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Cantor’s Diagonalization Proof

Functions from N to {0,1}

[0] 3
[1] 1
2] 0
3] 1
Wlo o010 .

d:N—{0,1} d(n) =1—[n](n)
Then, d # [n] for any n € N.



Cantor's original statement is phrased as a non-existence claim: there is
no function mapping all the members of a set S onto the set of all 0, 1-
valued functions over S. But the proof establishes a positive result: given
any way of correlating functions with members of S, one can construct

a function not correlated with any member of S.
(Gaiffman, p. 711)
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Richard's Paradox (1905)

Consider all the definitions (in English) of real numbers. Since any such
definition is a finite sequence of letters, the definitions can be listed in order.

Let u; be the real number defined by the ith definition and f;(n) be the nth
member of the decimal expansion of u;.

Let u* be the number who's decimal expansion is 0.g(1)g(2)---g(n)--- where
g is defined by g(n) = f,(n) + 1 if f,(n) <8, g(n) = 1 otherwise.

But the previous description defines a number, so u* = u; for some i. But, this is
impossible.
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Richard's Paradox (1905)

1. Let A be the set of all positive integers that can be defined in under 100
words. Since there are only finitely many of these, there must be a smallest
positive integer n that does not belong to A.

But haven't | just defined n in under 100 words?

2. Let B be the set of all reasonably interesting positive integers. Let n be the
smallest integer not belonging to B.

But surely this defining property of n makes it reasonably interesting.
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Let f be a function that associates each number x € N with a subset of N, i.e.,
forall x e N, f(x) C N.

Define S* by:

x €5 e x¢f(x)

The assumption that there is some z such that f(z) = S5* leads to a
contradiction.
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en(x){0 0 1 0 - {2, n )

ne S*iff n ¢ set defined by ¢,(x)

Suppose that S* is definable in our language (say by ¢,(x))
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n SCN

0 0

1 (1,3,....n,...}
0 {1,2}

1

{0,2,...,n,...}

en(x) 0 0 1 0 - {2, 0

ne S*iff n ¢ set defined by ¢,(x)

Write ¢,,(0) for “¢n,(x) is true of n”
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where ", (1)

1
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ne S*iff n ¢ set defined by ¢,(x)

(M) < ~True("pn(n) )

is the term in the language representing the code of ¢,(n)
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D-Liar

Om(M) < ﬁTrue(rgpm(m)—')

“m is true of p,(x) iff it is not true that m is true of ¢,,(x)"

11



Godel’s Idea

em(M) < _‘True(I_SOm(m)j)
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Godel’s Idea

em(M) < ﬂTrue(rgom(m)—l)

Ym(M) < —|Prov(|—4pm(m)—l)

“om(m) is true iff ¢,,(M) is not provable.”
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Godel’s Idea

em(M) < _‘True(I_SOm(m)—l)

m(M) < _‘PrOV(F‘Pm(m)—I)

“om(m) is true iff ¢,,(M) is not provable.”
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pm(m) < ~Prov(" (M) )
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pm(m) < ~Prov(" (M) )

©m(M) is not provable: Suppose ¢,,(M) is provable. Then, since we can only
prove true statements, @,,(M) is true. This means that —=Prov(" ¢,,(m) ") is true.
So, ¢m(m) is not provable. Contradiction.
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So, ¢m(m) is not provable. Contradiction.

—p,(M) is not provable: Suppose that —p,,(M) is provable. Since our system
only proves true statements, —@,,(m) is true. Then =—Prov(" ¢,(mM) ") is true.
So, ¢m(M) is provable. This contradicts the assumption that the system is
consistent.
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pm(m) < ~Prov(" (M) )

©m(M) is not provable: Suppose ¢,,(M) is provable. Then, since we can only

prove true statements, @,,(M) is true. This means that —=Prov(" ¢,,(m) ") is true.

So, ¢m(m) is not provable. Contradiction.

—p,(M) is not provable: Suppose that —p,,(M) is provable. Since our system
only proves true statements, —@,,(m) is true. Then =—Prov(" ¢,(mM) ") is true.
So, ¢m(M) is provable. This contradicts the assumption that the system is
consistent.

Conclusion: Neither ¢,,(m) nor —,,(M) is provable.

13



om(M) < _‘PrOV(FQOm(m)—I)

1. Apply Richard's move to Cantor’s construction to get the D-Liar
2. Replace ‘true’ with ‘provable’ on the right-hand side of the sentence

3. Proceed with the difficult task of arithmetizing syntax to construct the
right-side of the sentence (Prov(v)).

4. Show that the above sentence is provable within the formal system
eliminating any appeal to the concept of “truth”. The assumption that
provable implies truth is replaced with (w-)consistency.

