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Plan for today

✓ A brief introduction to social choice theory

✓ A survey of voting methods

✓ Characterizing voting methods

✓ Splitting cycles and breaking ties

▶ Learning voting rules

▶ Strategic voting
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Other approaches

Lirong Xia (2013). Designing social choice mechanisms using machine learning. In Proceedings
of the 2013 international conference on Autonomous agents and multi-agent systems, pp. 471
- 474.

Cem Anil and Xuchan Bao (2021). Learning to Elect. In Advances in Neural Information
Processing Systems, pp. 8006 - 8017.

Dávid Burka, Clemens Puppe, László Szepesváry, and Attila Tasnádi (2022). Voting: a machine
learning approach. European Journal of Operational Research, 299(3), pp. 1003 - 1017.

Inwon Kang, Qishen Han, and Lirong Xia (2023). Learning to Explain Voting Rules. In Pro-
ceedings of 6th AAAI/ACM Conference on AI, Ethics, and Society (AIES ’23).
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Training Neural Networks

Which voting rule corresponds to the implicit selection mechanism employed by a
trained neural network. By answering this question we hope to shed light on the
‘conceptual’ complexity (in a non-technical sense), or the salience of different
voting rules.

Train a Multi-Layer Perceptron (MLP) to output the Condorcet winner, the
Borda winners, and plurality winners, respectively, and statistically compare the
chosen outcomes by the trained MLP.
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Multi-Layer Perceptron

It is well-known that MLPs are universal function approximators
(Hecht-Nielsen 1987, Funahashi 1989), in particular an MLP will learn any voting
rule on which it is trained with arbitrary accuracy provided that the size of the
training sample is sufficiently large.
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Training Neural Networks

What is the relation between the sample size and the accuracy by which the MLP
learns different voting rules:

▶ Plurality

▶ Borda

▶ Copeland

▶ Kemeny-Young

▶ 2-Approval

Conclusion: for limited, but still reasonably large sample sizes, the implicit voting
rule employed by the MLP is most similar to the Borda rule and differs
significantly from plurality rule; the Condorcet consistent methods such as
Copeland and Kemeny-Young lie in between.
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Training Neural Networks

▶ Randomly generated a set of profiles using the impartial culture (IC).

▶ 7, 9, or 11 voters and 3, 4, or 5 alternatives.

▶ Three scenarios:

1. Trained on the subset of profiles with a (necessarily unique) Condorcet
winner from the randomly generated profiles;

2. Trained the Borda count as a set-valued function on the set of randomly
generated profiles; and

3. Trained the plurality rule as a set-valued function on the set of randomly
generated profiles.

▶ For all scenarios, generate random training sets ranging from 100 to 3000
profiles.
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Training Neural Networks

▶ Generated five random sample training seeds and took five random network
seeds for the training procedure of the MLP.

▶ Selected one random testing seed pair for each training seed to generate test
samples as well.

▶ For a given random training seed the five trained MLPs were each tested
using the sample based on the respective testing seed pair. An alternative
was selected as a winner on a test sample if it was selected by the majority
of the five MLPs
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Results

Consider the two-layered perceptron with a fixed sample size of 1000 profiles.

The table entries give the average percentages of those cases in which a trained
MLP selects a winner of the method appearing in the respective column heading.
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Condorcet Winners
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Borda Winners
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Borda Winners
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Plurality Winners
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Sample Size: Condorcet Winners

13



Sample Size: Condorcet Winners

13



Sample Size: Condorcet Winners

13



Sample Size: Plurality Winners

14



Sample Size: Plurality Winners

14



Sample Size: Plurality Winners

14



Conclusions

▶ Theoretical Properties of MLPs:
▶ Every voting rule can be learned by the trained network.
▶ When trained on a rule different from the Borda count, the MLP’s choices

will converge to that rule.
▶ The required training sample size can be very large for some rules.

▶ Borda Count:
▶ Among popular voting rules, the Borda count stands out from a machine

learning perspective.
▶ The Borda count is the most salient voting method for limited sample sizes.
▶ It best describes the behavior of a trained neural network in a voting

environment.
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Conclusions

▶ Complexity of Voting Rules:
▶ Learning by neural networks can be seen as a way to select an appropriate

degree of internal complexity.
▶ Plurality rule and 2-approval are too simple.
▶ The two investigated Condorcet consistent methods are too sophisticated.

▶ Human Intuition and Voting Methods:
▶ It is conjectured that untrained humans might prefer the Borda count over

other voting methods.
▶ This hypothesis requires validation through carefully designed experiments

with human subjects.

16



Conclusions

▶ Complexity of Voting Rules:
▶ Learning by neural networks can be seen as a way to select an appropriate

degree of internal complexity.
▶ Plurality rule and 2-approval are too simple.
▶ The two investigated Condorcet consistent methods are too sophisticated.

