
Epistemic Arithmetic

Eric Pacuit

University of Maryland

Lecture 1, ESSLLI 2025

July 28, 2025

Plan
▶ Introduction: Smullyan’s Machine
▶ Background

▶ Formal Arithmetic
▶ Gödel’s Incompleteness Theorems
▶ Names and Gödel numbering
▶ Fixed Point Theorem

▶ Provability predicate and Löb’s Theorem
▶ Provability logic
▶ Predicate approach to modality
▶ A Primer on Epistemic and Doxastic Logic
▶ Anti-Expert Paradoxes
▶ The Knower Paradox and variants
▶ Epistemic Arithmetic
▶ Gödel’s Disjunction

2

Introduction

3

Kurt Gödel (1906 - 1978)

plato.stanford.edu/entries/goedel/
4

https://plato.stanford.edu/entries/goedel/

5

1929 Completeness of First-Order Logic

1931 First and Second Incompleteness Theorems

1933 Translation of classical logic in intuitionistic logic

1936 Speed-up Theorems

1938 Consistency of the Continuum Hypothesis

1949 Work on General Relativity

1958 The “Dialectica interpretation”

6

1929 Completeness of First-Order Logic

1931 First and Second Incompleteness Theorems

1933 Translation of classical logic in intuitionistic logic

1936 Speed-up Theorems

1938 Consistency of the Continuum Hypothesis

1949 Work on General Relativity

1958 The “Dialectica interpretation”

6

7

Smullyan’s machine

R. Smullyan. Chapter 1: The General Idea Behind Gödel’s Proof, In Gödel’s Incompleteness
Theorems. Oxford University Press, 1992.

8

Consider a machine that displays strings of the following symbols:

) (P N ∼

9

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211

10

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211P

10

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211)PN∼))P

10

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211P(P)

10

An expression is any finite string of),(, P,N or ∼.

Given an expression X , the norm of X is X (X).

Question: What are the norms of ∼P, N)P, P(P), PN and ∼PN?

Answer:

1. The norm of ∼P is ∼P(∼P)

2. The norm of N)P is N)P(N)P)

3. The norm of P(P) is P(P)(P(P))

4. The norm of PN is PN(PN)

5. The norm of ∼PN is ∼PN(∼PN)

11

An expression is any finite string of),(, P,N or ∼.

Given an expression X , the norm of X is X (X).

Question: What are the norms of ∼P, N)P, P(P), PN and ∼PN?

Answer:

1. The norm of ∼P is ∼P(∼P)

2. The norm of N)P is N)P(N)P)

3. The norm of P(P) is P(P)(P(P))

4. The norm of PN is PN(PN)

5. The norm of ∼PN is ∼PN(∼PN)

11

An expression is any finite string of),(, P,N or ∼.

Given an expression X , the norm of X is X (X).

Question: What are the norms of ∼P, N)P, P(P), PN and ∼PN?

Answer:

1. The norm of ∼P is ∼P(∼P)

2. The norm of N)P is N)P(N)P)

3. The norm of P(P) is P(P)(P(P))

4. The norm of PN is PN(PN)

5. The norm of ∼PN is ∼PN(∼PN)

11

An expression is any finite string of),(, P,N or ∼.

Given an expression X , the norm of X is X (X).

Question: What are the norms of ∼P, N)P, P(P), PN and ∼PN?

Answer:

1. The norm of ∼P is ∼P(∼P)

2. The norm of N)P is N)P(N)P)

3. The norm of P(P) is P(P)(P(P))

4. The norm of PN is PN(PN)

5. The norm of ∼PN is ∼PN(∼PN)

11

An expression is any finite string of),(, P,N or ∼.

Given an expression X , the norm of X is X (X).

Question: What are the norms of ∼P, N)P, P(P), PN and ∼PN?

Answer:

1. The norm of ∼P is ∼P(∼P)

2. The norm of N)P is N)P(N)P)

3. The norm of P(P) is P(P)(P(P))

4. The norm of PN is PN(PN)

5. The norm of ∼PN is ∼PN(∼PN)

11

A statement is any expression of the following form:

Statement is true if...

P(X)

the expression X is printable.

∼P(X)

the expression X is not printable.

PN(X)

the norm of X is printable.

∼PN(X)

the norm of X is not printable.

12

A statement is any expression of the following form:

Statement is true if...
P(X)

the expression X is printable.

∼P(X)

the expression X is not printable.

