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Derivability Conditions

A provability predicate for T, denoted ProvT, satisfies the following:

D1. If T ⊢ A, then T ⊢ ProvT(⌜A⌝)

D2. T ⊢ ProvT(⌜A → B⌝) → (ProvT(⌜A⌝) → ProvT(⌜B⌝))

D3. T ⊢ ProvT(⌜A⌝) → ProvT(⌜ProvT(⌜A⌝)⌝)
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Löb’s Theorem

Theorem (Löb’s Theorem)
Let T be an axiomatizable theory extending Q, and suppose ProvT(y) is a
formula satisfying conditions D1-D3.

If T ⊢ ProvT(⌜A⌝) → A, then T ⊢ A.
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Rineke Verbrugge (2024). Provability Logic. The Stanford Encyclopedia of Philosophy (Sum-
mer 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.), https://plato.stanford.edu/
archives/sum2024/entries/logic-provability/.
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Propositional Modal Logic

Propositional Modal Language:

p | ¬φ | (φ ∧ ψ) | 2φ

where p ∈ AT (at set of atomic propositions).

The intended interpretation of 2φ is “there is a proof (in PA) of φ”.

A frame is a tuple (W ,R) such that W ̸= ∅ and R ⊆ W ×W .

A model is a tuple (W ,R ,V ) where (W ,R) is a frame and V : AT → ℘(W ).
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Truth/Validity

For a model M = (W ,R ,V ) and w ∈ W , truth is defined as usual:

▶ M,w |= p iff w ∈ V (p)

▶ M,w |= ¬φ iff M,w ̸|= φ

▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

▶ M,w |= 2φ iff for all v ∈ W , if w R v , then M, v |= φ

For a frame F = (W ,R), φ is valid on F , denoted F |= φ, when M,w |= φ
for all models M based on F and w ∈ W .
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Provability Logic: GL

K 2(φ→ ψ) → (2φ→ ψ)

L 2(2φ→ φ) → 2φ

MP φ, φ→ ψ ∴ ψ

NEC φ ∴ 2φ
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Some Results

▶ GL ⊢ 2φ→ 22φ.

▶ 2(2φ→ φ) → 2φ is valid on a frame (W ,R) if, and only if, R is transitive
and converse well-founded (there are no infinite ascending sequences, that is
sequences of the form w1 R w2 R w3 · · · ).

▶ The logic GL is not compact:

Γ = {3p0,2(p0 → 3p1),2(p1 → 3p2), . . . ,2(pn → 3pn+1), . . .}.

is finitely satisfiable, but not satisfiable.

▶ The logic GL is sound and weakly complete with respect to the class of
frames that are transitive and converse well-founded.
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Arithmetic Completeness

An arithmetic translation is a function t such that

1. For all p ∈ At, t(p) is a sentence of LA

2. t commutes with the boolean connectives: t(¬φ) = ¬t(φ),
t(φ ∧ ψ) = t(φ) ∧ t(ψ), etc.

3. t(2φ) = ProvPA(⌜t(φ)⌝)

Theorem (Solovay 1976).

GL ⊢ φ iff for every arithmetic translation t, PA ⊢ t(φ).
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Predicate vs. Operator Approach to Modality

Predicate Approach ‘2 + 2 = 4’ is necessary

Operator Approach It is necessary that 2 + 2 = 4.

▶ We have treated ‘provability’ both as a predicate (ProvT(·)) and as a
sentential operator (in GL)

▶ Truth is typically only treated as a predicate
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Predicate vs. Operator Approach to Modality

Whether necessity, knowledge, belief, future and past truth, obligation, and other
modalitities should be formalised by operators or by predicates was a matter of
dispute up to the early sixties between two almost equally strong parties. Then
two technical achievements helped the operator approach to an almost complete
triumph over the predicate approach that had been advocated by illustrious
philosophers like Quine. (p. 180)

Volker Halbach, Hannes Leitgeb and Philip Welch (2003). Possible-Worlds Semantics for Modal
Notions Conceived as Predicates. Journal of Philosophical Logic, 32:2, pp. 179-223.
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Operator > Predicate

1. Montague provided the first result by proving that the predicate version of
the modal system T is inconsistent if it is combined with weak systems of
arithmetic. From his result he concluded that “virtually all of modal
logic...must be sacrificed”, if necessity is conceived of as a predicate of
sentences.

