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The Knower Paradox

Theorem (Montague-Kaplan 1960)
Let T be an axiomatizable extension of Q, with I (x , y) a formula of expressing
derivability between sentences in T, and K a (perhaps complex) unary predicate
satisfying, for all sentences φ and ψ:

(T) K (φ) → φ

(U) K (Kφ→ φ)

(I) (K (φ) ∧ I (φ, ψ)) → K (ψ)

then T is inconsistent.

2



1. D ↔ K (¬D) FPT (using Q)

2. K (¬D) → ¬D Truth

3. D → ¬D PC: 1, 2

4. ¬D PC: 3

5. I (K (¬D) → ¬D,¬D) 2-4

6. K (K (¬D) → ¬D) U

7. (K (K (¬D) → ¬D) ∧ I (K (¬D) → ¬D,¬D)) → K (¬D) I

8. K (¬D) PC, MP: 5 & 6, 7

9. D PC: 1, 8

10. ⊥ 4, 9
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How should we solve this paradox? Should knowledge entail truth? Should we
accept the epistemic closure principle or not? Should the syntax be changed in
such a way that statements that lead to paradoxes are eliminated?

4



Theorem (Koons, Turner)
Let T be a theory extending Q, with B a (perhaps complex) unary predicate,
such that T satisfies, for all sentences φ and ψ:

(4) B(φ) → B(B(φ))

(D) B(¬φ) → ¬B(φ)
(Nec) If T ⊢ φ, then T ⊢ B(φ)

(Re) If T ⊢ φ↔ ψ, then T ⊢ B(φ) ↔ B(ψ)

then T is inconsistent.
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Theorem (Cross 2001)
Let T be an axiomatizable theory extending Q, with K a (perhaps complex)
predicate. Let K ′(x) be the predicate defined by the formula:

∃y(K (y) ∧ I (y , x))

where I (y , x) is a predicate expressing derivability between sentences in T.
Suppose T satisfies the following axiom schemata:

(T′) K ′(φ) → φ

(U′) K ′(K ′(φ) → φ)

then T is inconsistent.
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Theorem (Cross’s ‘Knowledge-Plus Knower’)
Let T be an axiomatizable theory extending Q, with K and K ′ defined as
previously, and such that T satisfies, for every sentence φ:

(T′) K ′(φ) → φ

(U+) K (K ′(φ) → φ)

then T is inconsistent.
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Anderson’s Solution

C. Anthony Anderson (1983). The Paradox of the Knower. The Journal of Philosophy, 80, 6,
pp. 338-355.
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Anderson’s Solution

L0: the smallest extension of LA such that
if φ, ψ ∈ LA, then K0(φ), I0(φ, ψ) ∈ L0,
closed under Boolean operators.

Li+1: the smallest extension of Li such that
if φ, ψ ∈ Li , then Ki+1(φ), Ii+1(φ, ψ) ∈ Li+1,
closed under Boolean operators.

Lω:
⋃

i∈ω Li

Ki indicates a certain level of knowledge. Anderson gives an “intuitive
motivation”: Some sentence that cannot be in a set of statements known at level
i can still be provable. By understanding the proof of such a statement, one
knows this sentence at level i + 1.
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Anderson’s Solution

gn(Lω) = {gn(α) | α ∈ Lω} is the set of Gödel numbers of each formula in Lω.
Suppose that Vp is an interpretation of LA:

▶ V0 extends Vp to L0

▶ Vi+1 extends Vi to Li+1

▶ Vi(Ki) ⊆ gn(Lω)

▶ Vi(Ii) ⊆ gn(Lω)× gn(Lω)

▶ V =
⋃

i∈ω Vi
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Anderson’s Solution

T0 = Q ∪ {K0(⌜φ⌝) → φ | φ ∈ Lω}
Ti+1 = Ti ∪ {Ki+1(⌜φ⌝) → φ | φ ∈ Lω}

V0(K0(⌜φ⌝)) = 1 if and only if Q ⊢ φ
Vi+1(Ki+1(⌜φ⌝)) = 1 if and only if Ti ⊢ φ
V0(I0(⌜φ⌝, ⌜ψ⌝)) = 1 if and only if Q ⊢ φ→ ψ

Vi+1(Ii+1(⌜φ⌝, ⌜ψ⌝)) = 1 if and only if Ti ⊢ φ→ ψ

Tω =
⋃

i∈ω Ti .
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Anderson’s Solution

▶ Vi(Ki) ⊆ Vi+1(Ki+1).