▶ Human Intuition and Voting Methods:
▶ It is conjectured that untrained humans might prefer the Borda count over

other voting methods.
▶ This hypothesis requires validation through carefully designed experiments

with human subjects.

16



Strategic Voting
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AI and Voting
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AI and Voting

P. Faliszewski and A. Procaccia. AI’s War on Manipulation: Are We Winning?. AI Magazine,
31:4, 2010.
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Strategic Voting

While a voting method may satisfy a list of axioms that looks ideal, what
happens if voters misrepresent their preferences in order to “game the system”?

It has long been noted that a voter can achieve a preferred election outcome by
misrepresenting his or her actual preferences.

C.L. Dodgson refers to a voters tendency to
“adopt a principle of voting which makes it a game of skill than a real
test of the wishes of the elector.”

and that in his opinion
“it would be better for elections to be decided according to the wishes of
the majority than of those who happen to be more skilled at the game.”
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Strategic voting

By well-known theorems (the Gibbard-Sattherthwaite Theorem and its
generalizations), any reasonable voting method sometimes gives voters an
incentive to vote strategically.

By reporting an insincere preference, a voter may obtain an election result that
they prefer, according to their sincere preference, to the result they would obtain
if there were to report their sincere preference.
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Strategic Voting
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Strategic Voting: Example

1 1 1 1

a b d c

b d c a

c c a b

d a b d

Borda Winner: c

1 1 1 1

b b d c

a d c a

d c a b

c a b d

Borda Winner: b
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Manipulation

Suppose that F is a resolute voting rule
F is manipulable provided there are two profiles

P = (P1, . . . ,Pi , . . . ,Pn) and P′ = (P ′
1, . . . ,P ′

i , . . . ,P ′
n)

and a voter i such that

Pj = P ′
j for all j ̸= i , and

i strictly prefers the winner under P′ to the winner under P:
aPib where F (P′) = {a} and F (P) = {b}.

Intuition: Pi is voter i ’s “true preference”.
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Strategizing
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2 3 1 1
e d a a
c e b b
a b c c
d c d d
b a e e

Copeland winning set: {e}

ab

c d

e

2 3 1 1
e d a e
c e b d
a b c c
d c d b
b a e a

Copeland winning set: {d}

ab

c d

e
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2 3 1 1
e d a a
c e b b
a b c c
d c d d
b a e e

Borda winning set: {e}

Borda scores:
a: 12
b: 12
c : 13
d : 16
e: 17

2 3 1 1
e d a d
c e b a
a b c b
d c d c
b a e e

Borda winning set: {d}

Borda scores:
a: 11
b: 11
c : 12
d : 19
e: 17
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Strategic Voting is Unavoidable

Theorem (Gibbard-Satterthwaite Theorem)
Suppose that F is a resolute voting method for 3 or more candidates (and no
restrictions on the domain). Then, F must be at least one of the following:

1. dictatorial: there exists a single fixed voter whose most-preferred alternative
is chosen for every profile;

2. imposing: there is at least one alternative that does not win under any
profile;

3. manipulable (i.e., not strategy-proof ).

M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions. Journal of Economic Theory,
10(2):187-217, 1975.

A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41(4):587-601,
1973.
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“Voter i strictly prefers F (P′) to F (P).”

If F (P) and F (P′) are singletons, then “i prefers F (P′) to F (P)” means
F (P′) Pi F (P)

What happens if F (P) and F (P′) are not singletons?
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Suppose that F (P) = Y and F (P′) = Z are not singletons

▶ Z weakly dominates Y for i provided

for all z ∈ Z and y ∈ Y z is weakly preferred to y by i and

there exists z ∈ Z and y ∈ Y such that z Pi y

▶ Z is preferred by an optimist to Y : maxi (Z ) Pi maxi (Y )

▶ Z is preferred by a pessimist to Y : mini (Z ) Pi mini (Y )
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Fact. Plurality rules is weak dominance manipulable, but is never single-winner
manipulable.

1 2 1

a c b

b a a

c b c

Plurality Winner: c

1 2 1

b c b

a a a

c b c

Plurality Winners: {b, c}
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Fact. Condorcet rule is manipulable by optimists (and also by pessimists), but is
never weak dominance manipulable.

1 1 1

a b c

c c a

b a b

Condorcet Winner: c

1 1 1

a b c

b c a

c a b

Condorcet Winners: {a, b, c}
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The Duggan-Schwartz Theorem

i is a nominator if for all profiles P, then Top(Pi ) ∈ F (P).

