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Plan

Day 1 Introduction to belief revision, AGM, possible worlds models,
Bayesian models (time permitted)

Day 2 Bayesian models (continued), Justifying Bayesian models
(Dutch books, Accuracy-based arguments), Updating
probabilities

Day 3 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Iterated belief revision, Context shifts,
Becoming aware

Day 4 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Iterated belief revision, Context shifts,
Becoming aware (continued)

Day 5 Interactive epistemology (Agreement Theorems, Belief
Revision in Games)
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Plan for today

I Quick recap (AGM, possible worlds models)

I Bayesian models

I

I Updating probabilities
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Dynamic Epistemic Logic

The key idea of dynamic epistemic logic is that we can represent
changes in agents’ epistemic states by transforming models.

In the simplest case, we model an agent’s acquisition of knowledge
by the elimination of possibilities from an initial epistemic model.
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Finding out that ϕ

M = 〈W , {∼i}i∈A, {�i}i∈A,V 〉

M′ = 〈W ′, {∼′i}i∈A, {�′i}i∈A,V |W ′〉

Find out that ϕ
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Example: College Park and Amsterdam

Recall the College Park agent who doesn’t know whether it’s
raining in Amsterdam, whose epistemic state is represented by the
model:

r

w1 w2

b
b, d b, d

What happens when the Amsterdam agent calls the College Park
agent on the phone and says, “It’s raining in Amsterdam”?

We model the change in b’s epistemic state by eliminating all
epistemic possibilities in which it’s not raining in Amsterdam.
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Model Update

We can easily give a formal definition that captures the idea of
knowledge acquisition as the elimination of possibilities.

Given M = 〈W , {Ra | a ∈ Agt},V 〉, the updated model M|ϕ is
obtained by deleting from M all worlds in which ϕ was false.

Formally, M|ϕ = 〈W|ϕ, {Ra|ϕ | a ∈ Agt},V|ϕ〉 is the model s.th.:

W|ϕ = {v ∈W | M, v � ϕ};

Ra|ϕ
is the restriction of Ra to W|ϕ;

V|ϕ(p) is the intersection of V (p) and W|ϕ.

In the single-agent case, this models the agent learning ϕ. In the
multi-agent case, this models all agents publicly learning ϕ.
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Public Announcement Logic

One of the big ideas of dynamic epistemic logic is to add to our
formal language operators that can describe the kinds of model
updates that we just saw for the College Park and Amsterdam
example.

The language of Public Announcement Logic (PAL) is given by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [!ϕ]ϕ

Read [!ϕ]ψ as “after (every) true announcement of ϕ, ψ.”

Read 〈!ϕ〉ψ := ¬[!ϕ]¬ψ as “after a true announcement of ϕ, ψ.”
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Public Announcement Logic

The truth clause for the dynamic operator [!ϕ] is:

I M,w � [!ϕ]ψ iff M,w � ϕ implies M|ϕ,w � ψ.

So if ϕ is false, [!ϕ]ψ is vacuously true. Here is the 〈!ϕ〉
clause:

I M,w � 〈!ϕ〉ψ iff M,w � ϕ and M|ϕ,w � ψ.

Main Idea: we evaluate [!ϕ]ψ and 〈!ϕ〉ψ not by looking at other
worlds in the same model, but rather by looking at a new model.
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Public Announcement Logic

Suppose M = 〈W , {∼i}i∈A, {�i}i∈A,V 〉 is a multi-agent Kripke
Model

M,w |= [!ψ]ϕ iff M,w |= ψ implies M|ψ,w |= ϕ

where M|ψ = 〈W ′, {∼′i}i∈A, {�′i}i∈A,V ′〉 with

I W ′ = W ∩ {w | M,w |= ψ}
I For each i , ∼′i = ∼i ∩ (W ′ ×W ′)

I For each i , �′i = �i ∩ (W ′ ×W ′)

I for all p ∈ At, V ′(p) = V (p) ∩W ′
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Public Announcement Logic

[!ψ]p ↔ (ψ → p)

[!ψ]¬ϕ ↔ (ψ → ¬[!ψ]ϕ)

[!ψ](ϕ ∧ χ) ↔ ([!ψ]ϕ ∧ [!ψ]χ)

[!ψ][!ϕ]χ ↔ [!(ψ ∧ [!ψ]ϕ)]χ

[!ψ]Kiϕ ↔ (ψ → Ki (ψ → [!ψ]ϕ))
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Public Announcement Logic

[!ψ]p ↔ (ψ → p)
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[!ψ](ϕ ∧ χ) ↔ ([!ψ]ϕ ∧ [!ψ]χ)
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Theorem Every formula of Public Announcement Logic is
equivalent to a formula of Epistemic Logic.
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Public Announcement vs. Conditional Belief

Are [!ϕ]Bψ and Bϕψ different?