▶ Vi(Ii) ⊆ Vi+1(Ii+1).

▶ If n = gn(φ) ∈ Vi(Ki), then ∃j ≥ i such that Vj(φ) = 1.

▶ If n = gn(φ),m = gn(ψ), (n,m) ∈ Vi(Ii), then ∃j ≥ i such that
Vj(φ→ ψ) = 1.

▶ If (n,m) ∈ Vi(Ii), n ∈ Vi(Ki), then m ∈ Vi(Ki).
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Anderson’s Solution

V (Ki(⌜φ⌝) → φ) = 1

V ([Ii(⌜φ⌝, ⌜ψ⌝) ∧ Ki(⌜φ⌝)] → Ki(⌜ψ⌝)) = 1

V (Ki+1(⌜Ki(⌜φ⌝) → φ⌝)) = 1

Ki+1(⌜Ki(⌜φ⌝) → φ⌝) vs. Ki(⌜Ki(⌜φ⌝) → φ⌝)

Ki(⌜φ⌝) → Kj(⌜φ⌝) for j ≥ i .

Ii(⌜φ⌝, ⌜ψ⌝) → Ij(⌜φ⌝, ⌜ψ⌝) for j ≥ i .

13



Anderson’s Solution

V (Ki(⌜φ⌝) → φ) = 1

V ([Ii(⌜φ⌝, ⌜ψ⌝) ∧ Ki(⌜φ⌝)] → Ki(⌜ψ⌝)) = 1

V (Ki+1(⌜Ki(⌜φ⌝) → φ⌝)) = 1

Ki+1(⌜Ki(⌜φ⌝) → φ⌝) vs. Ki(⌜Ki(⌜φ⌝) → φ⌝)

Ki(⌜φ⌝) → Kj(⌜φ⌝) for j ≥ i .

Ii(⌜φ⌝, ⌜ψ⌝) → Ij(⌜φ⌝, ⌜ψ⌝) for j ≥ i .

13



Anderson’s Solution

V (Ki(⌜φ⌝) → φ) = 1

V ([Ii(⌜φ⌝, ⌜ψ⌝) ∧ Ki(⌜φ⌝)] → Ki(⌜ψ⌝)) = 1

V (Ki+1(⌜Ki(⌜φ⌝) → φ⌝)) = 1

Ki+1(⌜Ki(⌜φ⌝) → φ⌝) vs. Ki(⌜Ki(⌜φ⌝) → φ⌝)

Ki(⌜φ⌝) → Kj(⌜φ⌝) for j ≥ i .

Ii(⌜φ⌝, ⌜ψ⌝) → Ij(⌜φ⌝, ⌜ψ⌝) for j ≥ i .

