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Operator > Predicate

✓ Montague provided the first result by proving that the predicate version of
the modal system T is inconsistent if it is combined with weak systems of
arithmetic. From his result he concluded that “virtually all of modal
logic...must be sacrificed”, if necessity is conceived of as a predicate of
sentences.

⇒ The other technical achievement that brought about the triumph of the
operator view was the emergence of possible-worlds semantic. Hintikka,
Kanger and Kripke provided semantics for modal operator logics, while
nothing similar seemed available for the predicate approach.
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Volker Halbach, Hannes Leitgeb and Philip Welch (2003). Possible-Worlds Semantics for Modal
Notions Conceived as Predicates. Journal of Philosophical Logic, 32:2, pp. 179-223.
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A frame is a tuple (W ,R) where W is a nonempty set and R is a relation on W .

A PW-model is a triple (W ,R ,V ) such that (W ,R) is a frame and V assigns
to every w ∈ W as subset of L2 such that:

V (w) = {A ∈ L2 | for all u, if w R u, then V (u) |= A}

If (W ,R ,V ) is a model, we say that the frame (W ,R) supports the model
(W ,R ,V ) or that (W ,R ,V ) is based on (W ,R).

A frame admits a valuation if there is a valuation V such that (W ,R ,V ) is
model.
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V (w) |= 2⌜A⌝ iff for all v ∈ W , if w R v , then V (v) |= A

Characterization Problem: Which frames support PW-models?

Lemma (Normality). Suppose (W ,R ,V ) is a PW-model, w ∈ W and
A,B ∈ L2. Then the following holds:

▶ If V (u) |= A for all u ∈ W , then V (w) |= 2⌜A⌝.
▶ V (w) |= 2(⌜A → B⌝) → (2⌜A⌝ → 2⌜B⌝)
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∀x∀y((Sent(x) ∧ Sent(y)) → (2⌜x →
·
y⌝ → (2x → 2y)))
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Fact (Tarski). The above frame with one world that sees itself does not admit a
valuation.

Fact (Montague’s Theorem). If (W ,R) admits a valuation, then (W ,R) is
not reflexive.
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Fact (Montague’s Theorem). If (W ,R) admits a valuation, then (W ,R) is
not reflexive.

Assume (W ,R ,V ) is a PW-model based on (W ,R) which is reflexive.

▶ We have PA ⊢ A ↔ ¬2⌜A⌝, and so it holds at every world.

▶ If V (w) |= ¬A, then V (w) |= 2⌜A⌝.
▶ So, by reflexivity, V (w) |= A. Contradiction.

▶ Thus, V (w) |= A.

▶ Hence, V (w) |= ¬2⌜A⌝; and so, there is some u such that w R u and
V (u) |= ¬A.

▶ Again, using the same argument as above, V (u) |= A. Contradiction.
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1. The following frame does not admit a valuation:

Use the fixed point: A ↔ ¬2⌜2⌜A⌝⌝

2. The following frame does not admit a valuation:

Use the fixed point: A ↔ (2⌜A⌝ → 2⌜¬A⌝)
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3. The following frame does not admit a valuation:

Use the fixed point: A ↔ (¬2⌜2⌜A⌝⌝ ∧ ¬2⌜A⌝)
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4. The following frame (N, succ) does not admit a valuation:

0 1 2 . . .

Use the fixed point: A ↔ ¬∀x2h. (x , ⌜A⌝)

where h. represents a function that applies n-boxes to B :

h(n) = ⌜2 · · · ⌜2⌜B⌝⌝ · · ·⌝

V. McGee (1985). How truthlike can a predicate be? A negative result. Journal of Philosophical
Logic, 14, pp. 399-410.

A. Visser (1989). Semantics and the Liar paradox. in Handbook of Philosophical Logic, Vol. 4,
Reidel, Dordrecht.
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Lemma. Let (W ,R ,V ) be a PW-model based on a transitive frame. Then,

2⌜A⌝ → 2⌜2⌜A⌝⌝

obtains for all w ∈ W and sentences A ∈ L2.

Löb’s Theorem For every world w in a PW-model based on a transitive frame
and every sentence A ∈ L2, the following holds:

2(⌜2⌜A⌝ → A⌝) → 2⌜A⌝
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Fact. In a transitive frame admitting a valuation every world is either a dead end
state or it can see a dead end state.

Proof. Since the frame is transitive, Löb’s Theorem holds.

