 0

p(·) = p0(· | E )

(M) p0(A | pf ) = pf (A)
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p0

(E1 : q1, . . . ,Ek : qk)
{Ei} is a partition,

∑
i qi = 1

p(·) =
∑

i qi ∗ p0(· | Ei )

(M) p0(A | pf ) = pf (A)
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p0(·,>)

E

p(·) = p0(·,E )

(M) p0(A | pf ) = pf (A)
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p0

C: set of constraints

p satisfies C
p minimizes I (p, p0) =

∑
i p1(xi ) log p1(xi )

p0(xi )

(M) pf (A)
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p0

E1 E2 Ei· · · · · · EkEk−1

{Ei} is a partition

p0(· | Ei )p0(· | E1) p0(· | E2) p0(· | Ek−1) p0(· | Ek)

· · · · · ·

(M) p0(A | pf ) = pf (A)
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p0

pfp1 p2 · · · pn−1pn· · ·

(Martingale Property) p0(A | pf ) = pf (A)
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K

ϕ

ϕ consistent

K ′ = K ∗ ϕ

(M) p0(A | pf ) = pf (A)
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ϕ

ϕ consistent
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M

!ϕ ↑ ϕ ⇑ ϕ

M!ϕ M↑ϕ M⇑ϕ · · ·

(M) p0(A | pf ) = pf (A)
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Iterated revision
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Informative Actions

A

B

C

D

E

A

Public Announcement: Information from an infallible source
(!ϕ): A ≺i B

Conservative Upgrade: Information from a trusted source
(↑ϕ): A ≺i C ≺i D ≺i B ∪ E

Radical Upgrade: Information from a strongly trusted source
(⇑ϕ): A ≺i B ≺i C ≺i D ≺i E
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Informative Actions

A

B

C

D

E

ϕ
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What happens as beliefs change over time (iterated belief
revision)?
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M0 M1 M2 Mf· · ·!ϕ1 !ϕ2 !ϕ3 !ϕn

fixed-pointinitial
model

Oi (S)
Pj(S

′)
· · ·

Oj(T )
Pj(T

′)
· · ·

Oi (S)
Pj(S

′)
· · ·

nothing
new

Where do the ϕk come from? from the players practical
reasoning/rational requirements
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M0 M1 M2 Mf· · ·!ϕ1 ⇑ϕ2 ↑ϕ3 ⇑ϕn
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M0 M1 M2 Mf· · ·τ(ϕ1) τ(ϕ2) τ(ϕ3) τ(ϕn)

fixed-pointinitial
model

Oi (S)
Pj(S
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· · ·
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Pj(T
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· · ·

Oi (S)
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Dynamic Characterization of Informational Attitudes

!ϕ1, !ϕ2, !ϕ3, . . . , !ϕn

always reaches a fixed-point

⇑p ⇑¬p ⇑p · · ·
Contradictory beliefs leads to oscillations

↑ϕ, ↑ϕ, . . .
Simple beliefs may never stabilize

⇑ϕ,⇑ϕ, . . .
Simple beliefs stabilize, but conditional beliefs do not

A. Baltag and S. Smets. Group Belief Dynamics under Iterated Revision: Fixed
Points and Cycles of Joint Upgrades. TARK, 2009.
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Suppose that you are in the forest and happen to a see
strange-looking animal.

You consult your animal guidebook and
find a picture that seems to match the animal you see. The
guidebook says that the animal is a type of bird, so that is what
you conclude: The animal before you is a bird. After looking more
closely, you also notice that the animal is also red. So, you also
update your beliefs with that fact. Now, suppose that an expert
(whom you trust) happens to walk by and tells you that the animal
is, in fact, not a bird.
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b, r b, r

b, r b, r

M0

b, r b, r

b, r b, r

M1

↑b
b, r b, r

b, r

b, r

M2

↑r

b, r

b, r

b, r b, r

M3

↑b
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Note that in the last model, M3, the agent does not believe that
the bird is red.

The problem is that there does not seem to be any
justification for why the agent drops her belief that the bird is red.
This seems to result from the accidental fact that the agent
started by updating with the information that the animal is a bird.
In particular, note that the following sequence of updates is not
problematic:

Eric Pacuit 13



Note that in the last model, M3, the agent does not believe that
the bird is red. The problem is that there does not seem to be any
justification for why the agent drops her belief that the bird is red.
This seems to result from the accidental fact that the agent
started by updating with the information that the animal is a bird.

In particular, note that the following sequence of updates is not
problematic:

Eric Pacuit 13



Note that in the last model, M3, the agent does not believe that
the bird is red. The problem is that there does not seem to be any
justification for why the agent drops her belief that the bird is red.
This seems to result from the accidental fact that the agent
started by updating with the information that the animal is a bird.
In particular, note that the following sequence of updates is not
problematic:

Eric Pacuit 13



b, r b, r

b, r b, r

M0

b, r b, r

b, r b, r

M1

⇑r
b, r b, r

b, r

b, r

M2

⇑b

b, r

b, r

b, r

b, r

M3

⇑b
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t0

t1 t2 t3

t4 t5

⇑b ⇑r ⇑(b ∧ r)

⇑r ⇑b
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Two Postulates of Iterated Revision

I1 If B ∈ Cn({A}) then (K ∗ B) ∗ A = K ∗ A.

I2 If ¬B ∈ Cn({A}) then (K ∗ A) ∗ B = K ∗ B

I Postulate I1 demands if A→ B is a theorem (with respect to
the background theory), then first learning B followed by the
more specific information A is equivalent to directly learning
the more specific information A.