13



Blocking the Knower Paradox
1. D ↔ K (¬D) FPT

2. K (¬D) → ¬D Truth

3. D → ¬D PC: 1, 2

4. ¬D PC: 3

5. I (K (¬D) → ¬D,¬D) 2-4

6. K (K (¬D) → ¬D) U

7. (K (K (¬D) → ¬D) ∧ I (K (¬D) → ¬D,¬D)) → K (¬D) I

8. K (¬D) PC: 5, 6, 7

9. D PC: 1, 8

10. ⊥ 4, 9
14



Blocking the Knower Paradox
1. D ↔ Ki(¬D) FPT

2. Ki(¬D) → ¬D Truth

3. D → ¬D PC: 1, 2

4. ¬D PC: 3

5. Ii(Ki(¬D) → ¬D,¬D) 2-4

6. Ki+1(Ki(¬D) → ¬D) U

7. (Ki+1(Ki(¬D) → ¬D) ∧ Ii+1(Ki(¬D) → ¬D,¬D)) → Ki+1(¬D) I

8. Ki+1(¬D) PC: 5, 6, 7

9. D PC: 1, 8

10. ⊥ 4, 9
14



Blocking the Knower Paradox
1. D ↔ Ki(¬D) FPT

2. Ki(¬D) → ¬D Truth

3. D → ¬D PC: 1, 2

4. ¬D PC: 3

5′. Ii+1(Ki(¬D) → ¬D,¬D) 2-4

6. Ki+1(Ki(¬D) → ¬D) U

7. (Ki+1(Ki(¬D) → ¬D) ∧ Ii+1(Ki(¬D) → ¬D,¬D)) → Ki+1(¬D) I

8. Ki+1(¬D) PC: 5, 6, 7

9. D PC: 1, 8

10. ⊥ 4, 9
14



Blocking the Knower Paradox
1. D ↔ Ki(¬D) FPT

2. Ki(¬D) → ¬D Truth

3. D → ¬D PC: 1, 2

4. ¬D PC: 3

5′. Ii+1(Ki(¬D) → ¬D,¬D) 2-4

6. Ki+1(Ki(¬D) → ¬D)

7. (Ki+1(Ki(¬D) → ¬D) ∧ Ii+1(Ki(¬D) → ¬D,¬D)) → Ki+1(¬D) I

8. Ki+1(¬D) PC: 5, 6, 7

9. D PC: 1, 8

10. ⊥ 4, 9
14



Blocking the Knower Paradox
1. D ↔ Ki(¬D) FPT

2. Ki(¬D) → ¬D Truth

3. D → ¬D PC: 1, 2

4. ¬D PC: 3

5′. Ii+1(Ki(¬D) → ¬D,¬D) 2-4

6. Ki+1(Ki(¬D) → ¬D)

7. (Ki+1(Ki(¬D) → ¬D) ∧ Ii+1(Ki(¬D) → ¬D,¬D)) → Ki+1(¬D) I

8. Ki+1(¬D) PC: 5′, 6, 7

9. D PC: 1, 8

10. ⊥ 4, 9
14



Solutions to the Knower Paradox

Paul Égré (2005). The Knower Paradox in the Light of Provability Interpretations of Modal.
Journal of Logic, Language and Information, 14, pp. 13 - 48.

Francesa Poggiolesi (2007). Three Different Solutions to the Knower Paradox. Annali del
Dipartimento di Filosofia, 13(1), pp. 147 - 163.

Mirjam de Vos, Rineke Verbrugge, and Barteld Kooi (2023). Solutions to the Knower Paradox
in the Light of Haack’s Criteria. Journal of Philosophical Logic, 52, pp. 1101 - 1132.
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Knower Paradox in the Quantified Logic of Proofs

W. Dean (2014). Montague’s paradox, informal provability, and explicit modal logic. Notre
Dame Journal of Formal Logic, 55(2), pp. 157 - 196.

W. Dean and H. Kurokawa (2014). The paradox of the Knower revisited. Annals of Pure and
Applied Logic, 165(1), pp. 199 - 224.
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K (⌜A⌝) if and only if there exists a proof p which demonstrates A

“...[W]e do not, at least ipso facto, wish to suggest that K (x) must be analyzed
in terms of provability in a specific axiom system in the manner in which Cross’s
definition of K ′(x) might seem to suggest. For we might also adopt the view
that in p should be understood as ranging over some class of informal
proofs—i.e. intuitively correct pieces of reasoning which carry conviction for the
epistemic subject in question.” (Dean and Kurokawa, p. 11)
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Logic of Proofs

S. Artemov and M. Fitting (2024). Justification Logic. Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/logic-justification/.

S. Artemov and M. Fitting. Justification Logic: Reasoning with Reasons. Cambridge University
Press, 2019.

R. Kuznets and T. Studer (2019). Logics of Proofs and Justifications. College Publications.
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t := c | x | !t | t · s

φ := p | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | t :φ

▶ t :φ means “t is a justification/proof of φ”, or ”φ is so for reason t”.