PN(X)

the norm of X is printable.

∼PN(X)

the norm of X is not printable.

12

A statement is any expression of the following form:

Statement is true if...
P(X) the expression X is printable.

∼P(X) the expression X is not printable.

PN(X)

the norm of X is printable.

∼PN(X)

the norm of X is not printable.

12

A statement is any expression of the following form:

Statement is true if...
P(X) the expression X is printable.

∼P(X) the expression X is not printable.

PN(X) the norm of X is printable.

∼PN(X) the norm of X is not printable.

12

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211)PN∼))P

Not a statement, so neither true nor false.

13

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211P

Not a statement, so neither true nor false.

13

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211P

Not a statement, so neither true nor false.

13

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211P(P)

Not a statement, so neither true nor false.

13

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211P(P)

This is true.

13

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211∼P(P)

This is false.

13

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211P(∼P(P))

This is true.

13

Assumption: The machine only prints true statements
(if the machine prints a statement, then it is true).

Is it possible to construct a machine that print all true statements?

14

Assumption: The machine only prints true statements
(if the machine prints a statement, then it is true).

Is it possible to construct a machine that print all true statements?

14

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211P

14

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211PN(P)

14

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211P(P)

14

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211∼PN(PP)

14

The machine is designed so that PP(PP) will not be printed

14

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211PN(PN)

14

PN(PN) is true

if, and only if,

the norm of PN is printable

if, and only if,

PN(PN) is printable.

14

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211∼PN(∼PN)

14

∼PN(∼PN) is true

if, and only if,

the norm of ∼PN is not printable

if, and only if,

∼PN(∼PN) is not printable.

14

∼PN(∼PN) is true if, and only if, ∼PN(∼PN) is not printable.

Two possibilities:

The machine is designed to print ∼PN(∼PN): There is a statement that is
printable, but not true. (Contradicts the assumption)

The machine is designed to not print ∼PN(∼PN): There is a statement that
is true, but is not printable.

14

∼PN(∼PN) is true if, and only if, ∼PN(∼PN) is not printable.

Two possibilities:

1. The machine is designed to print ∼PN(∼PN): There is a statement that is
printable, but not true. (Contradicts the assumption)

2. The machine is designed to not print ∼PN(∼PN): There is a statement that
is true, but is not printable.

14

∼PN(∼PN) is true if, and only if, ∼PN(∼PN) is not printable.

Two possibilities:

1. The machine is designed to print ∼PN(∼PN): There is a statement that is
printable, but not true. (Contradicts the assumption.)

2. The machine is designed to not print ∼PN(∼PN): There is a statement that
is true, but is not printable.

14

Power
On/Off

10 9
8
7
6
5
4

3212019
18
17
16
15
14
131211P(X)/∼P(X)/PN(X)/∼PN(X)

15

Formal system producing statements
about the natural numbers

Statements about the
natural numbers

It is/is not provable in the
formal system that...

The diagonal of the expression
is/is not provable...

Power
On/O↵

10
9

8
7
6
5

4
3

2120
19

18
17
16
15
14

13
11 12P(X)/⇠P(X)/PN(X)/⇠PN(X)

Eric Pacuit 7

16

Formal system producing statements
about the natural numbers

Statements about the
natural numbers

It is/is not provable in the
formal system that...

The diagonal of the expression
is/is not provable...

Power
On/O↵

10
9

8
7
6
5

4
3

2120
19

18
17
16
15
14

13
11 12P(X)/⇠P(X)/PN(X)/⇠PN(X)

Eric Pacuit 7

16

Formal system producing statements
about the natural numbers

Statements about the
natural numbers

It is/is not provable in the
formal system that...

The diagonal of the expression
is/is not provable...

Power
On/O↵

10
9

8
7
6
5

4
3

2120
19

18
17
16
15
14

13
11 12P(X)/⇠P(X)/PN(X)/⇠PN(X)

Eric Pacuit 7

16

Formal system producing statements
about the natural numbers

Statements about the
natural numbers

It is/is not provable in the
formal system that...

The diagonal of the expression
is/is not provable...

Power
On/O↵

10
9

8
7
6
5

4
3

2120
19

18
17
16
15
14

13
11 12P(X)/⇠P(X)/PN(X)/⇠PN(X)

Eric Pacuit 7

16

Background

17

“...It would seem reasonable, therefore, to surmise that these axioms and rules
of inference are sufficient to decide all mathematical questions which
can be formulated in the system concerned.