H. Gaifman (2006). Naming and Diagonalization, From Cantor to Gédel to Kleene.
Journal of the IGPL, pp. 709 - 728.

Logic
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Naming systems

Naming systems are intended as a basic framework for studying situations in
which functions can be applied to their names....In a naming system we do not
specify how the names are attached to functions, we assume only that there is
such a correlation and that it satisfies certain minimal requirements.

H. Gaifman (2006). Naming and Diagonalization, From Cantor to Gddel to Kleene. Logic
Journal of the IGPL, pp. 709 - 728.

15



Naming systems |

D = (D, type,{ })

such that:
» D is a non-empty set.

> type assigns to each a € D its type: type(a) tells us if a is a name (of a
function) and, if it is, the function’s arity.

A name of arity n, or n-ary name, is one that names an n-ary function.

Types can be construed as tuples: (0)—if a is not a name, (1, n)—if it is an
n-ary name.
» { } is a mapping that assigns to every n-ary name, a, a function:

{a}:D"— D

16
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Naming systems ||

» There is at least one named function of arity greater than 0

» Substitution of names (SN): If f is an n-ary named function, where n > 0,
then, for every name a:

AXa, ... Xaf(a, %2, . .., X,) is named
» Variable permutation (VP): If f is an n-ary named function, where n > 0,
and 7 is a permutation of {1,..., n}, then

AX1, - Xnf (Xe(1), Xn(2), - - - 5 Xn(n)) IS NaMed

17



n-Diagonal Function

For n > 0, an n-diagonal function, denoted d/,, is a function that maps each
n-ary name a to a name of the function:

Ao, ..o xplat(a, xa, oy Xn)

Thus, dl,(a) is the name of the above function.

18



n-Diagonal Function

For n > 0, an n-diagonal function, denoted d/,, is a function that maps each
n-ary name a to a name of the function:

Ao, ..o xplat(a, xa, oy Xn)

Thus, dl,(a) is the name of the above function.

For all n-ary names a,

{dl,(a)}x2, ..., xn) = {a}(a, x2, ..., X,)

18



General Fixed-Point Theorem

GFP Theorem. If F is an (n+ 1)-ary named function, n > 0, and the
composition F(dl,+1(x0), X1, - .., X,) is named, then there is an n-ary name, e,
such that:

{e}(x1,. .., xa) = F(e,x1, .-, Xn)

19
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General Fixed-Point Theorem
GFP Theorem. If F is an (n+ 1)-ary named function, n > 0, and the

composition F(dl,+1(x0), X1, - .., X,) is named, then there is an n-ary name, e,

such that:

{e}(x1,. .., xa) = F(e,x1, .-, Xn)
Proof. Let ¢ be the name of F(dl,+1(x0), x1,-..,X,) and let e = dl,1(c).

Then for and X = (x1, ..., X,),
{e}(x¥) = {dlhs1(c)}(X) (definition of e)
{c}(c,X) (definition of dl,1(c))

= F(dlh+1(c),x) (definition of c)
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General Fixed-Point Theorem

GFP Theorem. If F is an (n+ 1)-ary named function, n > 0, and the
composition F(dl,+1(x0), X1, - .., X,) is named, then there is an n-ary name, e,
such that:

{e}(x1,. .., xa) = F(e,x1, .-, Xn)

Proof. Let ¢ be the name of F(dl,+1(x0), x1,-..,X,) and let e = dl,1(c).

Then for and X = (x1, ..., X,),
{e}(x¥) = {dlhs1(c)}(X) (definition of e)
{c}(c,X) definition of dl,;1(c))

= F(dh1(c),X)
= F(e, X)

definition of ¢)

~_~~ Y~

definition of e)
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V" Godel numbering

v Godel-Carnap Fixed Point Theorem
v (Naming systems)

» Representing functions/relations

20



Representability

Definition
Suppose that f : N¥ — N. We say that f is representable in Q when there is a

formula Af(xo, - .., Xk—1,y) such that for all ng,...,n,_; € N: if
f(no,...,nk—1) = m then

1. QF Af(n_Oa SRR nk—17m)

2- Ql_vy(Af(n_())"')nk—l).y)—>y:m)

21



Equivalent definitions of representability

» f is representable in Q iff there is a formula Af(xo, . .

all ng,...,nk_1 € N if f(no,...,nk_1) = m then:

., Xk_1, y) such that for

Ql_vy(Af(n_Oy"'ank—la.y)Hy:m)
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all ng,...,nk_1 € N if f(no,...,nk_1) = m then:
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> f is representable in Q iff there is a formula Af(xo, . .., Xxk_1,y) such that for
all ng,...,nx_1 €N:
1. If f(no,...,nk—1) = m, then Q + A¢(ng, ..., nx—_1,m)

2. 1If f(no, ..

