
Social Choice Theory and Machine Learning
Lecture 3

Eric Pacuit, University of Maryland

August 7, 2024

1

Plan for today

✓ A brief introduction to social choice theory

✓ A survey of voting methods

✓ Characterizing voting methods

✓ Splitting cycles and breaking ties

▶ Stable Voting

▶ Preferential Voting Tools

▶ Learning voting rules

2

Stable Voting

Our proposed Voting Method is Stable Voting, defined recursively as follows
(where ‘undefeated’ is defined according to Split Cycle):

▶ If there is only one undefeated candidate a, then a wins.

▶ Otherwise list all head-to-head matches a vs. b, where a is undefeated, in
order from the largest to the smallest margin of a vs. b.

Find the first match such that a wins according to Stable Voting after b is
removed from all ballots; this a is the winner for the original set of ballots.

W. Holliday and E. Pacuit. Stable Voting. Constitutional Political Economy, 2023.

3

Stable Voting

Our proposed Voting Method is Stable Voting, defined recursively as follows
(where ‘undefeated’ is defined according to Split Cycle):

▶ If there is only one undefeated candidate a, then a wins.

▶ Otherwise list all head-to-head matches a vs. b, where a is undefeated, in
order from the largest to the smallest margin of a vs. b.

Find the first match such that a wins according to Stable Voting after b is
removed from all ballots; this a is the winner for the original set of ballots.

W. Holliday and E. Pacuit. Stable Voting. Constitutional Political Economy, 2023.

3

Stable Voting

Our proposed Voting Method is Stable Voting, defined recursively as follows
(where ‘undefeated’ is defined according to Split Cycle):

▶ If there is only one undefeated candidate a, then a wins.

▶ Otherwise list all head-to-head matches a vs. b, where a is undefeated, in
order from the largest to the smallest margin of a vs. b.

Find the first match such that a wins according to Stable Voting after b is
removed from all ballots; this a is the winner for the original set of ballots.

W. Holliday and E. Pacuit. Stable Voting. Constitutional Political Economy, 2023.

3

Stable Voting

Our proposed Voting Method is Stable Voting, defined recursively as follows
(where ‘undefeated’ is defined according to Split Cycle):

▶ If there is only one undefeated candidate a, then a wins.

▶ Otherwise list all head-to-head matches a vs. b, where a is undefeated, in
order from the largest to the smallest margin of a vs. b.

Find the first match such that a wins according to Stable Voting after b is
removed from all ballots;

this a is the winner for the original set of ballots.

W. Holliday and E. Pacuit. Stable Voting. Constitutional Political Economy, 2023.

3

Stable Voting

Our proposed Voting Method is Stable Voting, defined recursively as follows
(where ‘undefeated’ is defined according to Split Cycle):

▶ If there is only one undefeated candidate a, then a wins.

▶ Otherwise list all head-to-head matches a vs. b, where a is undefeated, in
order from the largest to the smallest margin of a vs. b.

Find the first match such that a wins according to Stable Voting after b is
removed from all ballots; this a is the winner for the original set of ballots.

W. Holliday and E. Pacuit. Stable Voting. Constitutional Political Economy, 2023.

3

Stable Voting

Our proposed Voting Method is Stable Voting, defined recursively as follows
(where ‘undefeated’ is defined according to Split Cycle):

▶ If there is only one undefeated candidate a, then a wins.

▶ Otherwise list all head-to-head matches a vs. b, where a is undefeated, in
order from the largest to the smallest margin of a vs. b.

Find the first match such that a wins according to Stable Voting after b is
removed from all ballots; this a is the winner for the original set of ballots.

W. Holliday and E. Pacuit. Stable Voting. Constitutional Political Economy, 2023.

3

Simple Stable Voting

Simple Stable Voting is defined just like Stable Voting except that we list all
head-to-head matches a vs. b, rather than only those where a is undefeated:

▶ If only one candidate a appears on all ballots, then a wins.

▶ Otherwise list all head-to-head matches a vs. b, where a is undefeated, in
order from the largest to the smallest margin of a vs. b.
Find the first match such that a wins according to Simple SV after b is
removed from all ballots; this a is the winner for the original set of ballots.

4

Simple Stable Voting

Simple Stable Voting is defined just like Stable Voting except that we list all
head-to-head matches a vs. b, rather than only those where a is undefeated:

▶ If only one candidate a appears on all ballots, then a wins.