2. The other technical achievement that brought about the triumph of the
operator view was the emergence of possible-worlds semantic. Hintikka,
Kanger and Kripke provided semantics for modal operator logics, while
nothing similar seemed available for the predicate approach.
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Theorem (Tarski/Gödel). Let T be a theory extending Q and T a unary
predicate such that for all sentences φ:

T ⊢ T (⌜φ⌝) ↔ φ

Then, T is inconsistent.

Proof. By the Fixed Point Theorem, there is a sentence D such that

T ⊢ D ↔ ¬T (⌜D⌝)

But, since T ⊢ T (⌜D⌝) ↔ D, the contradiction is immediate.
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Montague’s Theorem

Theorem (Montague, 1963)
Suppose T is a theory and 2(x) is a formula such that for all sentences φ,

(T) T ⊢ 2(⌜φ⌝) → φ

(Nec) If T ⊢ φ, then T ⊢ 2(⌜φ⌝)

(Q) Q ⊆ T

Then T is inconsistent.

R. Montague (1963). Syntactical Treatment of Modality, with Corollaries on Reflexion Principles
and Finite Axiomatizability. Acta Philosophica Finnica, 16, pp. 153 - 167.
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1. D ↔ ¬2(⌜D⌝) FPT (using Q)

2. 2(⌜D⌝) → D Truth

3. 2(⌜D⌝) → ¬2(⌜D⌝) PC: 1, 2

4. ¬2(⌜D⌝) PC: 3

5. D PC: 1, 4

6. 2(⌜D⌝) Nec: 5

7. ⊥ 3, 6
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T. Tymoczko (1984). An unsolved puzzle about knowledge. Philosophical Quarterly 34, pp.
437-458.
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1. Nobody knows this statement to be true. (D ↔ ¬K (D))

2. Suppose someone knows this statement to be true;
▶ then this statement is true, otherwise it couldn’t be known; (K (D) → D)

▶ therefore, ‘nobody knows this statement to be true’ is true, that is nobody
knows this statement to be true.

3. I have shown that if someone knows this statement to be true, nobody
knows this statement to be true. (K (D) → ¬K (D))

4. So nobody knows this statement to be true. (¬K (D))

5. This is what the statement says, hence it is true. (D)

6. But hold on! I have just proved this statement to be true. Hence someone
(at least me) knows this statement to be true! (K (D))

7. Now this contradicts what has just been established. (⊥)
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The Knower Paradox

Theorem (Montague-Kaplan 1960)
Let T be an axiomatizable extension of Q, with I (x , y) a formula of expressing
derivability between sentences in T, and K a (perhaps complex) unary predicate
satisfying, for all sentences φ and ψ:

(T) K (φ) → φ

(U) K (Kφ→ φ)

(I) (K (φ) ∧ I (φ, ψ)) → K (ψ)

then T is inconsistent.
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1. D ↔ K (¬D) FPT (using Q)

2. K (¬D) → ¬D Truth

3. D → ¬D PC: 1, 2

4. ¬D PC: 3

5. I (K (¬D) → ¬D,¬D) 2-4

6. K (K (¬D) → ¬D) U

7. (K (K (¬D) → ¬D) ∧ I (K (¬D) → ¬D,¬D)) → K (¬D) I

8. K (¬D) 3, 6

9. D PC: 1, 8

10. ⊥ 4, 9
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4. ¬D PC: 3

5. I (K (¬D) → ¬D,¬D) 2-4

6. K (K (¬D) → ¬D) U

7. (K (K (¬D) → ¬D) ∧ I (K (¬D) → ¬D,¬D)) → K (¬D) I

8. K (¬D) PC, MP: 5 & 6, 7

9. D PC: 1, 8

10. ⊥ 4, 9
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Surprise Exam

A schoolmaster announces to his pupils:

Unless you know this statement to be false, you will have an exam to-
morrow, but you can’t know from this statement that you will have an
exam tomorrow.

T ⊢ D ↔ (K¬D ∨ (F ∧ ¬K (D → F )))
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Theorem
Let T be an axiomatizable extension of Q, with I (x , y) a formula expressing
derivability between sentences in T, and K a (perhaps complex) unary predicate,
such that T satisfies the axiom schemata:

(T) K (φ) → φ

(U) K (K (φ) → φ)

(I) (K (φ) ∧ I (φ,F )) → K (F )

(R) K (T ′ ∧ U ′ ∧ I ′) (where T ′, U ′, and I ′ any instance of T , U , I )

Then T is inconsistent.
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1. D ↔ (K¬D ∨ (F ∧ ¬K (D → F ))) FPT (using Q)