. nk,l) % m, then Q - —|Af(nT), RN nk,l,m)
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Equivalent definitions of representability

» f is representable in Q iff there is a formula Af(xo, .

all ng,...,nk_1 € N if f(no,...,nk_1) = m then:

.., Xk_1,y) such that for

Ql_v_y(Af(n_Oy"'ank—la.y)Hy:m)

> f is representable in Q iff there is a formula Af(xo, .

all ng,...,nx_1 €N:

.., Xk_1,y) such that for

1. If f(no,...,nk—1) = m, then Q + A¢(ng, ..., nx—_1,m)
2. 1If f(no, ce nk,l) % m, then Q - —|Af(nT), RN nk,l,m)

» f is representable in Q iff there is a formula Af(xo, .

all ng,...,nk_1 € N:

.., Xk—1,y) such that for

1. if f(ng,...,nk—1) = mthen Q + A¢(ng,. .., Mxk_1, m)

2.QF E“yAf(rTOa SRR nk*lay)

22



Exercise

Prove that all of the definitions of representability are equivalent.

23



Representing Relations

A relation R C N* is representable in Q provided that the characteristic
function xg is representable in Q. It is not hard to see that this is equivalent to
saying that R C N* is representable in Q provided that there is a formula Ag
such that for all ng,...,nx_1 € N:

L. if (no,...,nk—1) € R, then Q F Ag(ng, ..., Nk_1)

2. if (ng,...,nk_1) ¢ R, then Q F —Agr(M0, ..., M_1)

24



All of the following relations are representable in Q:

>

>
>
>
>

Sent(x): x is the Godel number of a sentence of L4
Form(x): x is the Godel number of a formula of £,
Term(x): x is the Godel number of a term of L4

Axiom(x): x is the Godel number of an axiom of Q

Prfea(x,y): x is the Godel number of a derivation in PA of a formula with
Godel number y.

> ...

25
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Proof Predicate

The proof relation Prfpa(x,y) is represented by a formula Prfpa.
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Proof Predicate

The proof relation Prfpa(x,y) is represented by a formula Prfpa.

The proof predicate, denoted Provpa(y), is defined as follows:

AxPrfpa(x, y)

27



Derivability Conditions

It can be shown that the provability predicate Provpa satisfies the following:
D1. If PAF A, then PA  Provpa("A7)

D2. PA + Provpa("A — B™) — (Provpa("A") — Provpa("B™))

D3. PA F Provpa("A7) — Provpa(" Provpa("A7) )

28



Derivability Conditions

A provability predicate for T, denoted Provy, satisfies the following:
D1. If TE A then T+ Provy(TA™)

D2. T+ Provy("A — B™") — (Provt("A") — Provy("B"))

D3. T+ Provy("A™) — Provy("Provr(TA™) )

28



Reflection Principle

The reflection principle for T is the schema

Provr("AT) — A

29



Monotonicity Inference for the Provability Predicate

Lemma
For any theory T, if Provy satisfies D1 and D2, then:

From TH A — B, infer T F Provy("A™) — Prov("B™).

30



Lob’s Theorem

Theorem (Lob’s Theorem)

Let T be an axiomatizable theory extending Q, and suppose Provr(y) is a
formula satisfying conditions D1-D3.

If T+ Provr(TA7) — A, then T F A,

31



Suppose A is a sentence such that T - Provr("A") — A. Let B(y) be the
formula
Provr(y) — A

32



Suppose A is a sentence such that T - Provr("A") — A. Let B(y) be the
formula
Provr(y) — A

By the Fixed-Point Theorem, there is a sentence D such that
TFHD<«+ B("D")

Suppose that T F Provr("AT) — A.

32



Suppose A is a sentence such that T - Provr("A") — A. Let B(y) be the
formula
Provr(y) — A

By the Fixed-Point Theorem, there is a sentence D such that
TFHD<«+ B("D")

Suppose that T F Provr("AT) — A.