▶ Otherwise list all head-to-head matches a vs. b, where a is undefeated, in
order from the largest to the smallest margin of a vs. b.
Find the first match such that a wins according to Simple SV after b is
removed from all ballots; this a is the winner for the original set of ballots.

4

Simple Stable Voting

Simple Stable Voting is defined just like Stable Voting except that we list all
head-to-head matches a vs. b, rather than only those where a is undefeated:

▶ If only one candidate a appears on all ballots, then a wins.

▶ Otherwise list all head-to-head matches a vs. b, where a is undefeated, in
order from the largest to the smallest margin of a vs. b.

Find the first match such that a wins according to Simple SV after b is
removed from all ballots; this a is the winner for the original set of ballots.

4

Simple Stable Voting

Simple Stable Voting is defined just like Stable Voting except that we list all
head-to-head matches a vs. b, rather than only those where a is undefeated:

▶ If only one candidate a appears on all ballots, then a wins.

▶ Otherwise list all head-to-head matches a vs. b, where a is undefeated, in
order from the largest to the smallest margin of a vs. b.
Find the first match such that a wins according to Simple SV after b is
removed from all ballots; this a is the winner for the original set of ballots.

4

a b

cd

6

4
8

12
2

10

a b

c

6

4
8

(a, d)

b c4

(c, a)

b(b, c)

a c8 c
(a, b)

(c , a)

a b6 a
(b, c)

(a, b)

a c8 c

(c , b)

(c , a)

5

a b

cd

6

4
8

12
2

10

a b

c

6

4
8

(a, d)

b c4

(c, a)

b(b, c)

a c8 c
(a, b)

(c , a)

a b6 a
(b, c)

(a, b)

a c8 c

(c , b)

(c , a)

5

a b

cd

6

4
8

12
2

10

a b

c

6

4
8

(a, d)

b c4

(c, a)

b(b, c)

a c8 c
(a, b)

(c , a)

a b6 a
(b, c)

(a, b)

a c8 c

(c , b)

(c , a)

5

a b

cd

6

4
8

12
2

10

a b

c

6

4
8

(a, d)

b c4

(c, a)

b(b, c)

a c8 c
(a, b)

(c , a)

a b6 a
(b, c)

(a, b)

a c8 c

(c , b)

(c , a)

5

a b

cd

6

4
8

12
2

10

a b

c

6

4
8

(a, d)

b c4

(c, a)

b(b, c)

a c8 c
(a, b)

(c , a)

a b6 a
(b, c)

(a, b)

a c8 c

(c , b)

(c , a)

5

a b

cd

6

4
8

12
2

10

a b

c

6

4
8

(a, d)

b c4

(c, a)

b(b, c)

a c8 c
(a, b)

(c , a)

a b6 a
(b, c)

(a, b)

a c8 c

(c , b)

(c , a)

5

a b

cd

6

4
8

12
2

10

a b

c

6

48

(a, d)

a b

d

6

12 2

(d , c)

b

cd

42

10

(c , a)

a

cd

812

10

(a, b)

6

a b

cd

6

4
8

12
2

10

a b

c

6

48

(a, d)

a b

d

6

12 2

(d , c)

b

cd

42

10

(c , a)

a

cd

812

10

(a, b)

6

a b

cd

6

4
8

12
2

10

a b

c

6

48

(a, d)

a b

d

6

12 2

(d , c)

b

cd

42

10

(c , a)

a

cd

812

10

(a, b)

6

a b

cd

6

4
8

12
2

10

a b

c

6

48

(a, d)

a b

d

6

12 2

(d , c)

b

cd

42

10

(c , a)

a

cd

812

10

(a, b)

6

Benefits of Stable Voting

Stable Voting satisfies Stability for Winners with Tiebreaking and
Quasi-resoluteness (and hence Asymptotic Resolvability).

In fact, SV has a remarkable ability to avoid ties even in elections with small
numbers of voters that can produce tied margins.

7

Benefits of Stable Voting

Stable Voting satisfies Stability for Winners with Tiebreaking and
Quasi-resoluteness (and hence Asymptotic Resolvability).

In fact, SV has a remarkable ability to avoid ties even in elections with small
numbers of voters that can produce tied margins.