Yes!

p, q

w1

p,¬q

w2

¬p, q

w3

1 2

I w1 |= B1B2q

I w1 |= Bp
1B2q

I w1 |= [!p]¬B1B2q

I More generally, Bp
i (p ∧ ¬Kip) is satisfiable but

[!p]Bi (p ∧ ¬Kip) is not.
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The Logic of Public Observation

I [!ϕ]Kψ ↔ (ϕ→ K (ϕ→ [!ϕ]ψ))

I [!ϕ][�]ψ ↔ (ϕ→ [�](ϕ→ [!ϕ]ψ))

I Belief: [!ϕ]Bψ 6↔ (ϕ→ B(ϕ→ [!ϕ]ψ))

[!ϕ]Bψ ↔ (ϕ→ Bϕ[!ϕ]ψ)
[!ϕ]Bαψ ↔ (ϕ→ Bϕ∧[!ϕ]α[!ϕ]ψ)
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Belief Revision via Plausibility

A

B

C

D

E

ϕ

Incorporate the new information ϕ
(!ϕ): A ≺i B

Conservative Upgrade: Information from a trusted source
(↑ϕ): A ≺i C ≺i D ≺i B ∪ E

Radical Upgrade: Information from a strongly trusted source
(⇑ϕ): A ≺i B ≺i C ≺i D ≺i E
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K0 Kt = K0 ∗ ϕ=⇒
Find out that ϕ

M0 Mt =M⇑ϕ
0

=M↑ϕ0

=⇒
Find out that ϕ
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Bayesian Models
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Conceptions of Belief

Binary: “all-out” belief. For any statement p, the agent either
does or does not believe p. It is natural to take an unqualified
assertion as a statement of belief of the speaker.

Graded: beliefs come in degrees. We are more confident in some
of our beliefs than in others.

Eric Schwitzgebel. Belief. In The Stanford Encyclopedia of Philosophy.

Franz Huber. Formal Theories of Belief. In The Stanford Encyclopedia of Phi-
losophy.

Eric Pacuit 19
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Conceptions of Beliefs: Questions

What are the formal constraints on rational belief?

I rational graded beliefs should obey the laws of probability

I rational all-out beliefs should be consistent/deductively closed

I how should we justify these constraints?

D. Christensen. Putting Logic in its Place. Oxford University Press.

Eric Pacuit 20
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Suppose that W is a set of states (the set of outcomes).

A σ-algebra is a set Σ ⊆ ℘(W ) such that

I W ∈ Σ

I If A ∈ Σ, then A ∈ Σ

I If {Ai} is a countable collection of sets from Σ, then⋃
i Ai ∈ Σ

A probability function is a function p : Σ→ [0, 1] satisfying:

I p(W ) = 1

I p(A ∪ B) = p(A) + p(B) whenever A ∩ B = ∅

(W ,Σ, p) is called a probability space.

Eric Pacuit 21



Probability

Kolmogorov Axioms:

1. For each E , 0 ≤ p(E ) ≤ 1

2. p(W ) = 1, p(∅) = 0

3. If E1, . . . ,En, . . . are pairwise disjoint (Ei ∩ Ej = ∅ for i 6= j),
then p(

⋃
i Ei ) =

∑
i p(Ei )

I p(E ) = 1− p(E ) (E is the complement of E )

I If E ⊆ F then p(E ) ≤ p(F )

I p(E ∪ F ) = p(E ) + p(F )− p(E ∩ F )

Eric Pacuit 22
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I p(E ) = 1− p(E ) (E is the complement of E )

I If E ⊆ F then p(E ) ≤ p(F )

I p(E ∪ F ) = p(E ) + p(F )− p(E ∩ F )
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Suppose that (L, |=) is a logic. A probability function is a map
p : L → [0, 1] such that

1. For each E , 0 ≤ p(ϕ) ≤ 1

2. p(ϕ) = 1 if |= ϕ

3. If p(ϕ ∨ ψ) = p(ϕ) + p(ψ) when |= ¬(ϕ ∧ ψ).
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I.J. Good. 46,656 Varieties of Bayesians. Good Thinking: The Foundations of
Probability and Its Applications, University of Minnesota Press (1983).
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Conditional Probability

The probability of E given F , dented p(E |F ), is defined to be

p(E |F ) =
p(E ∩ F )

p(F )
.

provided P(F ) > 0.
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Bayes Theorem

p(H |E ) = p(E |H)
p(H)

p(E )

Bayes theorem is important because it expresses the quantity
p(H|E ) (the probability of a hypothesis H given the evidence E )
—which is something people often find hard to assess—in terms of
quantities that can be drawn directly from experiential knowledge.
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Example: Suppose you are in a casino and you hear a person at
the next gambling table announce “Twelve”. We want to know
wether he was rolling a pair of dice or a roulette wheel.

That is, compare p(Dice | Twelve) with p(Roulette | Twelve).

Based on our background knowledge of gambling we have
p(Twelve | Dice) = 1/36 and p(Twelve |Roulette) = 1/38.

Based on our observations about the casino, we can judge the prior
probabilities p(Dice) and p(Roulette).

But this is now enough to calculate the required probabilities.
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Extensions and variations
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I Dempster-Shafer belief functions: Bel : A→ [0, 1] are
super-additive, Bel(A) + Bel(B) ≤ Bel(A ∪ B) if A ∩ B = ∅.
The the number Bel(A) represents the strength with which A
is supported by the agent’s knowledge or belief base.

I Non-standard probability: µ : Σ→ R∗

I Halpern Plausibility Functions: µ : Σ→ (D,�).
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Imprecise Probabilities

I 1. What is the probability that a fair coin will land hands?
2. What is the probability of a coin of unknown bias will land

heads?