2. K (¬D) → ¬D T, call it T ′

3. D → ¬K (¬D) PC: 2

4. D → (F ∧ ¬K (D → F )) PC: 1, 3

5. D → F PC: 4

6. I (T ′,D → F ) 2-5

7. K (T ′) U, call it U ′

8. K (T ′) ∧ I (T ′,D → F ) → K (D → F ) I, call it I ′

9. K (D → F ) PC: 6, 7, 8

10. D → ¬K (D → F ) PC: 4
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Theorem (Montague 1963)
Let T be a theory extending Q, with K a (perhaps complex) unary predicate,
satisfying, for all sentences φ and ψ:

(T) K (φ) → φ

(U) K (K (φ) → φ)

(I) (K (φ) ∧ I (φ, ψ)) → K (ψ)

(Log) K (α), if α is a logical axiom of first-order logic with identity

(Strong) If T ⊢ K (φ→ ψ) and T ⊢ K (φ), then T ⊢ K (ψ)

then T is inconsistent.
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How should we solve this paradox? Should knowledge entail truth? Should we
accept the epistemic closure principle or not? Should the syntax be changed in
such a way that statements that lead to paradoxes are eliminated?
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Theorem (Koons, Turner)
Let T be a theory extending Q, with B a (perhaps complex) unary predicate,
such that T satisfies, for all sentences φ and ψ:

(4) B(φ) → B(B(φ))

(D) B(¬φ) → ¬B(φ)
(Nec) If T ⊢ φ, then T ⊢ B(φ)

(Re) If T ⊢ φ↔ ψ, then T ⊢ B(φ) ↔ B(ψ)

then T is inconsistent.
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1. F ↔ ¬B(F ) FPT

2. B(F ) ↔ B(¬B(F )) Re, 1

3. B(¬B(F )) → ¬B(B(F )) D

4. B(F ) → ¬B(B(F )) PC: 2, 3

5. B(F ) → B(B(F )) 4

6. ¬B(F ) PC: 4, 5

7. F PC: 1, 6

8. B(F ) Nec, 7

9. ⊥ 6, 8
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Theorem (Cross 2001)
Let T be an axiomatizable theory extending Q, with K a (perhaps complex)
predicate. Let K ′(x) be the predicate defined by the formula:

∃y(K (y) ∧ I (y , x))

where I (y , x) is a predicate expressing derivability between sentences in T.
Suppose T satisfies the following axiom schemata:

(T′) K ′(φ) → φ

(U′) K ′(K ′(φ) → φ)

then T is inconsistent.
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We show that T ⊢ (K ′(φ) ∧ I (φ, ψ)) → K ′(ψ), for every sentences φ and ψ.

1. K ′(φ) ↔ ∃y(K (y) ∧ I (y , φ)) Definition of K ′

2. K ′(φ) ∧ I (φ, ψ) ↔ ∃y(K (y) ∧ I (y , φ) ∧ I (φ, ψ)) PC: 1

3. K ′(φ) ∧ I (φ, ψ) ↔ ∃y(K (y) ∧ I (y , ψ)) Transitivity of I

4. K ′(φ) ∧ I (φ, ψ) ↔ K ′(ψ) Definition of K ′

Call this property I′: It depends only on the definition K ′ and I . Hence, by
Montague-Kaplan’s theorem, T is inconsistent.
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Theorem (Cross’s ‘Knowledge-Plus Knower’)
Let T be an axiomatizable theory extending Q, with K and K ′ defined as
previously, and such that T satisfies, for every sentence φ:

(T′) K ′(φ) → φ

(U+) K (K ′(φ) → φ)

then T is inconsistent.
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Let T ′
¬D , U

′
¬D , and U+

¬D denote instances of T′, U′ and U+ using ¬D, where:

T ⊢ D ↔ K ′(¬D)

By the definition of K ′, the following is provable in T:

(K ( K ′(¬D) → ¬D )∧I ( K ′(¬D) → ¬D , K ′(¬D) → ¬D )) → K ′( K ′(¬D) → ¬D )

This is equivalent to:

(U+
¬D ∧ I (T ′

¬D ,T
′
¬D)) → U ′

¬D
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1. (U+
¬D ∧ I (T ′

¬D ,T
′
¬D)) → U ′

¬D From above formula

2. I (T ′
¬D ,T

′
¬D) Every sentence is derivable from itself

3. U+
¬D → U ′

¬D PC: 1, 2

4. (T ′
¬D ∧ U ′

¬D) → ⊥ Cross Theorem

5. (T ′
¬D ∧ U+

¬D) → ⊥ PC: 3, 4
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Anderson’s Solution

C. Anthony Anderson (1983). The Paradox of the Knower. The Journal of Philosophy, 80, 6,
pp. 338-355.
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Anderson’s Solution

L0: the smallest extension of LA such that
if φ, ψ ∈ LA, then K0(φ), I0(φ, ψ) ∈ L0,
closed under Boolean operators.