Applying Löb’s Theorem to ⊥, we obtain:

V (w) |= 2⌜⊥⌝ ∨3⌜2⌜⊥⌝⌝
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▶ It is not hard to show that all converse wellfounded frames support a
PW-model:

If (W ,R) is converse wellfounded, then define a valuation for (W ,R) by
induction along R in the following way:

V (w) = {A ∈ L2 | ∀v(w R v ⇒ V (v) |= A}

N. Belnap and A. Gupta (1993). The Revision Theory of Truth. The MIT Press.

▶ However, there are some converse illfounded frames that admit valuations.
Because of these frames the Characterisation Problem is nontrivial.
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Predicate Approaches to Modality

Johannes Stern (2016). Toward Predicate Approaches to Modality. Springer.
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The Incompleteness Theorems

Theorem (Gödel’s First Incompleteness Theorem)
Assume that PA is Σ0

1-sound. Then there is a Π0
1-sentence φ such that PA

neither proves φ nor ¬φ.

Theorem (Gödel’s Second Incompleteness Theorem)
Assume that PA is consistent. Then PA cannot prove ConPA.

ConPA is a Π0
1-statement that informally asserts “for all x , x does not code a

proof of a contradiction from the axioms of PA”
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Do the incompleteness theorems imply that “the mathematical outputs of the
idealized human mind do not coincide with the mathematical outputs of any
idealized finite machine (Turing machine)”?

Peter Koellner (2016). Gödel’s Disjunction. in Gödel’s Disjunction: The scope and limits of
mathematical knowledge, pp. 148-188, Oxford University Press.
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Relative Provability; Absolute Provability; Truth

F an arbitrary formal system with the feature that each sentence of F is true
and the rules of F are truth preserving

K the set of all sentences that are “absolutely provable”

T the set of all sentences that are true

Claim 1: For any formal system F , F ⊆ T ⇒ F ⊊ T

Claim 2: For any formal system F , K (F ⊆ T ) ⇒ F ⊊ K
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Gödel did not conclude that for F , F ⊆ T → F ⊊ K

Does incompleteness imply that there are absolutely undecidable sentences?

“The statements are not all absolutely undecidable; rather, one can al-
ways pass to a “higher” system in which the sentence in question is
decidable...Perhaps there is a “master system,” F ∗ such that relative
provability with regard to F ∗ coincides with absolute provability....What
we can conclude is merely that if there is a such a master system, then
we could never know (in the sense of being able to absolutely prove) that
all of its axioms were true.”

if there is an F such that F = K , then K ⊊ T

21
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Gödel did not conclude that for F , F ⊆ T → F ⊊ K

Does incompleteness imply that there are absolutely undecidable sentences?

“The statements are not all absolutely undecidable; rather, one can al-
ways pass to a “higher” system in which the sentence in question is
decidable...Perhaps there is a “master system,” F ∗ such that relative
provability with regard to F ∗ coincides with absolute provability....What
we can conclude is merely that if there is a such a master system, then
we could never know (in the sense of being able to absolutely prove) that
all of its axioms were true.”

if there is an F such that F = K , then K ⊊ T

21



Gödel’s Disjunction

Either (¬∃F (F = K )) or (∃φ(T (φ) ∧ ¬K (φ) ∧ ¬K (¬φ)))

“So the following disjunctive conclusion is inevitable: Either mathemat-
ics is incompletable...that is to say, the human mind (even within the
realm of pure mathematics) infinitely surpasses the powers of any finite
machine, or else there exist absolutely unsolvable diophantine problems
of the type specified (where the case that both terms of the disjunction
are true is not excluded, so that there are strictly speaking, three alter-
natives).”
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To make the above arguments precise, we need to spell out the background
assumptions on F , K and T .

▶ Turing provides a substantive analysis of F .

▶ Tarski gives a structural analysis of T .

▶ What about K?

In the case of K there is no hope of giving a substantive analysis; the most
that one could hope for is a structural analysis. The trouble is that there is
little agreement on the element of idealization involved in the notion of
“absolute provability” (i.e., “the idealized human mind”).
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Epistemic Arithmetic

P. Koellner (2016). Gödel’s Disjunction. in Gödel’s Disjunction: The Scope and Limit and
Mathematical Knowledge, Oxford University Press.