▶ x is a variable: an arbitrary justification

▶ c is a constant: justifications of formulas we do not analyze further (axioms)

▶ t · u justifies φ whenevery u justifies some formula ψ and t justifies ψ → φ

▶ if t justifies φ, !t justifies that fact.
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LP

Factivity: t :φ→ φ

Application: t : (φ→ ψ) → (s :φ→ t · s :ψ)

Proof checker t :φ→!t : t :φ

Constant specification: a set of formulas of the form c1 :c2 : · · · cn :φ where
φ is an instance of the axom from the list above, n ≥ 0 and c1, . . . , cn are
justification constants.
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⊢S4 (2P ∨2Q) → 2(2P ∨2Q)

⊢LP (x :P ∨ y :Q) → [a·!x + b·!y ] : (x :P ∨ y :Q)

Note: ‘s + t’ is a justification for everything that is justified by s or by t.
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Quantified Logic of Proofs

▶ (∀x) (∀x) ((x : (φ→ ψ) ∧ y : φ) → x · y :ψ)
▶ (∃x) (x :φ→ φ)

▶ (∃y) y : ((∃x) (x :φ→ φ))

M. Fitting (2008). A quantified logic of evidence. Annals of Pure and Applied Logic, 152(1-3),
pp. 67-83.
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The Knower Paradox in the QLP

1. d : (D ↔ (∃x) x :¬D) ⊢ D ↔ (∃x) x :¬D Factivity, MP

2. d : (D ↔ (∃x) x :¬D) ⊢ (∃x) x :¬D → ¬D Derivation in QLP

3. d : (D ↔ (∃x) x :¬D) ⊢ ¬D 1, 2

4. d : (D ↔ (∃x) x :¬D) ⊢ t(d) :¬D for some t(d) by Internalization

5. d : (D ↔ (∃x) x :¬D) ⊢ (∃x) x :¬D from 4, by ∃-intro

6. d : (D ↔ (∃x) x :¬D) ⊢ D from 1, 5

7. d : (D ↔ (∃x) x :¬D) ⊢ ⊥ from 3, 6
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Plan
✓ Introduction: Smullyan’s Machine
✓ Background

✓ Formal Arithmetic
✓ Gödel’s Incompleteness Theorems
✓ Names and Gödel numbering
✓ Fixed Point Theorem

✓ Provability predicate and Löb’s Theorem
✓ Provability logic
✓ Predicate approach to modality
✓ The Knower Paradox and variants
▶ A Primer on Epistemic and Doxastic Logic
▶ Anti-Expert Paradox, and related paradoxes
▶ Predicate approach to modality, continued
▶ Epistemic Arithmetic
▶ Gödel’s Disjunction
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Doxastic Logic: Models

Model: ⟨W ,R ,V ⟩

States/possible worlds: W ̸= ∅

Quasi-partitions: R ⊆ W ×W is serial, transitive and Euclidean

▶ serial: for all w ∈ W , there is a v ∈ W such that w R v

▶ transitive: for all w , v , u ∈ W , if w R v and v R u, then w R u

▶ Euclidean: for all w , v , u ∈ W , if w R v and w R u, then v R u

Valuation function: V : At → ℘(W ), where At is a set of atomic propositions.
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Doxastic Logic: Language and Semantics

p | φ ∧ φ | ¬φ | Bφ

Boolean connectives:

▶ M,w |= p iff w ∈ V (p)

▶ M,w |= ¬φ iff it is not the case that M,w |= φ

▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

Belief operators: M,w |= Bφ iff for all v , if w R v , then M, v |= φ.

Belief operator: M,w |= Bφ iff R(w) ⊆ [[φ]]M

{v | w R v} {v | M,w |= φ}
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▶ M,w |= p iff w ∈ V (p)
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Doxastic Logic: KD45

K B(φ→ ψ) → (Bφ→ Bψ)

D Bφ→ ¬B¬φ

4 Bφ→ BBφ

5 ¬Bφ→ B¬Bφ

The logic KD45 adds the above axiom schemes to an axiomatization of classical
propositional logic with the rules Modus Ponens, Substitution of Equivalents, and
Necessitation (from φ infer Bφ).