Li+1: the smallest extension of Li such that
if φ, ψ ∈ Li , then Ki+1(φ), Ii+1(φ, ψ) ∈ Li+1,
closed under Boolean operators.

Lω:
⋃

i∈ω Li

Ki indicates a certain level of knowledge. Anderson gives an “intuitive
motivation”: Some sentence that cannot be in a set of statements known at level
i can still be provable. By understanding the proof of such a statement, one
knows this sentence at level i + 1.
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Anderson’s Solution

gn(Lω) = {gn(α) | α ∈ Lω} is the set of Gödel numbers of each formula in Lω.
Suppose that Vp is an interpretation of LA:

▶ V0 extends Vp to L0

▶ Vi+1 extends Vi to Li+1

▶ Vi(Ki) ⊆ gn(Lω)

▶ Vi(Ii) ⊆ gn(Lω)× gn(Lω)

▶ V =
⋃

i∈ω Vi
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Anderson’s Solution

T0 = Q ∪ {K0(⌜φ⌝) → φ | φ ∈ Lω}
Ti+1 = Ti ∪ {Ki+1(⌜φ⌝) → φ | φ ∈ Lω}

V0(K0(⌜φ⌝)) = 1 if and only if Q ⊢ φ
Vi+1(Ki+1(⌜φ⌝)) = 1 if and only if Ti ⊢ φ
V0(I0(⌜φ⌝, ⌜ψ⌝)) = 1 if and only if Q ⊢ φ→ ψ

Vi+1(Ii+1(⌜φ⌝, ⌜ψ⌝)) = 1 if and only if Ti ⊢ φ→ ψ

Tω =
⋃

i∈ω Ti .
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Anderson’s Solution

▶ Vi(Ki) ⊆ Vi+1(Ki+1).

▶ Vi(Ii) ⊆ Vi+1(Ii+1).

▶ If n = gn(φ) ∈ Vi(Ki), then ∃j ≥ i such that Vj(φ) = 1.

▶ If n = gn(φ),m = gn(ψ), (n,m) ∈ Vi(Ii), then ∃j ≥ i such that
Vj(φ→ ψ) = 1.

▶ If (n,m) ∈ Vi(Ii), n ∈ Vi(Ki), then m ∈ Vi(Ki).
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Anderson’s Solution

V (Ki(⌜φ⌝) → φ) = 1

V ([Ii(⌜φ⌝, ⌜ψ⌝) ∧ Ki(⌜φ⌝)] → Ki(⌜ψ⌝)) = 1

V (Ki+1(⌜Ki(⌜φ⌝) → φ⌝)) = 1

Ki+1(⌜Ki(⌜φ⌝) → φ⌝) vs. Ki(⌜Ki(⌜φ⌝) → φ⌝)

Ki(⌜φ⌝) → Kj(⌜φ⌝) for j ≥ i .

Ii(⌜φ⌝, ⌜ψ⌝) → Ij(⌜φ⌝, ⌜ψ⌝) for j ≥ i .
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Blocking the Knower Paradox
1. D ↔ K (¬D) FPT

2. K (¬D) → ¬D Truth

3. D → ¬D PC: 1, 2

4. ¬D PC: 3

5. I (K (¬D) → ¬D,¬D) 2-4

6. K (K (¬D) → ¬D) U

7. (K (K (¬D) → ¬D) ∧ I (K (¬D) → ¬D,¬D)) → K (¬D) I

8. K (¬D) PC: 5, 6, 7

9. D PC: 1, 8

10. ⊥ 4, 9
40
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Solutions to the Knower Paradox

Paul Égré (2005). The Knower Paradox in the Light of Provability Interpretations of Modal.
Journal of Logic, Language and Information, 14, pp. 13 - 48.

Francesa Poggiolesi (2007). Three Different Solutions to the Knower Paradox. Annali del
Dipartimento di Filosofia, 13(1), pp. 147 - 163.

Mirjam de Vos, Rineke Verbrugge, and Barteld Kooi (2023). Solutions to the Knower Paradox
in the Light of Haack’s Criteria. Journal of Philosophical Logic, 52, pp. 1101 - 1132.
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