I Ellsberg Paradox
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Ellsberg Paradox

30 60
Lotteries Blue Yellow Green

L1 1M 0 0

L2 0 1M 0

L3 1M 0 1M

L4 0 1M 1M

L1 � L2 iff L3 � L4
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Indeterminate Probability

I Allow probability functions to take on sets of values instead of
a single value

I Work with sets of probabilities rather than a single probability

Eric Pacuit 32



Precisification Given a function σ : Σ→ ℘([0, 1]), a probability
function p : Σ→ [0, 1] of σ if and only if p(A) ∈ σ(A) for each
A ∈ Σ.

Indeterminate Probability A function σ : Σ→ ℘([0, 1]) such that
whenever x ∈ σ(A) there is some precisifcation of σ, p for which
p(A) = x .

Eric Pacuit 33



Ambiguation If Π is a set of probability functions, the
ambiguation of Π is the indeterminate probability function that
assigns to each A

σ(A) = {x | p(A) = x for some p ∈ Π}

Observation. The map that takes and indeterminate probability
function to the class of its precisfications is clearly 1-1. However,
the ambiguation of a set of probability functions can have
precisfications not in the ambiguated set.
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Convexity A class of probability functions Π is convex if and only
if whenever p, q ∈ Π, every mixture of p and q is in Π as well. I.e.,
αp + (1− α)q ∈ Π for all α ∈ (0, 1).

Proposition. If P is convex with σ it ambiguation, then σ(A) is
an interval for each A.

Eric Pacuit 35



Upper and Lower Probabilities

If σ is an indeterminate probability function, define

I Lower probability: σ∗(A) = inf{x | x ∈ σ(A)}
I Upper probability: σ∗(A) = sup{x | x ∈ σ(A)}

Eric Pacuit 36



Dutch Book Arguments

Should a rational agent’s graded beliefs satisfy the laws of
probability?

Eric Pacuit 37



Ramsey, de Finetti and Savage (1)

How do we measure a (rational) agent’s subjective probabilities?

Suppose we are wondering about Ann’s degree of belief about
whether a coin will land heads (H) or tails (T ).

Why don’t we just ask her? reported vs. “actual” degrees of belief.

What we need: systematic procedures for linking the probability
calculus (graded beliefs) to claims about objectively observable
behavior, such as preferences revealed by choice behavior.
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Ramsey, de Finetti and Savage (2)

Suppose we are wondering about Ann’s degree of belief about
whether a coin will land heads (H) or tails (T ).

Offer Ann two bets:

L1 If the coin lands heads, you win a sports car;
otherwise you win nothing

L2 If the coin does not land heads, you win a sports car;
otherwise you win nothing.

If Ann chooses L1, she believes H is more probable than T
If Ann chooses L2, she believes T is more probable than H
If Ann is indifferent, she believes H and T are equally probable
(i.e., pA(H) = pA(T ) = 1/2)
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The Dutch Book Argument

But, why should a rational agent’s graded beliefs satisfy the
Kolmogorov axioms?

Anyone whose beliefs violate the laws of probability is practically
irrational.

F. P. Ramsey. Truth and Probability. 1931.

B. de Finetti. La prévision: Ses lois logiques, ses sources subjectives. 1937.

Alan Hájek. Dutch Book Arguments. Oxford Handbook of Rational and Social
Choice, 2008.
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The EU-Thesis

Expected Money/Value/Utility: Given an agent’s beliefs and
desires, the expected utility of an action leading to a set of
outcomes Out is:

∑
o∈Out

[how likely the act will lead to o]×[how much the agent desires o]

1. principle of maximizing expected monetary value

2. principle of maximizing expected value

3. principle of maximizing expected utility
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Betting Behavior

The EU-thesis entails that a person satisfying 1-3 will reveal the
strengths of her beliefs in her betting behavior.

A wager: WX = [ a if X , b otherwise]: “you get a EUR if X is
true and b EUR otherwise.
(X ’s truth does not depend causally on W )

The EU-thesis entails that the agent’s level of confidence in X will
be revealed by the monetary value she puts on WX .
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Betting Behavior

fair price f for WX : the sum of money at which she is indifferent
between receiving a payment of f EUR or having WX go into
effect.

f = ExpVal(WX ) = C (X ) · a + (1− C (X )) · b implies C (X ) = f−b
a−b

If she is indifferent between 63, 81 EUR and
[100 EUR if it rains, 0 EUR otherwise], then she believes to degree
0.6381 that it will rain.
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Dutch Book

An agent will swap an (set of) wagers with the (sum of) their fair
prices.

Eric Pacuit 44



Dutch Book
Suppose that X and Y are logically incompatible (X ∩ Y = ∅)

Fair price: f = 0.25 for WX = [1 if X , 0 else]

Fair price: f = 0.25 for WY = [1 if Y , 0 else]

Fair price: f = 0.6 for WX∨Y = [1 if X ∨ Y , 0 else]

Consider W1 = {0.6,WX ,WY } and W2 = {0.5,WX∨Y }

X Y

indifferent between W1 and W2

will swap W2 for W1

But W2 is always better:

If X is true
payoff(W1) = 1.6 > payoff(W2)=1.5
If Y is true
payoff(W1) = 1.6 > payoff(W2)=1.5
If neither X nor Y is true
payoff(W1) = 0.6 > payoff(W2)=0.5
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Dutch Book Theorem

Theorem. Imagine and EU-maximizer who satisfies 1-3 and has a
precise degree of belief for every proposition she considers. If these
beliefs violate the laws of probability, then she will make Dutch
Book against herself.