I Postulate I2 demands that first learning A followed by learning
a piece of information B incompatible with A is the same as
simply learning B outright. So, for example, first learning A
and then ¬A should result in the same belief state as directly
learning ¬A.
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I3 If B ∈ K ∗ A then B ∈ (K ∗ B) ∗ A.

I4 If ¬B 6∈ K ∗ A then ¬B 6∈ (K ∗ B) ∗ A.

Eric Pacuit 17



Robert Stalnaker. Iterated Belief Revision. Erkenntnis 70, pp. 189 - 209, 2009.
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I Three switches wired such that a light
is on iff all three switches are up or all
three are down.

Three independent (reliable) observers
report on the switches: Alice says
switch 1 is U, Bob says switch 2 is D
and Carla says switch 3 is U.

I receive the information that the light
is on. What should I believe?

Cautious: UUU, DDD; Bold: UUU
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I Suppose there are two switches: L1 is
the main switch and L2 is a secondary
switch controlled by the first two lights.
(So L1 → L2, but not the converse)

Suppose I receive L1 ∧ L2, this does not
change the story.

Suppose I learn that L2. This is
irrelevant to Carla’s report, but it
means either Ann or Bob is wrong.

Now, after learning L1, the only rational
thing to believe is that all three
switches are up.
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I So, L2 ∈ Cn({L1}) but (potentially)

(K ∗ L2) ∗ L1 6= K ∗ L1.
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Stalnaker’s Counterexample to I2

I Two fair coins are flipped and placed in two boxes and two
independent and reliable observers deliver reports about the
status (heads up or tails up) of the coins in the opaque boxes.

I Alice reports that the coin in box 1 is lying heads up, Bert
reports that the coin in box 2 is lying heads up.

I Two new independent witnesses, whose reliability trumps that
of Alice’s and Bert’s, provide additional reports on the status
of the coins. Carla reports that the coin in box 1 is lying tails
up, and Dora reports that the coin in box 2 is lying tails up.

I Finally, Elmer, a third witness considered the most reliable
overall, reports that the coin in box 1 is lying heads up.
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Hi (Ti ): the coin in box i facing heads (tails) up.

I The first revision results in the belief set K ′ = K ∗ (H1 ∧ H2),
where K is the agents original set of beliefs.

I After receiving the reports, the belief set is K ′ ∗ (T1∧T2) ∗H1.

I Since Elmers report is irrelevant to the status of the coin in
box 2, it seems natural to assume that
H1 ∧ T2 ∈ K ′ ∗ (T1 ∧ T2) ∗ H1.

I The problem: Since (T1 ∧ T2)→ ¬H1 is a theorem (given the
background theory), by I2 it follows that
K ′ ∗ (T1 ∧ T2) ∗ H1 = K ′ ∗ H1.

Yet, since H1 ∧ H2 ∈ K ′ and H1 is consistent with H2, we
must have H1 ∧ H2 ∈ K ′ ∗ H1, which yields a conflict with the
assumption that H1 ∧ T2 ∈ K ′ ∗ (T1 ∧ T2) ∗ H1.

Eric Pacuit 21
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assumption that H1 ∧ T2 ∈ K ′ ∗ (T1 ∧ T2) ∗ H1.
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where K is the agents original set of beliefs.
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...[Postulate I2] directs us to take back the totality of
any information that is overturned. Specifically, if we first
receive information α, and then receive information that
conflicts with α, we should return to the belief state we
were previously in, before learning α. But this directive is
too strong. Even if the new information conflicts with
the information just received, it need not necessarily cast
doubt on all of that information.
asdf (Stalnaker, pg. 207–208)
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EP, P. Pedersen and J.-W. Romeijn. When is an example and counterexample?.
Proceedings of TARK, 2013.
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What Do the Examples Demonstrate?

1. There is no suitable way to formalize the scenario in such a
way that the AGM postulates (possibly including postulates of
iterated belief revision) can be saved;

2. The AGM framework can be made to agree with the scenario
but does not furnish a systematic way to formalize the
relevant meta-information; or

3. There is a suitable and systematic way to make the
meta-information explicit, but this is something that the AGM
framework cannot properly accommodate.

Our interest in this paper is the third response, which is concerned
with the absence of guidelines for applying the theory of belief
revision.
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Heuristic Diagnosis of Stalnaker’s Example
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There are different kinds of independence—conceptual,
causal and epistemic—that interact, and one might be
able to say more about constraints on rational belief
revision if one had a model theory in which
causal-counterfactual and epistemic information could
both be represented. There are familiar problems, both
technical and philosophical, that arise when one tries to
make meta-information explicit, since it is self-locating
(and auto-epistemic) information, and information about
changing states of the world. (pg. 208)
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A Bayesian Model

We accommodate the counterexamples in two steps:

1. We provide a Bayesian model in which presuppositions on
order and dependence of the reports can be made explicit.

2. The qualitative and diachronic character of belief revision can
be replicated by an extension to nonstandard probability
assignments.

Apart from this we refined the event structure of reports and
states.
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A Bayesian Model

1. The reports are independent, the content of the reports are
very probable, and the content of subsequent reports are even
more probable, thereby canceling out the impact of preceding
reports.

2. The meta-information in the example may be such that earlier
reports are dependent in a weak sense, so that Elmers report
also encourages the agent to change her mind about the coin
in the second box.