To simplify the notation, we write Prov(-) instead of Provy

32



& Wb

D « (Prov("D™) — A)

Prov("D™) — Prov("Prov("D™) — A™)

Prov(" Prov("D™) — A") — (Prov(" Prov("D™) ") — Prov("A"))
Prov("D™) — (Prov("Prov("D™) ") — Prov("A™))

FPT
Lemma: 1
D2

PC. 2,3

32



1. D¢ (Prov("D7) — A)

4. Prov("D7) — (Prov("Prov("D™") ") — Prov("A™M))
5. Prov("D™) — Prov("Prov("D™) ")

FPT

PC: 2,3
D3

32



D «+ (Prov("D7) — A)

Prov("D7) — (Prov("Prov("D7)") — Prov("A7))

Prov("D™) — Prov("Prov("D™)7)
Prov("D™) — Prov("A™)

FPT

32



1. D+ (Prov("D7) — A) FPT

4. Prov("DT) — (Prov("Prov("D™) ") — Prov("A")) PC:2,3
5. Prov("D™) — Prov("Prov("D™) ") D3
6. Prov("D™) — Prov("A") PC: 4,5



1. D« (Prov("D7) — A) FPT
Prov("D™) — (Prov("Prov("D™") ") — Prov("A™)) PC: 2,3
"D™) — Prov("Prov("D™) ") D3

YD) — Prov(TA7) PC: 4,5
FAT) — A Assumption

D7) — A

Prov

Prov

Prov

| N o o &
—~ [/ — B

Prov



4.
5.
6.
7.
8.
)

D < (Prov("D7) — A)
Prov("D™) — (Prov("Prov("D™) ") — Prov("A™))
"D7) — Prov("Prov("D™) )

"D™) — Prov("A")

FAT) — A

Prov
Prov

Prov

— el

FPT

PC: 2,3
D3

PC: 4,5
Assumption

PC: 6,7
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1. D« (Prov("D7) — A) FPT

4. Prov("DT) — (Prov("Prov("D™) ") — Prov("A")) PC:2,3

5. Prov("D™) — Prov("Prov("D™) ") D3

6. Prov("D") — Prov('_A—') PC: 4,5

7. Prov("AT) — Assumption
8. Prov("D")— A PC: 6, 7

9. PC: 1,8

D1 from 9



D s (Prov("D7) — A) FPT

Prov("D™) — (Prov("Prov("D™") ") — Prov("A™)) PC: 2,3
Prov("D™) — Prov(" Prov("D™) ") D3
Prov("D™) — Prov('_A—') PC: 4,5
Prov("AT) — Assumption
D PC: 1,8

D1 from 9
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1. D+ (Prov("D7) — A) FPT

4. Prov("D7) — (Prov("Prov("D™") ") — Prov("A7)) PC: 2,3

5. Prov("D™) — Prov("Prov("D™) ") D3

6. Prov("D") — Prov(’_A_') PC: 4,5

7. Prov("AT) — Assumption
8. Prov("D") — PC: 6,7

9. D PC: 1,8
10. Prov("D™) D1 from 9

11. A PC: 8, 10
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‘PA couldn’t be more modest about its own veracity’
By Lob's Theorem, it is not true that for all sentences ¢,

PA - Prov("Prov("¢™) — @)
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‘PA couldn’t be more modest about its own veracity’
By Lob's Theorem, it is not true that for all sentences ¢,

PA - Prov("Prov("¢™) — @)

Statement It is not true that...

PA F Prov("¢™) PA - Prov("¢™) — ¢
implies PA - ¢
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‘PA couldn’t be more modest about its own veracity’
By Lob's Theorem, it is not true that for all sentences ¢,

PA - Prov("Prov("¢™) — @)

Statement It is not true that...
PA + Prov("¢™) PAF Prov("p™) — ¢
implies PA - ¢
PA F Prov("—¢™) PA + Prov("—¢™) — —Prov("¢™)

implies PA t/ Prov("¢™)
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‘PA couldn’t be more modest about its own veracity’
By Lob's Theorem, it is not true that for all sentences ¢,

PA - Prov("Prov("¢™) — @)

Statement It is not true that...
PA F Prov("¢™) PA - Prov("¢™) — ¢
implies PA - ¢
PA F Prov("—¢™) PA + Prov("—¢™) — —Prov("¢™)
implies PA t/ Prov("¢™)
PA F Prov(" =Prov("¢™) ") PA + Prov(" =Prov("¢7) ") — —Prov("¢")

implies PA = =Prov(yp)
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