KD45 is sound and strongly complete with respect to all quasi-partition frames.
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Exercise: Show that the following axiom schemes and rules are valid on
quasi-partition models and are theorems of KD45:

▶ agglomeration: (Bφ ∧ Bψ) → B(φ ∧ ψ)

▶ consistency: ¬B⊥

▶ monotonicity: From φ→ ψ infer Bφ→ Bψ

▶ secondary-reflexivity: for all w , v ∈ W , if w R v then v R v
B(Bφ→ φ)

▶ correctness of own beliefs:
B¬Bφ→ ¬Bφ
for all w , there is a v such that w R v and for all z if v R z then w R z

BBφ→ Bφ
density: for all w and v if w R v then there is a z such that w R z and z R v
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Buridan-Burge Paradox I

Suppose that q is the statement that ¬Baq.

Now, either Baq or ¬Baq.

1. Suppose ¬Baq. Then by the 5 axiom (¬Baφ→ Ba¬Baφ), we have that
Ba¬Baq. But since q is ¬Baq, we have Baq. Contradiction.

2. Suppose Baq. By by the 4 axiom (Baφ→ BaBaφ), we have that BaBaq. By
the D axioms (Baφ→ ¬Ba¬φ), we have that ¬Ba¬Baq. But since ¬Baq is
q, we have ¬Baq. Contradiction.

Tyler Burge (1984). Epistemic paradox. Journal of Philosophy, 81(1), pp. 5 - 29.
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Buridan-Burge Paradox II

Of course, “q is the statement that ¬Baq” is not a sentence of the modal logic
of beliefs.

What we have shown is that ¬Ba(q ↔ ¬Baq) is a theorem of KD45.

This is a paradox only if it should be possible for an ideally rational agent to
believe that q ↔ ¬Baq.

Wolfgang Lenzen (1981). Doxastic Logic and the Burge-Buridan-Paradox. Philosophical Studies,
39(1), pp. 43 - 49.

Michael Caie (2012). Belief and indeterminacy. The Philosophical Review, 121(1), pp. 1 - 54.
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T. Raleigh (2021). A New Anti-Expertise Dilemma. Synthese, 199, pp. 5551 - 5569.
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Decision Instability

(DD) S Chooses ϕ↔ ϕ does not maximize utility for S

Death in Damascus: Death works from an appointment book which states
time and place; a person dies if and only if the book correctly states in what city
he will be at the stated time. The book is made up weeks in advance on the
basis of highly reliable predictions. An appointment on the next day has been
inscribed for him. Suppose, on this basis, the man would take his being in
Damascus the next day as strong evidence that his appointment with Death is in
Damascus, and would take his being in Aleppo the next day as strong evidence
that his appointment is in Aleppo...If he decides to go to Aleppo, he then has
strong grounds for expecting that Aleppo is where Death already expects him to
be, and hence it is rational for him to prefer staying in Damascus. Similarly,
deciding to stay in Damascus would give him strong grounds for thinking that he
ought to go to Aleppo. (Gibbard & Harper, 1978, p. 373)
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Anti-Expert

(AE ) S Believes p ↔ ¬p

“I’m a neurologist, and know there’s a device that has been shown to induce the
following state in people: they believe that their brains are in state Σ iff their
brains are not in state Σ. I watch many trials with the device, and become
extremely confident that it’s extremely reliable. I’m also confident that my brain
is not in state Σ. Then the device is placed on my head and switched on. My
confidence that my brain is not in state Σ....well, it’s not clear here what should
happen here.” (Christensen 2010, drawn from Conee 1982)
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Propositional Quantifiers

While we naturally quantify over propositions in both ordinary and philosophical
discussion of beliefs, the addition of propositional quantifiers is not given much
attention in the literature.

Consider the following examples:

▶ “One believes that everything one believes is true”: B∀p(Bp → p)

▶ “If no matter what p stands for, one believes that φ, then one believes that
no matter what p stands for, φ”: ∀pBφ→ B∀pφ

▶ “There is a proposition that the agent takes to be consistent and to settle
everything”: ∃q(Bq ∧ ∀p(B(q → p) ∨ B(q → ¬p)))
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Immodest Beliefs

Immod: “One believes that everything one believes is true”: B∀p(Bp → p)

▶ Even for idealized agents or idealized beliefs, as axiomatized by KD45, it
seems that Immod should not be included in a logic of belief.