In what follows it will be shown
that this is not the case, but rather that, in both cited systems, there exists
relatively simple problems of the theory of ordinary whole numbers which cannot
be decided on the basis of the axioms.” (Gödel)

K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Sys-
teme, I. Monatshefte für Mathematik und Physik, v. 38 n. 1, pp. 173 - 198, 1931.

18

“...It would seem reasonable, therefore, to surmise that these axioms and rules
of inference are sufficient to decide all mathematical questions which
can be formulated in the system concerned. In what follows it will be shown
that this is not the case, but rather that, in both cited systems, there exists
relatively simple problems of the theory of ordinary whole numbers which cannot
be decided on the basis of the axioms.” (Gödel)

K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Sys-
teme, I. Monatshefte für Mathematik und Physik, v. 38 n. 1, pp. 173 - 198, 1931.

18

Hilbert’s Program

Hilbert’s Program had two goals:

1. A complete axiomatization of mathematics, one which will settle every
question in mathematics.

2. A proof using strictly finitary means to analyze the formal aspects of the
above theory that the axiomatization is reliable (i.e., consistent).

R. Zach. Hilbert’s Program. Stanford Encyclopedia of Philosophy, 2019, https://plato.
stanford.edu/entries/hilbert-program/.

19

https://plato.stanford.edu/entries/hilbert-program/
https://plato.stanford.edu/entries/hilbert-program/

▶ 0 ̸= 1

▶ 2× (1 + 4) = 5 + 3× 1 + 2× 1 + 0

▶ 3× 2 = 2× 3

20

▶ for all n, if n ̸= 0, then there is a m such that m + 1 = n

▶ for all n,m, n ×m = m × n

▶ There is no number smaller than 0

20

▶ There is no biggest prime number

▶ there are no a, b, c such that an + bn = cn for n > 2

20

▶ every even number is the sum of two prime numbers

▶ there are infinitely many primes that differ by 2

▶ for every number n there is a sequence of numbers k0, k1, . . . , km such that
k0 = n, for each 0 < i ≤ m, km = km−1/2 if km−1 is even and
km = 3km−1 + 1 if km−1 is odd, and km = 1

20

20

Language of Arithmetic LA

Each of these statements can be expressed in the language of arithmetic.

Terms 0 | x | S(x) | (x + y) | x × y

Formulas of LA (t = s) | (t < s) | ¬φ | (φ ∧ ψ) | (∀x)φ

If we could specify some axioms and inference rules that pin down the number
sequence and characterize S, + and ×, then we should be able to decide any
statement about the natural numbers.

21

Language of Arithmetic LA

Each of these statements can be expressed in the language of arithmetic.

Terms 0 | x | S(x) | (x + y) | x × y

Formulas of LA (t = s) | (t < s) | ¬φ | (φ ∧ ψ) | (∀x)φ

If we could specify some axioms and inference rules that pin down the number
sequence and characterize S, + and ×, then we should be able to decide any
statement about the natural numbers.

21

Language of Arithmetic LA

Each of these statements can be expressed in the language of arithmetic.

Terms 0 | x | S(x) | (x + y) | x × y

Formulas of LA (t = s) | (t < s) | ¬φ | (φ ∧ ψ) | (∀x)φ

If we could specify some axioms and inference rules that pin down the number
sequence and characterize S, + and ×, then we should be able to decide any
statement about the natural numbers.

21

The Standard Model

N = (N, 0, S,+, ∗, <)
▶ 0N = 0

▶ SN : N → N is the successor function: for all n ∈ N, SN (n) = n + 1

▶ +N : N× N → N is addition: for all n,m ∈ N, +N (n,m) = n +m

▶ ×N : N× N → N is multiplication: for all n,m ∈ N, ×N (n,m) = n ∗m
▶ <N ⊆ N× N is less-than: for all n,m ∈ N, (n,m) ∈ <N (n,m) provided

that n < m.

22

Numerals

For each n ∈ N we write n for the term representing n:

n is S(· · · (S︸ ︷︷ ︸
n times

(0)) · · ·)

For instance, 3 is S(S(S(0)))

To simplify the notation, we often drop the parentheses in the terms n. For
instance, we write SSS(0) instead of S(S(S(0))).