This assumes there is an agent who

1. meets conditions 1-3

2. sets a fair price for every wager she considers

3. maximizes expected utility

allow agents to have incomplete or imprecise preferences
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allow agents to have incomplete or imprecise preferences
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beliefs violate the laws of probability, then she will make Dutch
Book against herself.

This assumes there is an agent who

1. meets conditions 1-3

2. sets a fair price for every wager she considers

3. maximizes expected utility

justify probabilistic coherence and EU simultaneously: Savage’s
Representation Theorem
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Accuracy

Accuracy. An epistemic agent ought to approximate the truth. In
other words, she ought to minimize her inaccuracy.
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Accuracy

Accuracy (Synchronic expected local). An agent ought to
minimize the expected local inaccuracy of her degrees of
credence in all propositions A ⊆W by the lights of her current
belief function, relative to a legitimate local inaccuracy measure
and over the set of worlds that are currently epistemically possible
for her.

Accuracy (Synchronic expected global). An agent ought to
minimize the expected global inaccuracy of her current belief
function by the lights of her current belief function, relative to a
legitimate global inaccuracy measure and over the set of worlds
that are currently epistemically possible for her
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Measuring Inaccuracy

Alethic Vindication The ideal credence function at world w is the
omniscient credence function at w , namely, vw .

Perfectionism The accuracy of a credence function at a world is
its proximity to the ideal credence function at that world.

Squared Euclidean Distance Distance between credence
functions is measured by squared Euclidean distance.
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Consider a vector E = (E1, . . . ,En) of events.

A forecast for E is a vector f = (f1, . . . , fn).

Two possible defects:

1. There may be a rival forecast g that guarantees a lower
penalty than the one for f, regardless of which events come
to pass.

2. The events in E may be related by inclusion or partition and f
might violate constraints imposed by probability.

de Finetti, Predd et al., Lindley, . . . : The two defects are
equivalent.
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Brier Score

E = (E ,F ) with E ⊆ F

f = (0.6, 0.9)

E
F

w

Penalty: (0− 0.6)2 + (1− 0.9)2 = 0.37
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Proper Scoring Rule

E = (E ,F ) with E ⊆ F

f = (0.6, 0.9)

Expected Penalty for E :
0.6 ∗ (1− 0.6)2 + 0.4 ∗ (0− 0.6)2 = 0.230

Expected Penalty for E by lying:
0.6 ∗ (1− 0.65)2 + 0.4 ∗ (0− 0.65)2 = 0.2425
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Proper Scoring Rule

Suppose your probability for an event E is p, that your announced
probability is x , and that your penalty assessed according ot the
rule (1− x)2 if E comes out true; (0− x)2 otherwise. Then your
expected penalty is uniquely minimized by choosing x = p.

Absolute Deviation

Expected Penalty for E :
0.6 ∗ |1− 0.6|+ 0.4 ∗ |0− 0.6| = 0.48

Expected Penalty for E by lying:
0.6 ∗ |1− 0.65|+ 0.4 ∗ |0− 0.65| = 0.47
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E = (E ,F ) with E ⊆ F

f = (0.6, 0.9)
f ′ = (0.95, 0.55)

Penalties:

Possibility f f ′

E true, F true 0.17 0.205

E false, F true 0.37 1.105

E false, F false 1.17 1.205
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S is a sample space. Subsets of S are events. Let E = (E1, . . . ,En)
be a vector of events.

A forecast is an element of [0, 1]n. A forecast is coherent if there
is a probability measure µ over S such that for all i = 1, . . . , n,
fi = µ(Ei ).

A function s : {0, 1} × [0, 1]→ [0,∞] is a proper scoring rule in
case:

1. ps(1, x) + (1− p)s(0, x) si uniquely minimized at x = p for
p ∈ [0, 1].

2. s is continuous. For i ∈ {0, 1}, limn→∞ s(i , xn) = s(i , x) for
any sequence xn from [0, 1] converging to x .
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Penalty

Given a proper scoring rule s, the penalty Ps based on s for
forecast f and w ∈ S is given by:

Ps(w , f) =
n∑

i=1

s(χEi
(w), fi )

f is weakly dominated by g in case Ps(w , g) ≤ Ps(w , f) for all
w ∈ S .

f is weakly dominated by g in case Ps(w , g) < Ps(w , f) for all
w ∈ S .
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Theorem Let f be a forecast.