7

Number of candidates

3 4 5 6 7 8 9

Stable Voting
Plurality
Instant Runoff
Beat Path

0.0

0.1

0.2

0.3

P
e
rc
e
n
t
m
u
lti
p
le

 w
in
n
e
rs

(100, 101) voters

Number of voters

(4, 5) (10, 11) (20, 21) (50, 51) (100, 101) (500, 501) (1000, 1001) (5000, 5001)

Stable Voting
Plurality
Instant Runoff
Beat Path

0.1

0.2

0.3

0.4

0.5

P
e
rc
e
n
t
m
u
lti
p
le

 w
in
n
e
rs

6 candidates

8

Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can
be computationally expensive above 20 candidates.

2. There are some violations—in an extremely small fraction of profiles—of
voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1, we can handle larger profiles that are uniquely weighted with up to 20
candidates in the “Smith set.” This covers many voting contexts.

Re 2, the frequency with which Stable Voting violates monotonicity is minuscule
compared to the frequency for Instant Runoff (in use in the Bay Area and NYC).

9

Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can
be computationally expensive above 20 candidates.

2. There are some violations—in an extremely small fraction of profiles—of
voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1, we can handle larger profiles that are uniquely weighted with up to 20
candidates in the “Smith set.” This covers many voting contexts.

Re 2, the frequency with which Stable Voting violates monotonicity is minuscule
compared to the frequency for Instant Runoff (in use in the Bay Area and NYC).

9

Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can
be computationally expensive above 20 candidates.

2. There are some violations—in an extremely small fraction of profiles—of
voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1, we can handle larger profiles that are uniquely weighted with up to 20
candidates in the “Smith set.” This covers many voting contexts.

Re 2, the frequency with which Stable Voting violates monotonicity is minuscule
compared to the frequency for Instant Runoff (in use in the Bay Area and NYC).

9

Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can
be computationally expensive above 20 candidates.

2. There are some violations—in an extremely small fraction of profiles—of
voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1, we can handle larger profiles that are uniquely weighted with up to 20
candidates in the “Smith set.” This covers many voting contexts.

Re 2, the frequency with which Stable Voting violates monotonicity is minuscule
compared to the frequency for Instant Runoff (in use in the Bay Area and NYC).

9

Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can
be computationally expensive above 20 candidates.

2. There are some violations—in an extremely small fraction of profiles—of
voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1, we can handle larger profiles that are uniquely weighted with up to 20
candidates in the “Smith set.” This covers many voting contexts.

Re 2, the frequency with which Stable Voting violates monotonicity is minuscule
compared to the frequency for Instant Runoff (in use in the Bay Area and NYC).

9

StableVoting.org

10

StableVoting.org
Stable Voting has a remarkably low tie frequency, making it very useful in
elections with even small numbers of voters.

Over 200 real elections have already been run on StableVoting.org.

People have voted on all kinds of issues:
▶ electing leaders and officials, such as presidents of organizations, boards of

directors, union representatives;
▶ choosing names for children, pets, groups, etc.;
▶ planning social events and gatherings, like trips, parties, and outings;
▶ soliciting entertainment preferences, about books, TV shows, and movies;
▶ deciding miscellaneous organizational matters, such as meeting times, rules,

and procedures

Please try the website and let us know what you think!

10

https://stablevoting.org

Using axioms to evaluate voting methods

Suppose that a voting method F violates an axiom while the voting method G
satisfies the axiom.

▶ How likely is it that F violates the axiom (with respect to some probability
model generating elections)?

▶ How likely is it that F violates the axiom conditional on F and G selecting
different winners (with respect to some probability model generating
elections)?

11

Using axioms to evaluate voting methods

Suppose that a voting method F violates an axiom while the voting method G
satisfies the axiom.

▶ How likely is it that F violates the axiom (with respect to some probability
model generating elections)?

▶ How likely is it that F violates the axiom conditional on F and G selecting
different winners (with respect to some probability model generating
elections)?

11

Preferential Voting Tools

More than 70 voting methods (including voting methods for different ballot
types) are implemented in our Preferential Voting Tools Python package
(https://pref-voting.readthedocs.io/)

12

https://pref-voting.readthedocs.io/

Brief Introduction to the Preferential Voting Tools

13

Other ways to evaluate voting methods

▶ Utility: Given the utilities of the voters, which voting method comes as close
as possible to maximizing social utility?

▶ Epistemic: Assuming that the ballots are noisy signals from the voters about
some “correct” alternative (or ranking), which voting method is more likely
to select the correct alternative (or ranking)?

▶ Computational: What is the complexity of finding the winner? What
information from the voters is needed to compute the winner?

▶ Strategic: To what extent does the voting method incentivize strategic
voting? Or strategic agenda setting?