W. Reinhardt (1985). Absolute Versions of Incompleteness Theorems. Nous, 19(3), pp. 317 -
346.

W. Reinhardt (1986). Epistemic Theories and the Interpretation of Gödel’s Incompleteness
Theorems. Journal of Philosophical Logic, 15, pp. 427 - 474.
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The language of EA is the language LA augmented with a unary sentential
operator ‘K ’.

The axioms of EA fall into two categories—the axioms of arithmetic and the
axioms of absolute provability.

The axioms of arithmetic are simply those of PA, only now the induction scheme
is taken to hold for all formulas in LEA.
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Axioms of absolute provability

E1. Universal closures of formulas of the form Kφ where φ is a first-order
validity.

E2. Universal closures of formulas of the form

(K (φ→ ψ) ∧ Kφ) → Kψ

E3. Universal closures of formulas of the form

Kφ→ φ

E4. Universal closures of formulas of the form

Kφ→ KKφ
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For a collection Σ of formulas in LEA we use KΣ to denote the collection of
formulas ‘Kφ’ where φ ∈ Σ.

The system EA is the theory axiomatized by Σ ∪ KΣ where Σ consists of the
axioms of PA (in the language LEA) and the basic axioms of absolute provability.
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Feferman Dot Notation, I

Arithmetic operations on Gödel numbers is denoted by placing a dot under the
associated syntactic symbol.

For example, ¬. is the operation where:

¬. ⌜φ⌝ ≡ ⌜¬φ⌝

Similarly for ∨. , →. , etc.
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Feferman Dot Notation, II

Although it makes sense to write ProvPA(⌜φ⌝), it does not make sense to write
∀x ProvPA(x).

∀x ProvPA(ẋ) means that “for every natural number x , if you take the canonical
numeral for x , substitute it for the dot in ‘φ(·)’, then the Gödel number of the
resulting expression is in the range of the arithmetical relation ’ProvPA’.”
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Feferman Dot Notation, III

if x is the Gödel number of a formula, z is the Gödel number of a variable, and y
is a natural number, then

x(ẏ/z))

is the Gödel number of the formula obtained by

substituting the canonical numeral for y for (the variable numbered by) z in
(the expression numbered by) x .
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Typed Truth

The language LEAT is the language LEA augmented with a unary predicate ‘T ’.

The predicate ‘T ’ is intended to be a (Tarskian) truth predicate that applies to
sentences of the sublanguage LEA where ‘T ’ is omitted.

Hence we are dealing here with a typed truth predicate.
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Typed Truth

Define a valuation function Val on closed terms:

V1. ∀x [Val(ẋ) = x ]

V2. ∀x1 · · · ∀xn[(CTerm(x1) ∧ · · · ∧ CTerm(xn))
∀x1 · · · ∀xn → (Val(f (x1, . . . , xn)) = f (Val(x1), . . . ,Val(xn))]
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Typed Truth

T1. ∀x [T (x) → Sent(x)]

T2. For each atomic formula R(x1, . . . , xn):
∀x1 · · · ∀xn[CTerm(x1) ∧ · · · ∧ CTerm(xn)) →
T (R. (x1, . . . , xn)) → R(Val(x1), . . . ,Val(xn))

T3. ∀x [Sent(x) → T (¬. x) ↔ ¬T (x)]

T4. ∀x∀y [(Sent(x) ∧ Sent(y)) → (T (x→. y) ↔ (T (x) → T (y)))]

T5. ∀x∀y [(Sent(x) ∧ Sent(y)) → (T (x∨. y) ↔ (T (x) ∨ T (y)))]

T6. ∀x∀z [(Var(z) ∧ Sent((∀. z)x)) → (T ((∀. z)x) ↔ ∀yT (x(ẏ/z)))]

T7. ∀x [Sent(x) → (T (K. x) ↔ KT (x))]
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Typed Truth

T1. ∀x [T (x) → Sent(x)]

T2. For each atomic formula R(x1, . . . , xn):
∀x1 · · · ∀xn[CTerm(x1) ∧ · · · ∧ CTerm(xn)) →
T (R. (x1, . . . , xn)) → R(Val(x1), . . . ,Val(xn))

T3. ∀x [Sent(x) → T (¬. x) ↔ ¬T (x)]
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The system EAT is the theory axiomatized by Σ ∪ KΣ, where Σ consists of the
axioms of PA (in the language of LEAT

), the basic axioms of absolute provability
(in the language LEAT

), and the axioms of truth (for the language LEAT
).
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Reinhardt showed that in this setting one can prove versions of the
incompleteness theorems that pertain to the concept of absolute provability.