1. If f is coherent, then it is not weakly dominated by any
forecast g 6= f

2. If f is incoherent, then it is strongly dominated by some
coherent forecast g
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0
Heads

1

T
ai

ls

1

(q, 1− q)

q

1− q

r1

r2 (r1, r2) r1 + r2 6= 1

√
(1− r1)2 + (0− r2)2

=
√

b(wH , (r1, r2))

wH : The coin is facing heads up.

wT : The coin is facing tails up.
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K0 Kt = K0 ∗ ϕ=⇒

Learn that ϕ

Suppose that ϕ

p0 pt = ???=⇒
Learning experience
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Conditioning
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Conditional Probability

The probability of E given F , dented p(E |F ), is defined to be

p(E |F ) =
p(E ∩ F )

p(F )
.

provided P(F ) > 0.
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Conditioning

When you acquire new evidence E , the new probability of any
proposition H should be the previous conditional probability of H
given E . I.e., q(H) = p(H | E ).

I If p is a probability function, and q(H) = p(H | E ) for each
H, then q is a probability function.

I (Assuming E1 and E2 are consistent) If q comes from p by
conditioning on E1 and r comes from q by conditioning on E2,
the result of condition on E2 first then E1 would have been
the same, namely r(·) = p(· | E1 ∩ E2).
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Setting pt(·) = p0(· | E ) is demonstrably the correct thing to do
just in case, for all propositions H ∈ Σ, both:

1. Certainty: pt(E ) = 1

2. Rigidity: pt(H | E ) = p0(H | E )
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People are often not aware of all that they have learnt or they fail
to adequately represent it, and it is only the failure of the Rigidity
condition that alerts us to this.
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Three Prisoner’s Problem

Three prisoners A,B and C have been tried for murder and their
verdicts will told to them tomorrow morning. They know only that
one of them will be declared guilty and will be executed while the
others will be set free. The identity of the condemned prisoner is
revealed to the very reliable prison guard, but not to the prisoners
themselves. Prisoner A asks the guard “Please give this letter to
one of my friends — to the one who is to be released. We both
know that at least one of them will be released”.
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Three Prisoner’s Problem

An hour later, A asks the guard “Can you tell me which of my
friends you gave the letter to? It should give me no clue regarding
my own status because, regardless of my fate, each of my friends
had an equal chance of receiving my letter.” The guard told him
that B received his letter.

Prisoner A then concluded that the probability that he will be
released is 1/2 (since the only people without a verdict are A and
C ).
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Three Prisoner’s Problem

But, A thinks to himself:

Before I talked to the guard my chance of being executed
was 1 in 3. Now that he told me B has been released,
only C and I remain, so my chances of being executed
have gone from 33.33% to 50%. What happened? I
made certain not to ask for any information relevant to
my own fate...

Explain what is wrong with A’s reasoning.
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A’s reasoning

Consider the following events:

GA: “Prisoner A will be declared guilty” (we have p(GA) = 1/3)

IB : “Prisoner B will be declared innocent” (we have p(IB) = 2/3)

We have p(IB | GA) = 1: “If A is declared guilty then B will be
declared innocent.”

Bayes Theorem:

p(GA | IB) = p(IB | GA)
p(GA)

p(IB)
= 1 · 1/3

2/3
= 1/2
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A’s reasoning, corrected

But, A did not receive the information that B will be declared
innocent, but rather that “the guard said that B will be declared
innocent.” So, A should have conditioned on the event:

I ′B : “The guard said that B will be declared innocent”

Given that p(I ′B | GA) is 1/2 (given that A is guilty, there is a
50-50 chance that the guard could have given the letter to B or
C ). This gives us the following correct calculation:

p(GA | I ′B) = p(I ′B | GA)
p(GA)

p(I ′B)
= 1/2 · 1/3

1/2
= 1/3
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Setting pt(·) = p0(· | E ) is demonstrably the correct thing to do
just in case, for all propositions H ∈ Σ, both:

1. Certainty: pt(E ) = 1

2. Rigidity: pt(H | E ) = p0(H | E )
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Observation by candlelight

An agent inspects a piece of cloth by candlelight, and gets the
impression that it is green (G ), although he concedes that it might
be blue (B) or even (but very improbably) violet (V ).

p0(G ) = p0(B) = 0.3, p0(V ) = 0.4

⇓

pt(G ) = 0.7, pt(B) = 0.25, pt(V ) = .05

Is there a proposition E such that pt(·) = p0(· | E )?
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Jeffrey Conditionalization

When an observation bears directly on the probabilities over a
partition {Ei}, changing them from p(Ei ) to q(Ei ), the new
probability for any proposition H should be

q(H) =
∑
i

p(H | Ei )q(Ei )

Fact: If q is obtained from p by Jeffrey Conditioning on the
partition {E ,E} with q(E ) = 1, then q(·) = p(· | E ).
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a0.25

c0.25

b 0.25

d 0.25

F1 F2

E1

E2

The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(a) = p({a} | E1)∗p∗(E1)+p({a} | E2)∗p∗(E2) = 0.25∗0.5+0 = 0.4
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The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(b) = p0({b} | E1)∗p(E1)+p0({b} | E2)∗p(E2) = 0+0.5∗0.8 = 0.4
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The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(c) = p0({c} | E1)∗p(E1)+p0({c} | E2)∗p(E2) = 0+0.5∗0.2 = 0.1
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The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(d) = p0({d} | E1)∗p(E1)+p0({d} | E2)∗p(E2) = 0+0.5∗0.2 = 0.1
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The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(d) = p0({d} | E1)∗p(E1)+p0({d} | E2)∗p(E2) = 0+0.5∗0.2 = 0.1