3. With some imagination, we can also provide a model in which
the pairs of reports are independent in the strictest sense, and
in which Elmers report is fully responsible for the belief
change regarding both coins.
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Discussion, I

A proper conceptualization of the event and report structure is
crucial (the event space must be ‘rich enough’): A theory must be
able to accommodate the conceptualization, but other than that it
hardly counts in favor of a theory that the modeler gets this
conceptualization right.
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Discussion, II

There seems to be a trade-off between a rich set of states and
event structure, and a rich theory of ‘doxastic actions’.

How should we resolve this trade-off when analyzing
counterexamples to postulates of belief changes over time?
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meta-information: information about how “trusted” or “reliable”
the sources of the information are.

procedural information: information about the underlying
protocol specifying which events (observations, messages, actions)
are available (or permitted) at any given moment.
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meta-information: information about how “trusted” or “reliable”
the sources of the information are.

This is particularly important when analyzing how an agent’s
beliefs change over an extended period of time. For example,
rather than taking a stream of contradictory incoming evidence
(i.e., the agent receives the information that p, then the
information that q, then the information that ¬p, then the
information that ¬q) at face value (and performing the suggested
belief revisions), a rational agent may consider the stream itself as
evidence that the source is not reliable
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procedural information: information about the underlying
protocol specifying which events (observations, messages, actions)
are available (or permitted) at any given moment.
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procedural information: information about the underlying
protocol specifying which events (observations, messages, actions)
are available (or permitted) at any given moment.

A protocol describes what the agents “can” or “cannot” do (say,
observe) in a social interactive situation or rational inquiry.
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EP. Dynamics for Probabilistic Common Belief. Studies in Logic, 2015.
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Starting with the same premises, using (for example) first-order
logic, two agents cannot disagree about a conclusion.

Starting with the same probability, using (for example) strict
conditionalization, two agents cannot disagree about their
posterior probability given the same evidence.

Eric Pacuit 34



Aumann’s Agreeing to Disagree Theorem. Suppose that n
agents share a common prior and have different private
information. If there is common knowledge of the posteriors of a
fixed event, then the posteriors must be equal.

Robert Aumann. Agreeing to Disagree. Annals of Statistics 4(6), pgs. 1236-
1239 (1976).
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H

An event/proposition is a (definable) subset H ⊆W .

A σ-algebra is the collection of events/propositions
(closed under countable unions and complementation)
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E1

E2

E3 E4

E5 E6

An experiment/question/set of signals is a partition E on W .

If w ∈W , let E [w ] = E where w ∈ E ∈ E .

E.g, if E = {E1,E2,E3,E4,E5,E6}, then E [w ] = E3
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E1

E2

E3 E4

E5 E6

H

KE : ℘(W )→ ℘(W ), where for H ⊆W ,

KE(H) = {w | E [w ] ⊆ H}
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E1

E2

E3 E4

E5 E6

H

KE(H) = E1 ∪ E3

−KE(H) ∩ −KE(−H) = E2 ∪ E4 ∪ E5

KE(−H) = E6
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E3 E4

E5 E6

If p is a probability on W (with respect to a σ-algebra F)
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H

E1

E2

E3 E4

E5 E6

If p is a probability on W (with respect to a σ-algebra F)

The posterior at w with respect to E is pE,w (H) = p(H | E [w ])

E.g., pE,w (H) = p(H | E1)
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A basic result about probabilities.

For any finite partition E = {Ei} of W and an event H,

p(H) =
∑
i

p(Ei )p(H | Ei )
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H

E1

E2

E3 E4

E5 E6

p(H) = p(H ∩ E1) + · · ·+ p(H ∩ E6)

= p(E1)
p(E1)

p(H ∩ E1) + · · ·+ p(E6)
p(E6)

p(H ∩ E6)

=
∑

i p(Ei )P(H | Ei )
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A basic result about probabilities.

For any finite partition E = {Ei} of F and and event H,

p(H | F ) =
∑
i

p(Ei | F )p(H | Ei )
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H

E1

E2

E3 E4

E5 E6

p(H | W ) =
∑

i p(Ei | W )p(H | Ei ∩W )

=
∑

i p(Ei | W )p(H | Ei )
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H

F

p(H | F ) =
∑

i p(Ei | F )p(H | Ei ∩ F )

=
∑

i p(Ei | F )p(H | Ei )
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Common Knowledge
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“Common Knowledge” is informally described as what any fool
would know: It encompasses what is relevant, agreed upon,
established by precedent, assumed, being attended to, salient, or in
the conversational record.

It is not common knowledge who defined ‘Common Knowledge’...
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The first formal definition of common knowledge?
M. Friedell. On the Structure of Shared Awareness. Behavioral Science (1969).

R. Aumann. Agreeing to Disagree. Annals of Statistics (1976).

The first rigorous analysis of common knowledge
D. Lewis. Convention, A Philosophical Study. 1969.

Fixed-point definition: γ := i and j know that (ϕ and γ)
G. Harman. Review of Linguistic Behavior. Language (1977).

J. Barwise. Three views of Common Knowledge. TARK (1987).

Shared situation: There is a shared situation s such that (1) s
entails ϕ, (2) s entails everyone knows ϕ, plus other conditions
H. Clark and C. Marshall. Definite Reference and Mutual Knowledge. 1981.