35



Formal First Incompleteness Theorem

Theorem (Reinhardt, 1985)
Assume that S include EA. Suppose that F (x) is a formula with one free
variable and such that for each sentence φ,

S ⊢ K (F (⌜φ⌝) → φ)

Then there is a sentence γ such that

S ⊢ Kγ ∧ K¬F (⌜γ⌝)

W. Reinhardt (1985). Absolute Versions of Incompleteness Theorems. Nous, 19(3), pp. 317 -
346.
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Formal Second Incompleteness Theorem

Theorem (Reinhardt, 1985)
Assume that S include EA. Suppose that F (x) is a formula with one free
variable and such that for each sentence φ,

S ⊢ K (Kφ→ F (⌜φ⌝))

Then
S ⊢ K¬KConF

W. Reinhardt (1985). Absolute Versions of Incompleteness Theorems. Nous, 19(3), pp. 317 -
346.
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Formalizing Gödel’s Disjunction

▶ Let ‘Kp(x)’ be shorthand for ‘T (K. x) ∧ SentLEA
(x)’ and

▶ Let ‘x ∈ We ’ be shorthand for the statement “x is the eth computably
enumerable set.”
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The First Disjunct:

∀e[∀x((SentLPA
(x) ∧ x ∈ We) → T (x)) →

∃y(SentLPA
(y) ∧ Kp(y) ∧ y ̸∈ We)
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The Second Disjunct:

∃y(SentLPA
(y) ∧ T (y) ∧ ¬T (K. y) ∧ ¬T (K. ¬. y))
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Let GD be the disjunction of the previous two sentences.

Theorem (Reinhardt)

1. EAT ⊢ ∀x [Kp(x) → T (x)]

2. EAT ⊢ GD
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Proof Sketch

Let Kp = T be shorthand for

(∀x) [SentLA
(x) → (Kp(x) ↔ T (x))]
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Proof Sketch

Case 1: Kp = T

Because, we allowed ‘T ’ to figure in the induction scheme, the proof of the first
incompleteness theorem gives us:

(∀e)[(∀x) ((SentLPA
(x)∧x ∈ We) → T (x)) → (∃y)(SentLPA

(y)∧T (y)∧y ̸∈ We)

Since we assumed Kp = T , we can replace ‘T (y)’ with ‘Kp(y)’ to obtain the first
disjunct.
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Proof Sketch

Case 2: Kp ̸= T .

(∃x)[SentLPA
(x) ∧ ¬(Kp(x) ↔ T (x))]

By part 1, it follows that:

(∃x)[SentLPA
(x) ∧ T (x) ∧ ¬Kp(x)]

Fix an instance of x . The last conjunct implies ¬T (K. x).
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Proof Sketch

But we also have ¬Kp(¬. x). (Suppose for contradiction that Kp(¬. x) holds. Then
T (¬. x), which contradicts T (x).)

Since SentLPA
(¬. x) it follows that ¬T (K. ¬. x). Thus, we have shown that

(∃x)[SentLPA
(x) ∧ T (x) ∧ ¬T (K. x) ∧ ¬T (K. ¬. x)]
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Which Disjunct?

1. ∀e[∀x((SentLPA
(x) ∧ x ∈ We) → T (x)) →

∃y(SentLPA
(y) ∧ Kp(y) ∧ y ̸∈ We)

2. ∃y(SentLPA
(y) ∧ T (y) ∧ ¬T (K. y) ∧ ¬T (K. ¬. y))

(WMT) ∃e (Kp = We)

(SMT) K∃e (Kp = We)

(SSMT) ∃e K (Kp = We)
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Which Disjunct?

Theorem (Reinhardt, 1985) EAT + SSMT is inconsistent.

William N. Reinhardt (1985). Absolute versions of incompleteness theorems. Nous, 19(3), pp.
317-346.
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Which Disjunct?

Theorem (Reinhardt, 1985) EAT +WMT is consistent.

William N. Reinhardt (1985). The consistency of a variant of Church’s thesis with an axiomatic
theory of an epistemic notion. In Special Volume for the Proceedings of the 5th Latin American
Symposium on Mathematical Logic, 1981, vol. 19 of Revista Colombiana de Matem’aticas, pp.
177-200.
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Which Disjunct?