Eric Pacuit 74



a0.4

c0.1

b 0.4

d 0.1

E1

E2

F1 F2

The probability that the guilty party is left-handed is 0.8
F1 = {a, c}, F2 = {b, d}

p(F1) = 0.7 p(F2) = 0.3

p(a) = p0({a} | F1)∗p(F1)+p0({a} | F2)∗p(F2) = 0.8∗0.7+0 = 0.56

Eric Pacuit 74



P. Diaconis and S. Zabell. Updating Subjective Probability. Journal of the
American Statistical Association, Vol. 77, No. 380., pp. 822-830 (1982).
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Suppose we are thinking about three trials of a new surgical
procedure. Under the usual circumstances a probability assignment
is made on the eight possible outcomes
R = {000, 001, 010, 011, 100, 101, 110, 111}, where 1 denotes a
successful outcome, 0 not.

Suppose a colleague informs us that another hospital had
performed this type of operation 100 times, with 80 successful
outcomes. This is clearly relevant information and we obviously
want to revise our opinion.

The information cannot be put in terms of the occurrence of an
event in the original eight-point space R, and the Bayes rule is not
directly available.
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1.Complete Reassessment. In the absence of further structure it is
always possible to react to the new information by completely
reassessing P∗, presumably using the same techniques used to
quantify the original distribution P.
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2. Retrospective Conditioning. Some subjectivists have suggested
trying to analyze this kind of problem by momentarily disregarding
the new information, quantifying a distribution on a space W ∗ rich
enough to allow ordinary conditioning to be used, and then using
Bayes’ rule.
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3. Exchangeability. The three future trials may be regarded as
exchangeable with the 100 trials reported by our colleague.
Standard Bayesian computations can then be used. However, given
that the operations will have been performed at two, possibly very
different, hospitals with possibly very different patient populations,
this assumption might very well be judged unsatisfactory.
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4. Jeffrey’s Rule. Suppose that the original probability assignment
P was exchangeable. That is, P(001) = P(010) = P(100) and
P(110) = P(101) = P(011). Consider a partition {Ei}3i=0, where
E0 = {000}, E1 = {001, 010, 100}, E2 = {110, 101, 011} and
E3 = {111}. To complete the probability assignment P∗, we need
a subjective assessment of each P∗(Ei ), then use Jeffrey’s Rule to
define a full probability measure.
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Conditioning

I If q comes from p by conditioning on E , then q(E ) = 1

I If p(E1) = 1 then p(E1 | E2) = 1 for any E2 consistent with E1

I If p(E1) = 1 then p(A | E2) is undefined whenever E2 is
inconsistent with E1, since p(E2) = 0
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Fact. Jeffrey conditioning is not commutative.

Commutativity on Experiences Any rule for updating degrees
of belief on experiences should be such that the result of updating
credences on one experience and then another should be the same
as the result of updating on the same two experiences in reverse
order.

Holism For any experience and any proposition, there is a
“defeater” proposition, such that your degree of belief in the first
proposition, upon having the experience, should depend on your
degree of belief in the defeater proposition.
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J. Weisberg. Commutativity or Holism? A Dilemma for Conditionalizers. British
Journal of the Philosophy of Science, 60(4), pp. 793-812, 2009.

M. Lange. Is Jeffrey Conditionalization Defective in Virtue of Being NonCom-
mutative? Remarks on the Sameness of Sensory Experience. Synthese 123:
393-403, 2000.

C. Wagner. Probability kinematics and commutativity. Philosophy of Science
69, 266-278, 2002.
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Updating probabilities

Orthodox Bayesian Policy

I accept as admissible input only propositions;

I as response to such an input the only admissible change is
conditioning the prior on the proposition in question.

Departing from a (orthodox) Bayesian policy:

1. accept as admissible a wider variety of inputs (e.g. expected
values);

2. an admissible response to such an input can be a change in
the prior that is not the result of conditioning;

3. an admissible response to such an input may be non-unique,
that is, the posterior may not be uniquely determined by the
prior + input.
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p0

E
p0(E ) > 0

p(·) = p0(· | E )

(M) p0(A | pf ) = pf (A)
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p0

(E1 : q1, . . . ,Ek : qk)
{Ei} is a partition,

∑
i qi = 1

p(·) =
∑

i qi ∗ p0(· | Ei )

(M) p0(A | pf ) = pf (A)
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p0

E

p

(M) p0(A | pf ) = pf (A)
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p0

E

p0(E )
?
= 0

p

(M) p0(A | pf ) = pf (A)
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Conditional Probablities

What is the probability that a Democrat will be the next president?

What is the probability that a Democrat will be the next president,
given that a Democrat will be the next president?

A. Hájek. What conditional probability could not be. Synthese, 137, pp. 273 -
323, 2003.

Eric Pacuit 86



Conditional Probablities

What is the probability that a Democrat will be the next president?

What is the probability that a Democrat will be the next president,
given that a Democrat will be the next president?
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Martingale Property

p0

pfp1 p2 · · · pn−1pn· · ·

(M) p0(A | pf ) = pf (A)
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“When conditional probability is defined by the ratio rule, it has
limited expressive capacity. We would like to allow propositions
that have been accorded zero probability to serve as conditions for
the probability of other propositions. This is impossible when
p(x | a) is put as p(a∧ x)/p(a), for it is undefined when p(a) = 0.”