▶ Immod should be distinguished from “for every proposition p, one believes
that if she believes that p then p”: ∀p(B(Bp → p)).
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Consider an agent who has credences about a real number x randomly generated
from the interval [0, 1]. For all measurable X ⊆ [0, 1], the agent’s credence that
x ∈ X is just the measure of X . Suppose that the agent outright believes
precisely those propositions with credence 1. Then, for all a ∈ [0, 1], the agent
believes that x ∈ [0, 1] \ {a} since [0, 1] \ {a} is measure 1. However, the agent
does not believe that for all a ∈ [0, 1], x ∈ [0, 1] \ {a} since⋂

a∈[0,1]([0, 1] \ {a}) = ∅, which is not measure 1.

Hence the agent in this situation does not believe that all her beliefs are true.

Yifeng Ding (2021). On the Logic of Belief and Propositional Quantification. Journal of Philo-
sophical Logic, 50, pp. 1143 - 1198.
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In any possible world semantics for KD45, B∀p(Bp → p) is valid on any frame.
So, any logic validating KD45 must validate Immod. Algebraic semantics is
needed for logics that do not validate Immod.

Yifeng Ding (2021). On the Logic of Belief and Propositional Quantification. Journal of Philo-
sophical Logic, 50, pp. 1143 - 1198.

Also, see:
Jeremy Goodman (2020). I’m mistaken. manuscript.
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Prior’s Theorem

Q(∀p(Qp → ¬p)) → (∃p(Qp ∧ p) ∧ ∃p(Qp ∧ ¬p))
is a derivable using Universal Instantiation and propositional reasoning.

A. N. Prior. On a family of paradoxes. Notre Dame Journal of Formal Logic, 2(1), pgs. 16 -
32, 1961.
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Prior’s Theorem
1. ∀p (Qp → ¬p) → (Q( ∀p(Qp → ¬p) ) → ¬ ∀p(Qp → ¬p) )

(∀p φ(p) → φ[p/ q ])

2. Q(∀p(Qp → ¬p)) → (∀p(Qp → ¬p) → ¬∀p(Qp → ¬p))
(( a → (b → c)) → (b → ( a → c)))

3. Q(∀p(Qp → ¬p)) → ¬∀p(Qp → ¬p)
((a → (b → ¬b)) → (a → ¬b))

4. Q(∀p(Qp → ¬p)) → ∃p(Qp ∧ p)
(¬∀pφ↔ ∃p¬φ and ¬(a → ¬b) ↔ (a ∧ b))

5. Q(∀p(Qp → ¬p)) → (Q(∀p(Qp → ¬p)) ∧ ¬∀p(Qp → ¬p))
((a → b) → (a → (a ∧ b))

6. Q(∀p(Qp → ¬p)) → ∃p(Qp ∧ ¬p)
((Qφ ∧ ¬φ) → ∃p(Qp ∧ ¬p))

7. Q(∀p(Qp → ¬p)) → (∃p(Qp ∧ p) ∧ ∃p(Qp ∧ ¬p))
(((a → b) ∧ (a → c)) → (a → (b ∧ c))) 38
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Prior’s Theorem

4. Q(∀p(Qp → ¬p)) → ∃p(Qp ∧ p)
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Q(∀p(Qp → ¬p)) → (∃p(Qp ∧ p) ∧ ∃p(Qp ∧ ¬p))

▶ Qφ := Ann believes that φ

If Ann believes that everything that Ann believes is wrong, then Ann
believes something true and Ann believes something wrong.

▶ Qφ := Ann says that φ

If Ann says that everything that Ann says is wrong, then Ann says
something true and Ann says something wrong.

▶ Qφ := Ann wrote on the board at midnight that φ

If Ann wrote on the board at midnight that everything that Ann wrote on
the board at midnight is wrong, then Ann wrote a true thing on the board
at midnight and Ann wrote a false thing on the board at midnight.
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S5

K K (φ→ ψ) → (Kφ→ Kψ)

T Kφ→ φ

4 Kφ→ KKφ

5 ¬Kφ→ K¬Kφ

The logic S5 adds the above axiom schemes to an axiomatization of classical
propositional logic with the rules Modus Ponens, Substitution of Equivalents, and
Necessitation (from φ infer Kφ).