M. Gilbert. On Social Facts. Princeton University Press (1989).
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P. Vanderschraaf and G. Sillari. “Common Knowledge”, The Stanford Encyclo-
pedia of Philosophy (2009).
http://plato.stanford.edu/entries/common-knowledge/.
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H

W

w

Each agent i is associated with a partition Ei .

Ki : ℘(W )→ ℘(W ) where Ki (H) = {w | Ei [w ] ⊆ H}
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H

W

w

Each agent i is associated with a partition Ei .

w 6∈ K1(H) and w ∈ K2(H)
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H

W

w

Everyone Knows: K (H) =
⋂

i∈A Ki (H)

Km(H) for all m ≥ 0 is defined as:

K 0(H) = H Km(H) = K (Km−1(H))
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H

W

w

Common Knowledge: C : ℘(W )→ ℘(W ) with

C (H) =
⋂
m≥0

Km(H)
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H

W

w

w ∈ K (H) w 6∈ C (H)
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H

W

w

w ∈ C (H)
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Fact. w ∈ C (H) if every finite path starting at w ends in a state
in H

There is a finite path from w to v if there is v1, . . . , vm such that
w = v1, v = vm and there are E1, . . . ,Em−1 ∈ ∪Ei such that
{v1, v2} ⊆ E1, . . . , {vm−1, vm} ⊆ Em−1.

IC (w) = {v | there is a finite path from w to v}, so
C (H) = {w | IC (w) ⊆ H}.
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W

w

Fact. w ∈ C (H) if every finite path starting at w ends in a
state in H
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Theorem. Suppose that n agents share a common prior and have
different private information. If there is common knowledge in the
group of the posterior probabilities, then the posteriors must be
equal.

Robert Aumann. Agreeing to Disagree. Annals of Statistics 4 (1976).
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Suppose that W is, E ⊆W is an event, and two (or more) agents
with partitions Ei . Let p be the common prior.

The agent’s posterior probabilities of the event E are random
variables: PE

i : W → [0, 1], PE
i (w) = p(E | Ei [w ]).

So, [[PE
i = r ]] = {w | PE

i (w) = r}

Assume that w ∈ C ([[PE
1 = r ∧ PE

2 = q]]).
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E

w

p(E | E1[w ]) = q, p(E | E2[w ]) = r
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E

IC (w)

w

IC (w) ⊆ [[PE
1 = r ∧ PE

2 = q]]
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E

w

p(E | E1[w ]) = q, p(E | E2[w ]) = r
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E

w x y z

p(E | E1[w ]) = p(E | E1[x ]) = p(E | E1[y ]) = p(E | E1[z ]) = q
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H

F

p(H | F ) =
∑

i p(Ei | F )p(H | Ei )

Fact. If p(H | Ei ) = q for all i , then p(H | F ) = q.
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Fact. Suppose that E = {E1, . . . ,Em} partitions F . If
p(H | Ei ) = q for all i , then p(H | F ) = q.

p(H | F ) =
∑

i p(Ei | F )p(H | Ei )

=
∑

i p(Ei | F )q

= q
∑

i p(Ei | F )

= q
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Fact. Suppose that {Fi} is a partition of F (so F =
⋃

i Fi and
Fi ∩ Fj 6= ∅ for i 6= j). If p(E | Fi ) = q for all i , then p(E | F ) = q.

If p(E | Fi ) = q, then p(E ∩ Fi ) = qp(Fi ).

p(E | F ) =
p(E ∩ F )

p(F )
=

p((E ∩ F1) ∪ · · · ∪ (E ∩ Fn))

p(F )

=
p(E ∩ F1) + · · ·+ p(E ∩ Fn)

p(F )
=

qp(F1) + · · ·+ qp(Fn)

p(F )

=
q(p(F1) + · · ·+ p(Fn))

p(F )
=

qp(F )

p(F )
= q
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E

w x y z

p(E | E1[w ]) = p(E | E1[x ]) = p(E | E1[y ]) = p(E | E1[z ]) = q

So, p(E | IC (w)) = q.
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E

w

x

y

z

p(E | E2[w ]) = p(E | E2[x ]) = p(E | E2[y ]) = p(E | E2[z ]) = r

So, p(E | IC (w)) = r .
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E

p(E | E2[w ]) = p(E | E2[x ]) = p(E | E2[y ]) = p(E | E2[z ]) = r

Thus, q = p(E | IC (w)) = r .
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Qualitative versions

like-minded individuals cannot agree to make different decisions.

M. Bacharach. Some Extensions of a Claim of Aumann in an Axiomatic Model
of Knowledge. Journal of Economic Theory, 37(1), pgs. 167-190, 1985.

J.A.K. Cave. Learning to Agree. Economic Letters, 12(2), pgs. 147 - 152, 1983.

D. Samet. Agreeing to disagree: The non-probabilistic case. Games and
Economic Behavior, 69, pgs. 169-174, 2010.
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Rational Disagreement

M. Caie. Agreement Theorems for Self-Locating Belief. Review of Symbolic
Logic, 2016.

J. Halpern and W. Kets. Ambiguous Language and Common Priors. Games and
Economic Behavior, 2014.

H. Lederman. People with common priors can agree to disagree. Review of
Symbolic Logic, 8(1), pp. 1145, 2015.

.

A. Rubinstein and A. Wolinsky. On the logic of ‘agreeing to disagree’ type results.
Journal of Economic Theory, 1, 184193, 1990.
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Dynamic characterization of Aumann’s Theorem

I How do the posteriors become common knowledge?