D. Makinson. Conditional Probability in the Light of Qualitative Belief Change.
Journal of Philosophical Logic.
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Problem: The condition a is consistent but of zero probability (the
critical zone).

Solutions:

I Carnap: If p(x) = 0, then x is inconsistent.

Define pa(·) as p(· | a). By the left projection,
pa(x) = p(x | a), then pa(¬a) = p(¬a | a) = 0 since p(a).
Thus, pa(¬a) = 0 even though ¬a is inconsistent.

I p(x | a) = 1 for every value x when p(a) = 0. Not very useful.

I p(x | a) is the limit of the values of p(x | a′) for suitable
infinite sequence of non-critical approximations a′ to a. Only
defined on special domains.
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CPS (Popper Space)

A conditional probability space (CPS) over (W ,A) is a tuple
(W ,A,B, µ) such that A is an algebra over W , B is a set of
subsets of W (not necessarily an algebra) that does not contain ∅
and µ : A×B→ [0, 1] satisfying the following conditions:

1. µ(U | U) = 1 if U ∈ B

2. µ(E1 ∪ E1 | U) = µ(E1 | U) + µ(E2 | U) if E1 ∩ E2 = ∅,
U ∈ B and E1,E2 ∈ A

3. µ(E | U) = µ(E | X ) ∗ µ(X | U) if E ⊆ X ⊆ U, U,X ∈ B
and E ∈ A.
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p : L × L → [0, 1]

van Fraassen Axioms:

I vF1 p(x , a) = p(x , a′) whenever a ≡ a′

I vF2 pa is a one-place Kolmogorov probability function with
pa(a) = 1

I vF3 p(x ∧ y , a) = p(x , a) ∗ p(y , a ∧ x) for all a, x , y

“for ‘most’ values of the right argument of the two-place function,
the left projections should be proper one-place Kolmogorov
functions, while in the remaining cases it should be the unit
function.”
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(Positive): when p(a,>) > 0 then pa is a proper Kolmogorov
function.

(Carnap) When a is consistent then p(a,>) > 0.

(Unit) When a is consistent but p(a,>) = 0, then pa is the unit
function.

(HL) When a is consistent but p(a,>) = 0, then pa is a proper
Kolmogorov probability function.
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What does ‘most propositions’ mean?

I The van Fraassen system: an unspecified subset (possibly
empty) of the consistent propositions,

I The Popper system: all propositions that are above the
critical zone or in an unspecified subset (possibly empty) of it,

I The Unit system: for all propositions above the critical zone
but no others,

I The Hosiasson-Lindenbaum system: for all propositions above
or in the critical zone,

I Carnaps system: we can say any of the last three, since the
critical zone is declared empty.
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LPS (Lexicographic Probability Space)

A lexicographic probability space (LPS) (of length α) is a tuple
(W ,Σ, ~µ) where W is a set of possible worlds, Σ is an algebra over
W and ~µ is a sequence of (finitely/countable additive) probability
measures on (W ,Σ) indexed by ordinals < α.
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Fix an LPS ~µ = (µ0, . . . , µn)

I E is certain: µ0(E ) = 1

I E is absolutely certain: µi (E ) = 1 for all i = 1, . . . , n

I E is assumed : there exists k such that µi (E ) = 1 for all i ≤ k
and µi (E ) = 0 for all k < i < n.
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NPS (non-standard probability measures)

R∗ is a non-Archimedean field that includes the real numbers as a
subfield but also has infinitesimals.

For all b ∈ R∗ such that −r < b < r for some r ∈ R, there is a
unique closest real number a such that |a− b| is an infinitesimal.
Let st(b) denote the closest standard real to b.

A nonstandard probability space (NPS) is a tuple (W ,Σ, µ)
where W is a set of possible worlds, Σ is an algebra over W and µ
assigns to elements of Σ, nonnegative elements of R∗ such that
µ(W ) = 1, µ(E ∪ F ) = µ(E ) + µ(F ) if E and F are disjoint.
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J. Halpern. Lexicographic probability, conditional probability, and nonstandard
probability. Games and Economic Behavior, 68:1, pgs. 155 - 179, 2010.
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p0

E
p0(E ) > 0

p(·) = p0(· | E )

(M) p0(A | pf ) = pf (A)
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p0

(E1 : q1, . . . ,Ek : qk)
{Ei} is a partition,

∑
i qi = 1

p(·) =
∑

i qi ∗ p0(· | Ei )

(M) p0(A | pf ) = pf (A)
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p0(·,>)

E

p(·) = p0(·,E )

(M) p0(A | pf ) = pf (A)
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p0

C: set of constraints

p satisfies C

(M) pf (A)
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MAXENT

Let us start with the simplest case, where our outcome space, X ,
contains only a finite number of points, x1, x2, . . . , xn. Then the
entropy of a probability, p, on this space is:

−
∑
i

p(xi ) log p(xi )

and the information is the negative of the entropy.