14

Course Plan

✓ introduction to mathematical analysis of voting methods, voting paradoxes;

? probabilistic voting methods (skipped for now);

✓ quantitative analysis of voting methods (e.g., Condorcet efficiency);

▶ learning voting rules (PAC-learning, MLPs, other approaches);

▶ using modern deep learning techniques to generate synthetic election data;

▶ strategic voting, learning to successfully manipulate voting rules based on
limited information about how the other voters will vote using neural
networks (multi-layer perceptrons);

▶ RLHF (reinforcement learning with human feedback) and social choice;

▶ using large-language models to improve group decision-making; and

▶ liquid democracy (time permitting).

15

PAC-Learning of Voting Methods

Ariel D. Procaccia, Aviv Zohar, Yoni Peleg, and Jeffrey S. Rosenschein (2009). The learnability
of voting rules. Artificial Intelligence 173, pp. 1133 - 1149.

Yuval Salant (2007). On the learnability of majority rule. Journal of Economic Theory, 135, pp.
196 - 213.

Kanad Shrikar Pardeshi, Itai Shapira, Ariel D. Procaccia, and Aarti Singh (2024). Learning
Social Welfare Functions. Working paper.

16

PAC-Learning of Voting Methods

Ariel D. Procaccia, Aviv Zohar, Yoni Peleg, and Jeffrey S. Rosenschein (2009). The learnability
of voting rules. Artificial Intelligence 173, pp. 1133 - 1149.

Yuval Salant (2007). On the learnability of majority rule. Journal of Economic Theory, 135, pp.
196 - 213.

Kanad Shrikar Pardeshi, Itai Shapira, Ariel D. Procaccia, and Aarti Singh (2024). Learning
Social Welfare Functions. Working paper.

16

Learning voting rules

▶ An entity, which is referred to as the designer, has in mind a voting rule
(which may reflect the ethics of a society). It is assumed that the designer is
able, for each constellation of voters’ preferences with which it is presented,
to designate a winning alternative (perhaps with considerable computational
effort).

▶ In particular, one can think of the designer’s representation of the voting
rule as a black box that matches preference profiles to winning alternatives.
This setting is relevant, for example, when a designer has in mind different
properties it wants its rule to satisfy; in this case, given a preference profile,
the designer can specify a winning alternative that is compatible with these
properties.

17

Learning voting rules

▶ An entity, which is referred to as the designer, has in mind a voting rule
(which may reflect the ethics of a society). It is assumed that the designer is
able, for each constellation of voters’ preferences with which it is presented,
to designate a winning alternative (perhaps with considerable computational
effort).

▶ In particular, one can think of the designer’s representation of the voting
rule as a black box that matches preference profiles to winning alternatives.
This setting is relevant, for example, when a designer has in mind different
properties it wants its rule to satisfy; in this case, given a preference profile,
the designer can specify a winning alternative that is compatible with these
properties.

17

Learning voting rules

▶ The goal is to find a concise and easily understandable representation of the
voting rule that the designer has in mind.

▶ Automated design of voting rules: given a specification of properties, or,
indeed, of societal ethics, find an elegant voting rule that implements the
specification.

▶ Assume further that the “target” voting rule the designer has in mind, i.e.,
the one given as a black box, is known to belong to some family R of voting
rules. We would like to produce a voting rule from R that is as “close” as
possible to the target rule.

18

Learning voting rules

▶ The goal is to find a concise and easily understandable representation of the
voting rule that the designer has in mind.

▶ Automated design of voting rules: given a specification of properties, or,
indeed, of societal ethics, find an elegant voting rule that implements the
specification.

▶ Assume further that the “target” voting rule the designer has in mind, i.e.,
the one given as a black box, is known to belong to some family R of voting
rules. We would like to produce a voting rule from R that is as “close” as
possible to the target rule.

18

Introduction to PAC-Learning

▶ PAC (Probably Approximately Correct) learning is a theoretical framework
for understanding the feasibility of learning.

▶ It aims to define the conditions under which a learner can learn a function
that generalizes well from a limited set of training examples.

▶ The learner tries to find a hypothesis h from a hypothesis class H that
approximates a target function f ∗.

▶ The goal is to ensure that with high probability, the hypothesis has an error
less than a specified threshold ϵ.

19

Realizable Case
▶ The learner is attempting to learn a function f : Z → Y , which belongs to a

class F of functions from Z to Y .