J. Geanakoplos and H. Polemarchakis. We Can’t Disagree Forever. Journal of
Economic Theory (1982).

I What happens when communication is not the the whole
group, but pairwise?

R. Parikh and P. Krasucki. Communication, Consensus and Knowledge. Journal
of Economic Theory (1990).
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t = 0 〈W , E0,a, E0,b, p〉

PE
0,a(w) = r0 PE

0,b(w) = q0

t = 1 〈W , E1,a, E1,b, p〉
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1,a(w) = r1 PE

1,b(w) = q1

t = 2 〈W , E2,a, E2,b, p〉
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2,a(w) = r2 PE

2,b(w) = q2

t = 3 〈W , E3,a, E3,b, p〉
...

...
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Geanakoplos and Polemarchakis

I Assuming that the information partitions are finite, given an
event A, the revision process converges in finitely many steps.

I For each n, there are examples where the process takes n
steps.

I An indirect communication equilibrium is not necessarily a
direct communication equilibrium.
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HT TT

HH TH

HT TT

HH TH

HT TT

HH TH

HT TT

HH TH

HT TT

HH TH

pa,w (HH) = 0.5

pb,w (HH) = 1

a’s observation b’s observation
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HT TT

HH TH

HT TT

HH TH

HT TT

HH TH

HT TT

HH TH

HT TT

HH TH

µa,w (HH) = 0.5

µb,w (HH) = 1

a’s observation b’s observation
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They agree the true state is one of seven different states.
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

They agree on a common prior.
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They agree that Experiment 1 would produce the blue partition.
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They agree that Experiment 1 would produce the blue partition
and Experiment 2 the red partition.
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They are interested in the truth of E = {w2,w3,w5,w6}.
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

So, they agree that P(E ) = 24
32 .
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Also, that if the true state is w1, then Experiment 1 will yield

P(E |I ) = P(E∩I )
P(I ) = 12

14

Eric Pacuit 52



2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Suppose the true state is w7 and the agents preform the
experiments.
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2 Scientists Perform an Experiment

w1
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4
32 w3
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32
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32 w6

7
32 w7
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32

Then Pr1(E ) = 12
14 and Pr2(E ) = 15

21
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Suppose they exchange emails with the new subjective
probabilities: Pr1(E ) = 12

14 and Pr2(E ) = 15
21
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Agent 2 learns that w4 is NOT the true state (same for Agent 1).
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Agent 1 learns that w5 is NOT the true state (same for Agent 1).
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32

w5

5
32 w6

7
32 w7

2
32

The new probabilities are Pr1(E |I ′) = 7
9 and Pr2(E |I ′) = 15

17
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32

w5

5
32 w6

7
32 w7

2
32

After exchanging this information (Pr1(E |I ′) = 7
9 and

Pr2(E |I ′) = 15
17), Agent 2 learns that w3 is NOT the true state.
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32

w5

5
32 w6

7
32 w7

2
32

No more revisions are possible and the agents agree on the
posterior probabilities.
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w1 w2 w3

w4 w5 w6

w7 w8 w9

for all j = 1, . . . , 9, p(wj) = 1
9
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Revisions

1. Ann announces that her probability of E is 1
3 and Bob

announces that his is 1
4 .

2. Ann announces that her probability of E is 1
3 and Bob

announces that his is 1
4 .

3. Ann announces that her probability of E is 1
3 and Bob

announces that his is 1
4 .

4. Ann announces that her probability of E is 1
3 and Bob

announces that his is 1
4 . As a result of this announcement,

Bob further refines his partition so that Eb(w4) = {w4} and
Eb(w1) = {w1,w2,w3}. Now Ann and Bob both assign
probability 1

3 to the event E .
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Common r -belief

The typical example of an event that creates common knowledge is
a public announcement.

Shouldn’t one always allow for some small probability that a
participant was absentminded, not listening, sending a text,
checking Facebook, proving a theorem, asleep, ...

D. Monderer and D. Samet. Approximating Common Knowledge with Common
Beliefs. Games and Economic Behavior (1989).
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From Knowledge to r -Belief

H

E1

E2

E3 E4

E5 E6

Given a partition E , define KE : ℘(W )→ ℘(W ) as:
KE(H) = {w | E [w ] ⊆ H}
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From Knowledge to r -Belief

H

E1

E2

E3 E4

E5 E6

Given r ∈ [0, 1] and a partition E , define B r
E : ℘(W )→ ℘(W ) as:

B r
E(H) = {w | pE,w (H) ≥ r}
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E3 E4

E5 E6
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From Common Knowledge to Common r -Belief

Suppose that C : ℘(W )→ ℘(W ) is a common knowledge
operator. TFAE

1. w ∈ C (H) =
⋂

m≥0 K
m(H)

2. Ic(w) ⊆ H

3. There is a set F ⊆W such that

3.1 w ∈ F ⊆ K (F ) =
⋂

i Ki (F )
3.2 F ⊆ H
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From Common Knowledge to Common r -Belief

B r
i (E ) = {w | p(E | Ei [w ]) ≥ r}

F is an evident r-belief if for each i ∈ A, F ⊆ B r
i (F )

An event H is common r-belief at w if there exists and evident
r -belief event F such that w ∈ F and for all i ∈ A, F ⊆ B r

i (H)
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w ∈ C (H) iff there is an event F ⊆W such that

1. w ∈ F ⊆ K (F ) =
⋂

i Ki (F )

2. F ⊆ H

w ∈ C r (H) iff there is an event F ⊆W such that

1. w ∈ F ⊆ B r (F ) =
⋂

i B
r
i (F )

2. F ⊆ B r (H)
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H1,H2

0.72

w1

T1,H2

0.18

w2

H1,T2

0.08

w3

T1,T2

0.02

w4

b

b

a a

{w1} ∈ B0.9
a (H1 ∩ H2) ∩ B0.8

b (H1 ∩ H2).