The minimum information or maximum entropy probability is the
one which makes the states equiprobable: p(xi ) = 1

n .
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Consider three die x1, x2, x3 and a random variable f such that
f (xi ) = i .

E[f ] = p(x1)f (x1) + p(x2)f (x2) + p(x3)f (x3)

What probabilities maximize entropy under the constraint that
E[f ] have different values?
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MAXENT

E[f ] p(x1) p(x2) p(x3)

1 1 0 0

0.1 0.907833 0.084333 0.007834

0.2 0.826297 0.147407 0.026297
...

...
...

...

0.8 0.438371 0.323257 0.238271

0.9 0.384586 0.330829 0.284586

2.0 0.333333 0.333333 0.333333

2.1 0.284586 0.330829 0.384586

2.2 0.238372 0.323257 0.438370
...

...
...

...

2.8 0.026297 0.147407 0.826296

2.9 0.007834 0.084332 0,907834

3.0 0 0 1
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MAXENT

E[f ] p(x1) p(x2) p(x3)

1 1 0 0

0.1 0.907833 0.084333 0.007834
...

...
...

...

0.9 0.384586 0.330829 0.284586

2.0 0.333333 0.333333 0.333333

2.1 0.284586 0.330829 0.384586
...

...
...

...

2.9 0.007834 0.084332 0.907834

3.0 0 0 1

The MAXENT probabilities are not closed under mxing: A mixture
of (1, 0, 0) and (0, 0, 1) is (0.5, 0, 0.5), but this is not in the list...
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Kullback-Leibler

Suppose that we start with a prior probability, p0, and move to a
posterior p1 which satisfies certain constraints. The
Kullback-Leibler “distance” is:

I (p1, p0) =
∑
i

p1(xi ) log
p1(xi )

p0(xi )
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p0

C: set of constraints

p satisfies C
p minimizes I (p, p0)

(M) pf (A)
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p0

E1 E2 Ei· · · · · · EkEk−1

{Ei} is a partition

p0(· | Ei )p0(· | E1) p0(· | E2) p0(· | Ek−1) p0(· | Ek)

· · · · · ·

(M) p0(A | pf ) = pf (A)
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p0

E1 E2 Ei· · · · · · EkEk−1

{Ei} is a partition

pip1 p2 pk−1 pk

· · · · · ·

(M) p0(A | pf ) = pf (A)
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Suppose that you are in a learning situation even more amorphous
than the kind which motivates Jeffrey’s idea. There is no nontrivial
partition that you expect with probability one to be sufficient for
your belief change....Perhaps you are in a novel situation where you
expect the unexpected observational input....You are going to just
think about some subject matter and update as a result of your
thoughts...I will consider the learning situation a kind of black box
and attempt no analysis of its internal structure.
asdd (Skyrms, pg. 96, 97)
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p0

pp1 p2 · · · pn−1pn· · ·

(M) p0(A | pf ) = pf (A)
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p0

pfp1 p2 · · · pn−1pn· · ·

(M) p0(A | pf ) = pf (A)
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It was suggested by Skyrms (1990) that this principle provides a
plausible way to distinguish learning situations from situations
where one expects probabilities to change for other reasons, such
as getting drunk, having a brain lesion or having a dangerously low
blood sugar level.

Huttegger develops an account in which the reflection principle is a
necessary condition for a black-box probability update to count as
a genuine learning experience.

Simon Huttegger. Learning Experiences and the Value of Knowledge. Philo-
sophical Studies, 2013.

Eric Pacuit 99



It was suggested by Skyrms (1990) that this principle provides a
plausible way to distinguish learning situations from situations
where one expects probabilities to change for other reasons, such
as getting drunk, having a brain lesion or having a dangerously low
blood sugar level.

Huttegger develops an account in which the reflection principle is a
necessary condition for a black-box probability update to count as
a genuine learning experience.

Simon Huttegger. Learning Experiences and the Value of Knowledge. Philo-
sophical Studies, 2013.

Eric Pacuit 99



Plan

Day 1 Introduction to belief revision, AGM, possible worlds models,
Bayesian models (time permitted)

Day 2 Bayesian models (continued), Justifying Bayesian models
(Dutch books, Accuracy-based arguments), Updating
probabilities

Day 3 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Iterated belief revision, Context shifts,
Becoming aware

Day 4 The value of learning, Lottery Paradox, Preface Paradox,
Review Paradox, Iterated belief revision, Context shifts,
Becoming aware (continued)

Day 5 Interactive epistemology (Agreement Theorems, Belief
Revision in Games)
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Topics

I Classic papers (Makinson, Diaconis & Zabel, KLM, . . . )

I Beliefs, credences and probability (Leitgeb’s stability theory of
belief, Pettigrew, Fitelson & Shear)

I Revising probabilities (List, Dietrich & Bradley, Halpern)

I Conditioning vs. learning (Osherson et al., Curpi et al.)

I Context shifts (Halpern & Grünwald, Romeijn, Pettigrew)

I Lottery, Preface and Review paradox (Leitgeb, Easerwen &
Fitelson)

I Iterated belief change, long-term dynamics, convergence
results (Huttegger, EP)

I Bayesian reasoning, reasoning to the best explanation,
case-base reasoning (Gilboa et al., Douven and Shubach)
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