▶ The learner is given a training set—a set {z1, . . . , zt} of points in Z, which
are sampled i.i.d. (independently and identically distributed) according to a
distribution D over the sample space Z . D is unknown, but is fixed
throughout the learning process.

▶ Assumption: A target function f ∗ exists such that training examples are

{(zk , f ∗(zk))}tk=1.

▶ Error of a function f ∈ F :

err(f) = Pr
z∼D

[f (z) ̸= f ∗(z)]

20

Realizable Case
▶ The learner is attempting to learn a function f : Z → Y , which belongs to a

class F of functions from Z to Y .

▶ The learner is given a training set—a set {z1, . . . , zt} of points in Z, which
are sampled i.i.d. (independently and identically distributed) according to a
distribution D over the sample space Z . D is unknown, but is fixed
throughout the learning process.

▶ Assumption: A target function f ∗ exists such that training examples are

{(zk , f ∗(zk))}tk=1.

▶ Error of a function f ∈ F :

err(f) = Pr
z∼D

[f (z) ̸= f ∗(z)]

20

Realizable Case
▶ The learner is attempting to learn a function f : Z → Y , which belongs to a

class F of functions from Z to Y .

▶ The learner is given a training set—a set {z1, . . . , zt} of points in Z, which
are sampled i.i.d. (independently and identically distributed) according to a
distribution D over the sample space Z . D is unknown, but is fixed
throughout the learning process.

▶ Assumption: A target function f ∗ exists such that training examples are

{(zk , f ∗(zk))}tk=1.

▶ Error of a function f ∈ F :

err(f) = Pr
z∼D

[f (z) ̸= f ∗(z)]

20

Realizable Case
▶ The learner is attempting to learn a function f : Z → Y , which belongs to a

class F of functions from Z to Y .

▶ The learner is given a training set—a set {z1, . . . , zt} of points in Z, which
are sampled i.i.d. (independently and identically distributed) according to a
distribution D over the sample space Z . D is unknown, but is fixed
throughout the learning process.

▶ Assumption: A target function f ∗ exists such that training examples are

{(zk , f ∗(zk))}tk=1.

▶ Error of a function f ∈ F :

err(f) = Pr
z∼D

[f (z) ̸= f ∗(z)]

20

Accuracy and Confidence

▶ Accuracy parameter ϵ > 0: Desired accuracy of the learning process.

▶ Confidence parameter δ > 0: Probability that error exceeds ϵ:

Pr[err(h) > ϵ] < δ

21

PAC-Learning Formalization

▶ A learning algorithm L is a function that maps training examples to
functions in F with the following property:

given ϵ, δ ∈ (0, 1), there exists
an integer s(ϵ, δ) (the sample complexity) such that for any distribution D
on X , if Z is a sample of size at least s(ϵ, δ) where the samples are drawn
i.i.d. according to D, then with probability at least 1− δ it holds that
err(L(Z)) ≤ ϵ.

▶ L is an efficient learning algorithm if it always runs in time polynomial in
1/ϵ 1/δ, and the size of the representations of the target function, of
elements in Z , and of elements in Y .

▶ A function class F is (efficiently) PAC-learnable if there is an (efficient)
learning algorithm for F .

22

PAC-Learning Formalization

▶ A learning algorithm L is a function that maps training examples to
functions in F with the following property: given ϵ, δ ∈ (0, 1), there exists
an integer s(ϵ, δ) (the sample complexity)

such that for any distribution D
on X , if Z is a sample of size at least s(ϵ, δ) where the samples are drawn
i.i.d. according to D, then with probability at least 1− δ it holds that
err(L(Z)) ≤ ϵ.

▶ L is an efficient learning algorithm if it always runs in time polynomial in
1/ϵ 1/δ, and the size of the representations of the target function, of
elements in Z , and of elements in Y .

▶ A function class F is (efficiently) PAC-learnable if there is an (efficient)
learning algorithm for F .

22

PAC-Learning Formalization

▶ A learning algorithm L is a function that maps training examples to
functions in F with the following property: given ϵ, δ ∈ (0, 1), there exists
an integer s(ϵ, δ) (the sample complexity) such that for any distribution D
on X , if Z is a sample of size at least s(ϵ, δ) where the samples are drawn
i.i.d. according to D, then with probability at least 1− δ it holds that
err(L(Z)) ≤ ϵ.

▶ L is an efficient learning algorithm if it always runs in time polynomial in
1/ϵ 1/δ, and the size of the representations of the target function, of
elements in Z , and of elements in Y .