X = {w1} is an evident 0.8-belief for both Ann and Bob.

X ⊆ B0.8
a (H1 ∩ H2) ∩ B0.8

b (H1 ∩ H2).

w1 ∈ C 0.8
a,b (H1 ∩ H2).
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Generalizing Aumann’s Theorem

Theorem. If the posteriors of an event E are common r -belief at
some state w , then any two posteriors can differ by at most 1− r .

D. Samet and D. Monderer. Approximating Common Knowledge with Common
Beliefs. Games and Economic Behavior, Vol. 1, No. 2, 1989.
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H1,H2

0.72

w1

T1,H2

0.18

w2

H1,T2

0.08

w3

T1,T2

0.02

w4

b

b

a a

I w1 ∈ C 0.8
a,b (H1 ∩ H2).

I |pa,w1(H1 ∩ H2)− pb,w1(H1 ∩ H2)| = |0.9− 0.8| = 0.1

Eric Pacuit 64



Questions

I How do the posteriors become commonly p-believed?

I What happens when communication is not between the whole
group, but pairwise?

That is, what information should the agents exchange so that the
dynamic process of information exchange converges with common
r -belief (for some 0.5 < r < 1) of the agents’ probabilities of E?
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I Exchanging current probabilities of an event leads to common
knowledge of the posteriors

I Announcements resolve uncertainty about what the other
agents’ information

I Announcements of posterior probabilities with some “error”
term (Jeffrey Updating)

I Which events can become commonly p-believed by exchanging
current probabilities? (Common Learning Theorem)
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Rational Disagreement

M. Caie. Agreement Theorems for Self-Locating Belief. Review of Symbolic
Logic, 2016.

J. Halpern and W. Kets. Ambiguous Language and Common Priors. Games and
Economic Behavior, 2014.

H. Lederman. People with common priors can agree to disagree. Review of
Symbolic Logic, 8(1), pp. 1145, 2015.

.

A. Rubinstein and A. Wolinsky. On the logic of ‘agreeing to disagree’ type results.
Journal of Economic Theory, 1, 184193, 1990.
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Rational disagreement over time

D. Blackwell and L. Dubins. Merging of opinions with increasing information.
The Annals of Mathematical Statistics, 33, pp. 882 - 886.

D. Samet and D. Monderer. Stochastic Common Learning. Games and Economic
Behavior, 9, pgs. 161 - 171, 1995.

S. Huttegger. Merging of Opinions and Probability Kinematics. Review of Sym-
bolic Logic, 2015.
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Thank you!

EP. Dynamics for Probabilistic Common Belief. Studies in Logic, 2015.
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Soft Jeffrey Shifts

E1 = {E1,E2,E3,E4} and consider the learning experience given by:

(
1

5
: E1,

3

10
: E2,

1

2
: E3, 0 : En)

Consider instead:

I p1(E1) = 2 · p(E1);

I p1(E2) = 1
2 · p(E2);

I p1(E3) = 5 · p(E3); and

I p1(E4) = 0 · p(E4)
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If p(E1) = 1
10 , p(E2) = 3

5 , p(E3) = 1
10 and p(E4) = 1

5 , then
probability kinematics will lead to the same result whether or not it
is a hard or “soft” Jeffrey shift.
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w1 w2 w3

w4 w5 w6

w7 w8 w9

w1 ∈ C
1
4 (E ), and this does not change during the information

exchange – until the process converges, when we have w ∈ C
1
3 (E ).
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Common Learning Theorem

I Let (W ,F , µ) be an initial probability space.

I Each agent i receives private information represented by
partitions Π0

i on W .

I All agents observe the outcome of a discrete random variable.
Based on these observations, the agents refine their initial
information: Π0

i ,Π
1
i ,Π

2
i , . . . ,Π

t
i , . . ..

I For each t ≥ 0, Bp
i ,t C

p
t (for p ∈ [0, 1]) are well-defined.

D. Samet and D. Monderer. Stochastic Common Learning. Games and Economic
Behavior, 9, pgs. 161 - 171, 1995.
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Common Learning Theorem

Common Learning Theorem: Suppose that (Et)t≥1 is any
nondecreasing sequence of events such that limt→∞ µ(Et) = 1.
Then, for all 0 ≤ p < 1, and almost all w ∈W , there is a time tw
(depending on w) such that for all t ′ ≥ tw the agents commonly
p-believe Et at time t (i.e., w ∈ Cp

t (Et)).

D. Samet and D. Monderer. Stochastic Common Learning. Games and Economic
Behavior, 9, pgs. 161 - 171, 1995.

Eric Pacuit 74



D. Blackwell and L. Dubins. Merging of opinions with increasing information.
The Annals of Mathematical Statistics, 33, pp. 882 - 886.
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Suppose that W is a set of atomic events and F is a σ-field on W .

The elements of can be thought of as possible worlds and the
members of F as propositions.

E.g., W can be the set of all infinite sequences of coin tosses and
F contains all propositions about coin tossing events of interest.
(It may including limiting events such as limn→∞ Sn = 1/2 where
Sn is the total number of heads in the first n flips of the coin.
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Let E1, E2, . . . , En, . . . be an infinite sequence of partitions on W
such that En+1 refines En.