23

Robinson’s Q

S1. ∀x(0 ̸= S(x))

S2. ∀x∀y(S(x) = S(y) → x = y)

S3. ∀x(x ̸= 0 → ∃y(x = S(y)))

A1. ∀x(x +0 = x)

A2. ∀x∀y(x +S(y) = S(x + y))

M1. ∀x(x × 0 = 0)

M2. ∀x∀y(x × S(y) = x × y + x)

We write Q ⊢ A when there is a derivation of A in which the only open
assumptions are the axioms of Q.

24

Robinson’s Q

S1. ∀x(0 ̸= S(x))

S2. ∀x∀y(S(x) = S(y) → x = y)

S3. ∀x(x ̸= 0 → ∃y(x = S(y)))

A1. ∀x(x +0 = x)

A2. ∀x∀y(x +S(y) = S(x + y))

M1. ∀x(x × 0 = 0)

M2. ∀x∀y(x × S(y) = x × y + x)

We write Q ⊢ A when there is a derivation of A in which the only open
assumptions are the axioms of Q.

24

Robinson’s Q

S1. ∀x(0 ̸= S(x))

S2. ∀x∀y(S(x) = S(y) → x = y)

S3. ∀x(x ̸= 0 → ∃y(x = S(y)))

A1. ∀x(x +0 = x)

A2. ∀x∀y(x +S(y) = S(x + y))

M1. ∀x(x × 0 = 0)

M2. ∀x∀y(x × S(y) = x × y + x)

We write Q ⊢ A when there is a derivation of A in which the only open
assumptions are the axioms of Q.

24

Defining <

x < y ↔ ∃z(x + S(z) = y)

25

Exercises
▶ Q ⊢ 1 ̸= 2

▶ Q ⊢ 1 + 1 = 2

▶ Q ⊢ 0 + 3 = 3 + 0

▶ For all closed terms s, t,
▶ if N |= s = t, then Q ⊢ s = t
▶ if N |= s ̸= t, then Q ⊢ s ̸= t

▶ Q ⊢ ∀x(x + 0 = x)

▶ For all n ∈ N, Q ⊢ 0 + n = n

▶ Q ̸⊢ ∀x(0 + x = x)

26

Exercises
▶ Q ⊢ 1 ̸= 2

▶ Q ⊢ 1 + 1 = 2

▶ Q ⊢ 0 + 3 = 3 + 0

▶ For all closed terms s, t,
▶ if N |= s = t, then Q ⊢ s = t
▶ if N |= s ̸= t, then Q ⊢ s ̸= t

▶ Q ⊢ ∀x(x + 0 = x)

▶ For all n ∈ N, Q ⊢ 0 + n = n

▶ Q ̸⊢ ∀x(0 + x = x)

26

Exercises
▶ Q ⊢ 1 ̸= 2

▶ Q ⊢ 1 + 1 = 2

▶ Q ⊢ 0 + 3 = 3 + 0

▶ For all closed terms s, t,
▶ if N |= s = t, then Q ⊢ s = t
▶ if N |= s ̸= t, then Q ⊢ s ̸= t

▶ Q ⊢ ∀x(x + 0 = x)

▶ For all n ∈ N, Q ⊢ 0 + n = n

▶ Q ̸⊢ ∀x(0 + x = x)

26

Exercises
▶ Q ⊢ 1 ̸= 2

▶ Q ⊢ 1 + 1 = 2

▶ Q ⊢ 0 + 3 = 3 + 0

▶ For all closed terms s, t,
▶ if N |= s = t, then Q ⊢ s = t
▶ if N |= s ̸= t, then Q ⊢ s ̸= t

▶ Q ⊢ ∀x(x + 0 = x)

▶ For all n ∈ N, Q ⊢ 0 + n = n

▶ Q ̸⊢ ∀x(0 + x = x)

26

Exercises
▶ Q ⊢ 1 ̸= 2

▶ Q ⊢ 1 + 1 = 2

▶ Q ⊢ 0 + 3 = 3 + 0

▶ For all closed terms s, t,
▶ if N |= s = t, then Q ⊢ s = t
▶ if N |= s ̸= t, then Q ⊢ s ̸= t

▶ Q ⊢ ∀x(x + 0 = x)

▶ For all n ∈ N, Q ⊢ 0 + n = n

▶ Q ̸⊢ ∀x(0 + x = x)

26

Peano Arithmetic (PA)

The axioms of PA (Peano Arithmetic) are all the axioms of Q with every
instance of the following axiom schema:

Induction Scheme: For all formulas φ of LA,

(φ(0) ∧ ∀x(φ(x) → φ(S(x)))) → ∀x φ(x)

We write PA ⊢ φ when there is a derivation of φ in which the only open
assumptions are the axioms of PA.