Theorem (Carlson, 2005) EAT + SMT is consistent.

Timothy J. Carlson (2005). Knowledge, machines, and the consistency of Reinhardt’s strong
mechanistic thesis. Annals of Pure and Applied Logic, 105(1-3), pp. 51-81.
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Which Disjunct?

In other words, from the point of view of EAT it is entirely possible that the
idealized human mind knows that it is a Turing machine. It just can’t know
which one!
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A Different Perspective: Type-Free Theory of Truth

Let ‘D(x)’ be short for T (x) ∨ T (¬. x) (which asserts that x is determinate)
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Axioms of Determinateness

D1. ∀x [SentLA
(x) → D(x)]

D2. ∀x [Sent(x) → (D(¬. x) ↔ D(x)]

D3. ∀x ∀y [Sent(x) ∧ Sent(y) → (D(x ∨. y) ↔ (D(x) ∧ D(y)))

D4. ∀x ∀y [Sent(x) ∧ Sent(y) → (D(x →. y) ↔ (D(x) ∧ (T (x) → D(y))))

D5. ∀x ∀z [Var(z) ∧ Sent((∀. z)x) → (D((∀. z)x) ↔ (∀y D(x(ẏ/z))))]

D6. ∀x [D(T. (ẋ)) ↔ D(x)]
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Axioms of Truth

T1. For each atomic formula R(x1, . . . , xn):
∀x1 · · · ∀xn[CTerm(x1) ∧ · · · ∧ CTerm(xn) →
∀x1 · · · ∀xnT (R. (x1, . . . , xn)) → R(Val(x1), . . . ,Val(xn)]

T2. ∀x [(Sent(x) ∧ D(x)) → T (¬. x) ↔ ¬T (x)]

T3. ∀x∀y [(Sent(x) ∧ Sent(y) ∧ D(x∨. y)) → (T (x∨. y) ↔ (T (x) ∨ T (y)))]

T4. ∀x∀y [(Sent(x) ∧ Sent(y) ∧ D(x→. y)) → (T (x→. y) ↔ (T (x) → T (y)))]

T5. ∀x∀z [(Var(z) ∧ Sent((∀. z)x) ∧ D((∀. z)x)) →
∀x∀z(T ((∀. z)x) ↔ ∀yT (x(ẏ/z)))]

T6. ∀x [D(x) → (T (T. ẋ) ↔ T (x))]
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Theorem. (Feferman) For each φ in the language of DT,

DT ⊢ D(⌜φ⌝) → (T (⌜φ⌝) ↔ φ)

S. Feferman (2008). Axioms for determinateness and truth. Review ofSymbolic Logic, 1(2), pp.
204-217.
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D7. ∀x [Sent(x) → (D(K. x) ↔ D(x))]

T7. ∀x [Sent(x) → (T (K. x) ↔ KT (x))]

(I ) For each sentence φ, Kφ→ T (⌜φ⌝)
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D7. ∀x [Sent(x) → (D(K. x) ↔ D(x))]

T7. ∀x [Sent(x) → (T (K. x) ↔ KT (x))]

(I ) For each sentence φ, Kφ→ T (⌜φ⌝)
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Theorem (Koellner). EADT is inconsistent.
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Proof. The main point is that for each φ in the language LEADT
.

EADT ⊢ Kφ↔ Kp(⌜φ⌝)

Claim 1: EADT ⊢ Kφ→ Kp(⌜φ⌝)

1. Kφ→ KKφ E4

2. KKφ→ T (⌜Kφ⌝) I

3. Kφ→ T (⌜Kφ⌝) from 1, 2

4. Kφ→ (SentEADT (⌜φ⌝) ∧ T (⌜Kφ⌝)) φ is a sentence of LEADT

5. Kφ→ Kp(⌜φ⌝) definition of Kp
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Claim 2: EADT ⊢ Kp(⌜φ⌝) → Kφ
We want to show that:

EADT ⊢ (SentEADT (⌜φ⌝) ∧ T (⌜Kφ⌝)) → Kφ

We have that for for all ψ,

EADT ⊢ T (⌜ψ⌝) → ψ.

Hence,

EADT ⊢ T (⌜Kφ⌝) → Kφ.
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Thus, we can turn the operator K into a predicate Kp and show that Kp has the
properties of the Montague-Kaplan Theorem, showing that the theory is
inconsistent.
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The trouble is that once we enter the realm where indeterminate sentences arise,
it is no longer plausible to maintain that one knows logical validities if the
validities in question are themselves indeterminate.