En is the information that the agent receives at time n.

En[w ] is the element of En containing w .

For each n, let Fn be the σ-algebra generated by En. We assume
that F = ∪nFn.
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For A ∈ F , P(A | En[w ]) = P(A ∩ En[w ])
P(En[w ])
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Martingale Convergence Theorem

A martingale is an infinite sequence of fair gambles (a sequence of
gambles for which there is no gambling system you could use to
your own advantage).

This is expressed by saying that your expected total fortune after
the next trial is equal to your present total fortune. On average
you neither lose nor win.

Martingales are important because they lead to very general laws
of large numbers (martingale convergence theorems) that do not
depend on the quite stringent conditions required for the standard
strong law of large numbers.
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P(A | En[w ])→

{
1 w ∈ A

0 w 6∈ A

for almost every w with regard to the prior probability P.

The set of w for which the above does not hold has measure 0.
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Convergence to certainty can be viewed as a consequence of
dynamic coherence in the following sense.

I At each trial n the agent updates her probabilities on an
element of the partition En.

I This is plain vanilla Bayesian conditioning, which can be
justified by any dynamic Dutch book argument (or epistemic
utility argument, or...)

I Updating by Bayesian conditioning embeds the sequence of
conditional probabilities in the convergence to certainty
theorem.

I Thus, a dynamically coherent agent expects her future
degrees of belief to converge to certainty under the
appropriate conditions.
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Convergence to certainty yields a first pass on merging of opinions.

Suppose that Eve’s degrees of beliefs are represented by P and
Adam’s by Q, and let Pn[A](w) = P(A | En[w ]) and
Qn[A](w) = Q(A | En[w ]).

Then Pn[A] and Qn[A] both converge to zero or to one almost
surely with respect to the priors P and Q, respectively.
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Now, Eve believes with certainty that Pn[A] and Qn[A] will agree
in the limit whenever she assigns probability one to any set to
which Adam assigns probability one.

For then, since Qn[A] goes to certainty a.e. (Q), Eve also believes
with probability one that her’s and Adam’s conditional probabilities
for any event A are the same in the limit.
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This result applies to particular events A. But it does not say
anything about Eve’s and Adam’s overall conditional probabilities.

The Blackwell-Dubins theorem fills this gap.

As Adam and Eve observe more coin tosses and update by
Bayesian conditioning, their degrees of belief will become close
uniformly in all events.

Moreover, the Blackwell-Dubins theorem does not require that
conditional probabilities converge (as in convergence to certainty).
Eve’s and Adam’s conditional probabilities may get closer even if
they don’t converge.
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Variational Distance

Suppose that µ and ν are two measures over all events in F .

d(µ, ν) = sup
A∈F
|µ(A)− ν(A)|

P is said to merge to Q if for Q almost every w ,
d(Pn(w),Pn(w))→ 0 as n→∞.
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Almost everywhere (a.e. Q), given any ε > 0, there is an n0 such
that

|P(A | En[w ])− Q(A | En[w ])| < ε

for all n > n0 and for all A ∈ F . The number n0 may depend on ε
and on w but not on A.

If P merges to Q, then Adam (with probability Q) believes with
probability one that his conditional degrees of belief for all
propositions A will get arbitrarily close.
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Absolute Continuity

Q is absolutely continuous relative to P (Q << P) if for all A ∈ F ,

Q(A) > 0 =⇒ P(A) > 0
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Blackwell & Dubbins Theorem. If Q << P, then P merges to Q.
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Common Learning Theorem

I Let (W ,F , µ) be an initial probability space.

I Each agent i receives private information represented by
partitions Π0

i on W .

I All agents observe the outcome of a discrete random variable.
Based on these observations, the agents refine their initial
information: Π0

i ,Π
1
i ,Π

2
i , . . . ,Π

t
i , . . ..

I For each t ≥ 0, Bp
i ,t C

p
t (for p ∈ [0, 1]) are well-defined.

D. Samet and D. Monderer. Stochastic Common Learning. Games and Economic
Behavior, 9, pgs. 161 - 171, 1995.
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Common Learning Theorem

Common Learning Theorem: Suppose that (Et)t≥1 is any
nondecreasing sequence of events such that limt→∞ µ(Et) = 1.
Then, for all 0 ≤ p < 1, and almost all w ∈W , there is a time tw
(depending on w) such that for all t ′ ≥ tw the agents commonly
p-believe Et at time t (i.e., w ∈ Cp

t (Et)).

D. Samet and D. Monderer. Stochastic Common Learning. Games and Economic
Behavior, 9, pgs. 161 - 171, 1995.
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S. Huttegger. Merging of Opinions and Probability Kinematics. Review of Sym-
bolic Logic, 2015.

Eric Pacuit 91



In general, no set of initial beliefs is more, or less, justified than
another. This implies that conditioning on the same information
can lead two agents to have different posterior beliefs.

...disagreement often turns out to be transient and disappears as
one gets more information. In other words, as more evidence
becomes available ca consensus may emerge...diverging opinions
are just a sign that not enough evidence has accumulated.
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Long run consensus is a consequence of dynamic coherence under
the special assumption of absolute continuity.

In this case, group agreement is a consequence of individual
rationality.

However, if long run consensus fails we may be able to trace it
back, not to the individual irrationality of an agent, but to the fact
that the agents’ initial beliefs did not observe the absolute
continuity requirement.