S5 is sound and strongly complete with respect to all partition frames.

41



S4

K K (φ→ ψ) → (Kφ→ Kψ)

T Kφ→ φ

4 Kφ→ KKφ

The logic S4 adds the above axiom schemes to an axiomatization of classical
propositional logic with the rules Modus Ponens, Substitution of Equivalents, and
Necessitation (from φ infer Kφ).

S4 is sound and strongly complete with respect to all reflexive and transitive
frames.
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Plan
✓ Introduction: Smullyan’s Machine
✓ Background

✓ Formal Arithmetic
✓ Gödel’s Incompleteness Theorems
✓ Names and Gödel numbering
✓ Fixed Point Theorem

✓ Provability predicate and Löb’s Theorem
✓ Provability logic
✓ Predicate approach to modality
✓ The Knower Paradox and variants
✓ A Primer on Epistemic and Doxastic Logic
✓ Anti-Expert Paradox, and related paradoxes
▶ Predicate approach to modality, continued
▶ Epistemic Arithmetic
▶ Gödel’s Disjunction
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A Problem with the Operator Approach

The operator approach suffers from a severe drawback: it restricts the expressive
power of the language in a dramatic way because it rules out quantification in
the following sense:

There is no direct formalisation of a sentence like

“All tautologies of propositional logic are necessary.”
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▶ Substitutional quantification: ∀A(P(A) → 2A), where P is a predicate and
2 is an operator.

However, this quantification does not come with a
semantics, only rules and axioms. Also, why are the following sentences
formalized using different types of quantification?
▶ “All Σ1 sentences are provable”
▶ “All Σ1 sentences are necessary”

▶ Rather than “x is necessary”, say “x is necessarily true”. Thus, 2x is
replaced by 2Tx , where T is a truth predicate. However, there is the
question about why should truth and necessity be treated differently at the
syntactic level; and, this would mean that the theory of necessity would
inherent all the semantical paradoxes.
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Operator > Predicate

✓ Montague provided the first result by proving that the predicate version of
the modal system T is inconsistent if it is combined with weak systems of
arithmetic. From his result he concluded that “virtually all of modal
logic...must be sacrificed”, if necessity is conceived of as a predicate of
sentences.

⇒ The other technical achievement that brought about the triumph of the
operator view was the emergence of possible-worlds semantic. Hintikka,
Kanger and Kripke provided semantics for modal operator logics, while
nothing similar seemed available for the predicate approach.
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A frame is a tuple (W ,R) where W is a nonempty set and R is a relation on W .

A PW-model is a triple (W ,R ,V ) such that (W ,R) is a frame and V assigns
to every w ∈ W as subset of L2 such that:

V (w) = {A ∈ L2 | for all u, if w R u, then V (u) |= A}

If (W ,R ,V ) is a model, we say that the frame (W ,R) supports the model
(W ,R ,V ) or that (W ,R ,V ) is based on (W ,R).

A frame admits a valuation if there is a valuation V such that (W ,R ,V ) is
model.

48



A frame is a tuple (W ,R) where W is a nonempty set and R is a relation on W .

A PW-model is a triple (W ,R ,V ) such that (W ,R) is a frame and V assigns
to every w ∈ W as subset of L2 such that:

V (w) = {A ∈ L2 | for all u, if w R u, then V (u) |= A}

If (W ,R ,V ) is a model, we say that the frame (W ,R) supports the model
(W ,R ,V ) or that (W ,R ,V ) is based on (W ,R).

A frame admits a valuation if there is a valuation V such that (W ,R ,V ) is
model.

48



A frame is a tuple (W ,R) where W is a nonempty set and R is a relation on W .

A PW-model is a triple (W ,R ,V ) such that (W ,R) is a frame and V assigns
to every w ∈ W as subset of L2 such that:

V (w) = {A ∈ L2 | for all u, if w R u, then V (u) |= A}

If (W ,R ,V ) is a model, we say that the frame (W ,R) supports the model
(W ,R ,V ) or that (W ,R ,V ) is based on (W ,R).

A frame admits a valuation if there is a valuation V such that (W ,R ,V ) is
model.

48