This motivates a natural modification of the above system. And once one makes
this modification it turns out to be possible to treat ‘K ’ as a predicate. On this
approach the work in circumventing the paradoxes is carried by the theory of
truth and transferred over to the theory of absolute provability.
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DTK

The language of DTK is LA with predicates ‘K ’ (absolute knowledge) and
‘T ’ (truth).

Let D(x) be short for T (x) ∨ T (¬. x) (determinitness).

The system DTK has four groups of axioms (in addition to our fixed set of
axioms for first-order logic).
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DTK: Arithmetic Axioms

The axioms of arithmetic are those of PA, where the induction scheme is
extended to the entire language so that ‘T ’ and ‘K ’ are allowed to figure in
induction.
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DTK: Determinitness Axioms

D1. ∀x [At-SentLA
(x) → D(x)]

D2. ∀x [Sent(x) → (D(¬. x) ↔ D(x)]

D3. ∀x ∀y [Sent(x) ∧ Sent(y) → (D(x ∨. y) ↔ (D(x) ∧ D(y)))

D4. ∀x ∀y [Sent(x) ∧ Sent(y) → (D(x →. y) ↔ (D(x) ∧ (T (x) → D(y))))

D5. ∀x ∀z [Var(z) ∧ Sent((∀. z)x) → (D((∀. z)x) ↔ (∀y D(x(ẏ/z))))]

D6. ∀x [D(T. (ẋ)) ↔ D(x)]

D7. ∀x [D(K. (ẋ)) ↔ D(x)]

54



DTK: Truth Axioms

T1. For each atomic formula R(x1, . . . , xn):
∀x1 · · · ∀xn[CTerm(x1) ∧ · · · ∧ CTerm(xn) →
∀x1 · · · ∀xnT (R. (x1, . . . , xn)) → R(Val(x1), . . . ,Val(xn)]

T2. ∀x [(Sent(x) ∧ D(x)) → T (¬. x) ↔ ¬T (x)]

T3. ∀x∀y [(Sent(x) ∧ Sent(y) ∧ D(x∨. y)) → (T (x∨. y) ↔ (T (x) ∨ T (y)))]

T4. ∀x∀y [(Sent(x) ∧ Sent(y) ∧ D(x→. y)) → (T (x→. y) ↔ (T (x) → T (y)))]

T5. ∀x∀z [(Var(z) ∧ Sent((∀. z)x) ∧ D((∀. z)x)) →
∀x∀z(T ((∀. z)x) ↔ ∀yT (x(ẏ/z)))]

T6. ∀x [D(x) → (T (T. ẋ) ↔ T (x))]

T7. ∀x [D(x) → (T (K. ẋ) ↔ K (x))]
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DTK: Knowledge Axioms

K1. ∀x [Sent(x) → (K (x) → T (x))]

K2. ∀x ∀y [(Sent(x) ∧ Sent(y)) → ((K (x→. y) ∧ K (x)) → K (y))]

K3. ∀x [Sent(x) → (K (x) → K (K. (ẋ)))]
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DTK: Rules

φ ∧ D(⌜φ⌝)
K (⌜φ⌝)

φ ∧ D(⌜φ⌝)
T (⌜φ⌝)
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Theorem DTK is consistent.

Proof idea. Feferman used a fixed-point construction to show that DT is
consistent. We show that DTK holds in this model by interpreting DTK in DT.
The interpretation is simply the one that interprets ‘K ’ as ‘T ’.
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Fixed Point Theorem

Theorem. For each ψ(x) in LA, there exists a sentence φ in LA such that

DTK ⊢ K (⌜φ↔ ψ(⌜φ⌝)⌝)
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First Incompleteness Theorem

Theorem. Suppose that S includes DTK. Suppose F (x) is a formula in LA

such that for all sentences φ of LA:

S ⊢ K (⌜F (⌜φ⌝) → φ⌝)

Then there is a sentence ψ of LA such that

S ⊢ K (⌜ψ⌝) ∧ K (⌜¬F (⌜ψ⌝)⌝)
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Proof Sketch