Non-Imposed: For all a ∈ X there exists a profile P such that F (P) = {a}.
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Manipulated by Optimist/Pessimist

F can be manipulated by an optimist if there is a profile P an ordering
Qi ∈ O(X ) such that Qi ̸= Pi and

∃x ∈ F (P[Pi/Qi ]), ∀y ∈ F (P), xPiy

F can be manipulated by a pessimist if there is a profile P an ordering
Qi ∈ O(X ) such that Qi ̸= Pi and

∀x ∈ F (P[Pi/Qi ]), ∃y ∈ F (P), xPiy
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The Duggan-Schwartz Theorem

Theorem (Duggan-Schwartz Theorem)
Suppose that there are at least three candidates. Any voting method that is
non-imposed and cannot be manipulated by an optimist or a pessimist has a
nominator.

J. Duggan and T. Schwartz. Strategic manipulability without resoluteness or shared beliefs:
Gibbard-Satterthwaite generalized. Social Choice and Welfare, 17, pp. 85 - 93, 2000.
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Fishburn set extension

Suppose i is a voter with a preference ordering Ri that expects the ties in the
voting rule to be broken according to some linear tie-breaking order; however, i
does not know which order will be used:

For sets of candidates X and Y , we have X Pi
F Y provided that

1. x Pi y for all x ∈ X \ Y and y ∈ X ∩ Y

2. y Pi z for all y ∈ X ∩ Y and z ∈ Y \ X
3. x Pi z for all x ∈ X \ Y and z ∈ Y \ X
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F is a C1 voting method provided that for all profiles P and P′, if
M(P) = M(P′), then F (P) = F (P′)

Theorem (Brandt and Geist, 2016)
There is no C1 voting method that satisfying Neutrality, Pareto and
Fishburn-strategyproofness for m ≥ 5 candidates and n ≥ 7 voters.

F. Brandt and C. Geist (2016). Finding strategyproof social choice functions via SAT solving.
Journal of Artificial Intelligence Research, 55, pp. 565 - 602.
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6-voter
unlabeled 6-voter anonymous 6-voter

candidates weak tournaments ANECs profiles profiles
3 7 83 462 46,656
4 42 19,941 475,020 191,102,976
5 582 39,096,565 4,690,625,500 2,985,984,000,000
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Strategic Voting under Partial Information

The classic approach to strategic voting assumes that voters know how the other
voters will vote (and assumes that the other voters are not manipulating).

Can a voter can successfully manipulate in an election under limited information
about how other voters will vote?

The information of the manipulator is typically represented by (probability over) a
set of preference profiles, all of which agree on (i) the manipulator’s own ranking
and (ii) some other partial information (e.g., poll information such as the current
winners, or the number of first-place votes for each candidate).
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Strategic Voting under Partial Information

V. Conitzer, T. Walsh, and L. Xia (2011). Dominating Manipulations in Voting with Partial
Information. In Proceedings of the 25th National Conference on Artificial Intelligence (AAAI-
11).

S. Chopra, E. Pacuit, and R. Parikh (2004). Knowledge-Theoretic Properties of Strategic Voting.
In Logics in Artificial Intelligence. JELIA 2004.

A. Reijngoud and U. Endriss (2012). Voter Response to Iterated Poll Information. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2012).

R. Myerson and R. Weber (1993). A theory of voting equilibria. The American Political Science
Review.
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Learning to Manipulate under Limited Information

We use machine learning to gauge how resistant a preferential voting method is
to manipulation under limited information about how other voters will vote.

Wesley Holliday, Alexander Kristoffersen, Eric Pacuit. Learning to Manipulate under Limited
Information. arxiv.org/abs/2401.16412, 1st Workshop on Social Choice and Learning Algorithms
(SCaLA 2024).

40

https://arxiv.org/abs/2401.16412


How to manipulate

v1 v2 v3 v4 v5
c c c d d
b b b b b
a d d a a
d a a c c

Borda(P) = {b}
Winners

Rankings
R ∈ {a b c d , . . . , d c b a}

v1 v2 v3 v4 v5
c c c d d
a b b b b
d d d a a
b a a c c

Borda(R ,P−v1) = {c , d}
Winners
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How to manipulate

v1 v2 v3 v4 v5
c c c d d
b b b b b
a d d a a
d a a c c

Borda(P) = {b}
Winners

Rankings
R ∈ {a b c d , . . . , d c b a}

v1 v2 v3 v4 v5
c c c d d
a b b b b
d d d a a
b a a c c

Borda(R ,P−v1) = {c , d}
Winners

Which ranking R should v1 submit?
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Profitable manipulations

Given a profile of utilities for each voters, we can define the profile of rankings
submitted by each voter, where alternative a is ranked above alternative b when
the utility of a is greater than the utility of b:

Voters a b c d
v1 0.1 0.65 0.9 0.08
v2 0.7 0.9 1.0 0.8
v3 0.01 0.03 0.5 0.02
v4 0.1 0.5 0 0.9
v5 0.1 0.2 0.05 1.0

U

v1 v2 v3 v4 v5
c c c d d
b b b b b
a d d a a
d a a c c

P
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