27

Exercises, continued

▶ PA ⊢ ∀x(0 + x = x)

28

The Theory of True Arithmetic

True arithmetic: Th(N) = {φ | N |= φ}

1. Is there a computational procedure we can use to test if a sentence is in
Th(N)?

A theory is a set of sentences that is closed under entailment, i.e., T is a theory
if T = {φ | T |= φ}
A theory is axiomatizable if there is a decidable set of sentences T0 such that
T = {φ | T0 |= φ}

2. Is there an axiomatizable theory T such that T = Th(N)? This is
equivalent to asking whether T is complete: For every sentence φ, either
T |= φ or T |= ¬φ.

29

The Theory of True Arithmetic

True arithmetic: Th(N) = {φ | N |= φ}

1. Is there a computational procedure we can use to test if a sentence is in
Th(N)?

A theory is a set of sentences that is closed under entailment, i.e., T is a theory
if T = {φ | T |= φ}
A theory is axiomatizable if there is a decidable set of sentences T0 such that
T = {φ | T0 |= φ}

2. Is there an axiomatizable theory T such that T = Th(N)? This is
equivalent to asking whether T is complete: For every sentence φ, either
T |= φ or T |= ¬φ.

29

The Theory of True Arithmetic

True arithmetic: Th(N) = {φ | N |= φ}

1. Is there a computational procedure we can use to test if a sentence is in
Th(N)?

A theory is a set of sentences that is closed under entailment, i.e., T is a theory
if T = {φ | T |= φ}
A theory is axiomatizable if there is a decidable set of sentences T0 such that
T = {φ | T0 |= φ}

2. Is there an axiomatizable theory T such that T = Th(N)? This is
equivalent to asking whether T is complete: For every sentence φ, either
T |= φ or T |= ¬φ.

29

The answer to both questions is no.

Gödel’s first incompleteness theorem (informal statement):
Any consistent formal theory within which a certain amount of elementary
arithmetic can be carried out is incomplete.

30

The answer to both questions is no.

Gödel’s first incompleteness theorem (informal statement):
Any consistent formal theory within which a certain amount of elementary
arithmetic can be carried out is incomplete.

30

Arithmetic Hierarchy

▶ A quantifier is bounded if it is the form ‘∀x ≤ t’ or ‘∃x ≤ t’, where t is a
term not involving x .

▶ A formula is a bounded formula (denoted ∆0
0) if all of its quantifiers are

bounded.

▶ For n ≥ 0, the classes of formulas Σ0
n and Π0

n are defined as follows:
▶ Σ0

0 = Π0
0 = ∆0

0.
▶ Σ0

n+1 is the set of formulas of the form ∃x⃗φ where φ is a Π0
n formula and x⃗

is a (possibly empty) list of variables.
▶ Π0

n+1 is the set of formulas of the form ∀x⃗φ where φ is a Σ0
n formula and x⃗

is a (possibly empty) list of variables.

31

Arithmetic Hierarchy

▶ A quantifier is bounded if it is the form ‘∀x ≤ t’ or ‘∃x ≤ t’, where t is a
term not involving x .

▶ A formula is a bounded formula (denoted ∆0
0) if all of its quantifiers are

bounded.

▶ For n ≥ 0, the classes of formulas Σ0
n and Π0

n are defined as follows:
▶ Σ0

0 = Π0
0 = ∆0

0.
▶ Σ0

n+1 is the set of formulas of the form ∃x⃗φ where φ is a Π0
n formula and x⃗

is a (possibly empty) list of variables.
▶ Π0

n+1 is the set of formulas of the form ∀x⃗φ where φ is a Σ0
n formula and x⃗

is a (possibly empty) list of variables.

31

Definition
Σ0

1-sound A theory T is Σ0
1-sound iff for every Σ0

1-formula φ, if T ⊢ φ, then φ is
true (in the standard model).

Definition
Σ0

1-complete A theory T is Σ0
1-complete iff for every Σ0

1-formula φ, if φ is true
(in the standard model), then T ⊢ φ.

Proposition
PA (in fact, even Q) is Σ0

1-complete.