1. S ⊢ K (⌜ψ ↔ ¬F (⌜ψ⌝)⌝) K -FPT

2. S ⊢ K (⌜F (⌜ψ⌝) → ψ⌝) Assumption

3. S ⊢ K (⌜(F (⌜ψ⌝) → ψ) → ((¬F (⌜ψ⌝) → ψ) → ψ)⌝) DK -Intro

4. S ⊢ K (⌜ψ⌝) Modal Reasoning

5. S ⊢ K (⌜¬F (⌜ψ⌝)⌝) Modal Reasoning

58



Proof Sketch

1. S ⊢ K (⌜ψ ↔ ¬F (⌜ψ⌝)⌝) K -FPT

2. S ⊢ K (⌜F (⌜ψ⌝) → ψ⌝) Assumption

3. S ⊢ K (⌜(F (⌜ψ⌝) → ψ) → ((¬F (⌜ψ⌝) → ψ) → ψ)⌝) DK -Intro

4. S ⊢ K (⌜ψ⌝) Modal Reasoning

5. S ⊢ K (⌜¬F (⌜ψ⌝)⌝) Modal Reasoning

58



Proof Sketch

1. S ⊢ K (⌜ψ ↔ ¬F (⌜ψ⌝)⌝) K -FPT

2. S ⊢ K (⌜F (⌜ψ⌝) → ψ⌝) Assumption

3. S ⊢ K (⌜(F (⌜ψ⌝) → ψ) → ((¬F (⌜ψ⌝) → ψ) → ψ)⌝) DK -Intro

4. S ⊢ K (⌜ψ⌝) Modal Reasoning

5. S ⊢ K (⌜¬F (⌜ψ⌝)⌝) Modal Reasoning

58



Proof Sketch

1. S ⊢ K (⌜ψ ↔ ¬F (⌜ψ⌝)⌝) K -FPT

2. S ⊢ K (⌜F (⌜ψ⌝) → ψ⌝) Assumption

3. S ⊢ K (⌜(F (⌜ψ⌝) → ψ) → ((¬F (⌜ψ⌝) → ψ) → ψ)⌝) DK -Intro

4. S ⊢ K (⌜ψ⌝) Modal Reasoning

5. S ⊢ K (⌜¬F (⌜ψ⌝)⌝) Modal Reasoning

58



Proof Sketch

1. S ⊢ K (⌜ψ ↔ ¬F (⌜ψ⌝)⌝) K -FPT

2. S ⊢ K (⌜F (⌜ψ⌝) → ψ⌝) Assumption

3. S ⊢ K (⌜(F (⌜ψ⌝) → ψ) → ((¬F (⌜ψ⌝) → ψ) → ψ)⌝) DK -Intro

4. S ⊢ K (⌜ψ⌝) Modal Reasoning

5. S ⊢ K (⌜¬F (⌜ψ⌝)⌝) Modal Reasoning

58



Second Incompleteness Theorem

Theorem. Suppose that S includes DTK. Suppose F (x) is a formula in LA

such that for all sentences φ of LA:

S ⊢ K (⌜K (⌜φ⌝) → F (⌜φ⌝)⌝)

Then,
S ⊢ K (⌜¬K (⌜Con(F )⌝)⌝)
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Theorem. DTK can prove the formalized version of Gödel’s disjunction.

Theorem. Assume that DTK is consistent. Then DTK can neither refute the
first disjunct nor prove the second disjunct of Gödel’s Disjunction.

Theorem. Assume that DTK is Σn sound for all n < ω. Then DTK can neither
prove the first disjunct nor refute the second disjunct of Gödel’s Disjunction.
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The above consistency results show that the principles of DTK are insufficient to
prove or refute either disjunct; indeed they are insufficient to distinguish between
the “K equals truth” interpretation (rational optimism) and the “K equals
relative provability” interpretation (pessimistic mechanism).

One natural response to this—on behalf of the proponent of the first disjunct—is
that the principles of knowledge embodied in DTK are merely a fragment of the
acceptable principles of knowledge, and that when we supplement DTK with the
missing principles of knowledge we will be in a position to prove or refute the
disjuncts.
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...it seems likely that the above independence results will carry over to
new frameworks when one incorporates new theories of knowledge and
type-free truth. And for this reason it seems likely that both the question
of whether “the mind can be mechanized” and the question of whether
“there are absolutely undecidable statements” (in the idealized sense
we have been considering) are themselves examples of “absolutely un-
decidable statements” and, as such, will remain forever undecided and
continue to lie outside the scope of human reason. (Koellner, p. 184-5)
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More on Gödel’s Disjunction
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