If the absolute continuity requirement holds, another possible
explanation is that merging takes place very slowly; beliefs would
merge if agents were given more evidence, but this might not
always be possible. The long run may be too long.
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Agents assumes to undergo learning experiences that yield a
sequence P1,P2, . . . of probability measures on
(W ,F1), (W ,F2), . . ..

Each agent believes with probability one that she will revise her
probabilities by performing probability kinematics with p1, p2, . . ..
Each probability measure Pn is fully determined by attaching
probability values to members of En.

Pn(A) =
∑
E∈En

P(A | E )pn(E )
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(AC) If Pn << P |Fn
, then for every ε > 0, there is a δn > 0

such that
P(B) < δn =⇒ Pn(B) < ε

for all B ∈ Fn.
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Uniformly Absolutely Continuous

1. Pn << P|Fn for each n and

2. for every ε > 0 there is a δ > 0 such that for all n,

P(B) < δ =⇒ Pn(B) < ε

for all B ∈ Fn

I Condition 1. requires that events which are assigned
probability zero now are expected to have probability zero in
the future.

I Condition 2. says that this also holds in the limit. Otherwise,
there may be events F1,F2, . . . such that P(Fn)→ 0 as
n→∞, while the sequence P1(F1),P2(F2), . . . is bounded
away from zero.
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Suppose now that there are two prior probability measures P and
Q which are updated successively by probability kinematics on
E1, E2, . . . using the distributions p1, p2, . . . and q1, . . ., respectively.

Using the Jeffrey update rule this leads to the new probability
measures Pn and Qn on F for n ≥ 1.
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It is quite obvious that arbitrary choices of sequences p1, p2, . . .
and q1, q2, . . . need not lead to merging. But this is also true for
conditioning.

Recall that one requirement of the Blackwell-Dubins theorem is
that agents condition on the same factual evidence.

Thus, the important question is whether beliefs merge for
probability kinematics whenever pn and qn represent the same
uncertain information.

But what does it mean to get the same uncertain evidence?
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Hard Jeffrey Shift

A hard Jeffrey shift sets values for pn regardless of the prior
probability Pn−1, and so may destroy any information about the
partition that was encoded in the prior.
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As an example, consider a measurement instrument that makes
noisy observations of a physical process, such as coin flips. Let’s
call this setup a ‘mechanical observer’.

The probability space (W ,F) represents the set of states and
events of the process. At each stage n, the output of the
mechanical observer is a probability distribution over the partition
En.

The probabilities for members of the partition are determined by
repeated previous observations under symmetric conditions in order
to specify measurement error.

More generally, a hard Jeffrey shift can be viewed as a noisy signal
where the noise has the form of a probability distribution over a
partition such that the distribution is known to every observer.
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In terms of hard Jeffrey shifts, having the same uncertain evidence
at stage n means that pn = qn Fn.

Suppose, for example, that Adam and Eve are two scientists
observing coin flips with the help of a mechanical measurement
instrument. They might not feel comfortable approximating their
learning process by conditionalization if their measurements are not
precise enough. Instead, they plan to update by the same hard
Jeffrey shifts at each stage of their experiment.

Can they be certain to have similar beliefs after having taken
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(M) Pn(F ) = Pn−1(F ) for all F ∈ Fn−1
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Theorem. Suppose that qn = pn, that the sequence Qn,
n = 1, 2, . . . is uniformaly absolutely continuous relative to Q, and
that Q << P If condition (M) holds, then d(Pn,Qn)→ 0 and
n→∞.
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Soft Jeffrey Shifts

E1 = {E1,E2,E3,E4} and consider the learning experience given by:

(
1

5
: E1,

3

10
: E2,

1

2
: E3, 0 : En)

Consider instead:

I p1(E1) = 2 · P(E1);

I p1(E2) = 1
2 · P(E2);

I p1(E3) = 5 · P(E3); and

I p1(E4) = 0 · P(E4)
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If P(E1) = 1
10 , P(E2) = 3

5 , P(E3) = 1
10 and P(E4) = 1

5 , then
probability kinematics will lead to the same result whether or not it
is a hard or “soft” Jeffrey shift.
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Do beliefs merge when agents have the same soft uncertain
evidence?

We are going to see that this need not be the case. If Adam and
Eve start with different (but mutually absolutely continuous) prior
probabilities for infinite sequences of coin flips, and if both observe
principle (M) as well as undergo the same soft Jeffrey shifts, their
posterior degrees of beliefs may not get close to each other in the
long run. [Theorem 6.3]
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Our results lead to the conclusion that, even under otherwise
favorable circumstances, a soft kind of information allows
individual rationality to be consistent with sustained disagreement.
I don’t think that this is a weakness of the broadly Bayesian
approach advocated in this essay. Merging of beliefs happens when
it should, i.e., under conditions which may, for example, hold for
certain carefully designed scientific investigations. But the claim of
merging is not a no-brainer that can be used across the board.
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Plan

Day 1 Introduction to belief revision, AGM, possible worlds models,
Bayesian models (time permitted)

Day 2 Bayesian models (continued), Justifying Bayesian models
(Dutch books, Accuracy-based arguments), Updating
probabilities

Day 3 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Context shifts, Becoming aware

Day 4 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Context shifts, Becoming aware (continued)

Day 5 Iterated Belief Revision, Agreement Theorems
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Thank You!

epacuit@umd.edu

pacuit.org/nasslli2016/belrev/
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