▶ A function class F is (efficiently) PAC-learnable if there is an (efficient)
learning algorithm for F .

22

PAC-Learning Formalization

▶ A learning algorithm L is a function that maps training examples to
functions in F with the following property: given ϵ, δ ∈ (0, 1), there exists
an integer s(ϵ, δ) (the sample complexity) such that for any distribution D
on X , if Z is a sample of size at least s(ϵ, δ) where the samples are drawn
i.i.d. according to D, then with probability at least 1− δ it holds that
err(L(Z)) ≤ ϵ.

▶ L is an efficient learning algorithm if it always runs in time polynomial in
1/ϵ 1/δ, and the size of the representations of the target function, of
elements in Z , and of elements in Y .

▶ A function class F is (efficiently) PAC-learnable if there is an (efficient)
learning algorithm for F .

22

PAC-Learning Formalization

▶ A learning algorithm L is a function that maps training examples to
functions in F with the following property: given ϵ, δ ∈ (0, 1), there exists
an integer s(ϵ, δ) (the sample complexity) such that for any distribution D
on X , if Z is a sample of size at least s(ϵ, δ) where the samples are drawn
i.i.d. according to D, then with probability at least 1− δ it holds that
err(L(Z)) ≤ ϵ.

▶ L is an efficient learning algorithm if it always runs in time polynomial in
1/ϵ 1/δ, and the size of the representations of the target function, of
elements in Z , and of elements in Y .

▶ A function class F is (efficiently) PAC-learnable if there is an (efficient)
learning algorithm for F .

22

Theorem
The class of scoring rules for n voters and m candidates efficiently PAC-learnable.

Ariel D. Procaccia, Aviv Zohar, Yoni Peleg, and Jeffrey S. Rosenschein (2009). The learnability
of voting rules. Artificial Intelligence 173, pp. 1133 - 1149.

“It is rather straightforward to construct an efficient algorithm that outputs
consistent scoring rules. Given a training set, we must choose the parameters of
our scoring rule in a way that, for any example, the score of the designated
winner is at least as large as the scores of other alternatives. Moreover, if ties
between the winner and a loser would be broken in favor of the loser, then the
winner’s score must be strictly higher than the loser’s.”

23

Theorem
The class of scoring rules for n voters and m candidates efficiently PAC-learnable.

Ariel D. Procaccia, Aviv Zohar, Yoni Peleg, and Jeffrey S. Rosenschein (2009). The learnability
of voting rules. Artificial Intelligence 173, pp. 1133 - 1149.

“It is rather straightforward to construct an efficient algorithm that outputs
consistent scoring rules. Given a training set, we must choose the parameters of
our scoring rule in a way that, for any example, the score of the designated
winner is at least as large as the scores of other alternatives. Moreover, if ties
between the winner and a loser would be broken in favor of the loser, then the
winner’s score must be strictly higher than the loser’s.”

23

24

Deal with the problem of ties:
xjk is the winner in election k .
a ∈ Xk means that ties between a and xjk
are broken in favor of a

24

24

πk
j ,l : The number of voters that rank xj in position l in election k

24

∀a ∈ Xk , Score(xjk) > Score(a)
∀a /∈ Xk , Score(xjk) ≥ Score(a)
It is a sensible scoring rule

24

Given examples that are consistent with some general voting rule, is it possible to
learn a scoring rule (or a small voting tree) that is “close” to the target rule?

Fix n voters and m candidates. A voting method F is a c-approximation of a
voting rule G provided that F and G agree on a c-fraction of the profiles:

|{P | F (P) = G (P)}| ≥ c × (m!)n.

25

Given examples that are consistent with some general voting rule, is it possible to
learn a scoring rule (or a small voting tree) that is “close” to the target rule?

Fix n voters and m candidates. A voting method F is a c-approximation of a
voting rule G provided that F and G agree on a c-fraction of the profiles:

|{P | F (P) = G (P)}| ≥ c × (m!)n.

25

Theorem (Procaccia et al. 2009)
Let Rn

m be a family of voting rules of size exponential in n and m, and let
ϵ, δ > 0. For large enough values of n and m, at least a (1− δ)-fraction of the
voting rules F satisfy the following property: no voting rule in Rn

m is a
(1/2+ ϵ)-approximation of F .

Corollary (Procaccia et al. 2009)
For large enough values of n and m, almost all voting rules cannot be
approximated by a scoring rule on n and m to a factor better than 1/2.

26