32

Theorem (Gödel’s First Incompleteness Theorem)
Assume that PA is Σ0

1-sound. Then there is a Π0
1-sentence φ such that PA

neither proves φ nor ¬φ.

Theorem (Gödel’s Second Incompleteness Theorem)
Assume that PA is consistent. Then PA cannot prove ConPA.

ConPA is a Π0
1-statement that informally asserts “for all x , x does not code a

proof of a contradiction from the axioms of PA”

33

▶ Gödel numbering

▶ Gödel-Carnap Fixed Point Theorem

▶ (Naming systems)

▶ Representing functions/relations

34

Gödel Numbering

Gödel-numbering assigns numbers to the syntactic objects of a logic (i.e., the
terms, the formulas, and the derivations).

Suppose that χ is a syntactic object (i.e., a term, formula or a derivation). We
use the following notation:

gn(χ): The Gödel number of χ (an integer)

⌜χ⌝: The numeral of the Gödel number of χ (a numeral). That is:

⌜χ⌝ ≡ gn(χ)

35

Fixed-Point Theorem

Theorem (Gödel-Carnap Fixed-Point Theorem)
Let A(x) be any formula of LA with one free variable x . Then there is a sentence
B such that

Q ⊢ B ↔ A(⌜B⌝).

36

Substitution

Suppose that A is a formula where x is a free variable. We write A(x) to when
the formula A has at most one free variable x .

If t is a term, then A(x)[x/t] is A with every instance of x replaced with t. We
sometimes abuse notation and write A(t) instead of A(x)[x/t].

Let Sub : N× N → N be a function, where for each n,m ∈ N, Sub(n,m) is the
code of α(x)[x/m] where n is the code of α(x). So, for any formula α(x) and
m ∈ N:

Sub(gn(α(x)),m) = gn(α(m))

37

Substitution

Suppose that A is a formula where x is a free variable. We write A(x) to when
the formula A has at most one free variable x .

If t is a term, then A(x)[x/t] is A with every instance of x replaced with t. We
sometimes abuse notation and write A(t) instead of A(x)[x/t].

Let Sub : N× N → N be a function, where for each n,m ∈ N, Sub(n,m) is the
code of α(x)[x/m] where n is the code of α(x). So, for any formula α(x) and
m ∈ N:

Sub(gn(α(x)),m) = gn(α(m))

37

We sketch a proof under the assumption that sub is a function symbol in the
language LA and the theory Q “represents” Sub in the following sense:

For any formula A(x) and n ∈ N,

Q ⊢ sub(⌜A(x)⌝, n) = ⌜A(n)⌝

38

▶ Let A∗(x) be A(sub(x , x))
Let B be A∗(⌜A∗(x)⌝)

▶ A∗(⌜A∗(x)⌝) is the formula A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝))

Q ⊢ A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝)) = A(⌜A∗(⌜A∗(x)⌝)⌝)

Q ⊢ A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝)) ↔ A(⌜A∗(⌜A∗(x)⌝)⌝)

Q ⊢ B ↔ A(⌜B⌝)

39

▶ Let A∗(x) be A(sub(x , x))
Let B be A∗(⌜A∗(x)⌝)

▶ A∗(⌜A∗(x)⌝) is the formula A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝))

Q ⊢ A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝)) = A(⌜A∗(⌜A∗(x)⌝)⌝)

Q ⊢ A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝)) ↔ A(⌜A∗(⌜A∗(x)⌝)⌝)

Q ⊢ B ↔ A(⌜B⌝)

39

▶ Let A∗(x) be A(sub(x , x))
Let B be A∗(⌜A∗(x)⌝)

▶ A∗(⌜A∗(x)⌝) is the formula A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝))

Q ⊢ A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝)) = A(⌜A∗(⌜A∗(x)⌝)⌝)

Q ⊢ A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝)) ↔ A(⌜A∗(⌜A∗(x)⌝)⌝)

Q ⊢ B ↔ A(⌜B⌝)

39

▶ Let A∗(x) be A(sub(x , x))
Let B be A∗(⌜A∗(x)⌝)

▶ A∗(⌜A∗(x)⌝) is the formula A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝))

Q ⊢ A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝)) = A(⌜A∗(⌜A∗(x)⌝)⌝)

Q ⊢ A(sub(⌜A∗(x)⌝, ⌜A∗(x)⌝)) ↔ A(⌜ A∗(⌜A∗(x)⌝) ⌝)

Q ⊢ B ↔ A(⌜ B ⌝)

39

