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Neighborhoods with nominals

p | i | ¬φ | φ ∧ ψ | 2φ | Aφ

p ∈ At and i ∈ Nom (the set of nominals)

Neighborhood model with nominals ⟨W ,N ,V ⟩, V : At∪ Nom → ℘(W ), where
for all i ∈ Nom, |V (i)| = 1.

▶ M,w |= i iff V (w) = i

▶ M,w |= Aφ iff for all v ∈ W , M, v |= φ
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(BG)
⊢ E (i ∧3j) → E (j ∧ φ)

⊢ E (i ∧2φ)

for i ̸= j and j not occurring in φ

A class of frames F admits a rule provided that every model that falsifies the
consequent can be extended to a model that falsifies the premises.

Theorem. A neighborhood frame is augmented iff it admits∗ the rule BG.

B. ten Cate and T. Litak (2007). Topological Perspective on Hybrid Proof Rules. Electronic
Notes in Theoretical Computer Science, 174, pp. 79 - 94.

3



(BG)
⊢ E (i ∧3j) → E (j ∧ φ)

⊢ E (i ∧2φ)

for i ̸= j and j not occurring in φ

A class of frames F admits a rule provided that every model that falsifies the
consequent can be extended to a model that falsifies the premises.

Theorem. A neighborhood frame is augmented iff it admits∗ the rule BG.

B. ten Cate and T. Litak (2007). Topological Perspective on Hybrid Proof Rules. Electronic
Notes in Theoretical Computer Science, 174, pp. 79 - 94.

3



(BG)
⊢ E (i ∧3j) → E (j ∧ φ)

⊢ E (i ∧2φ)

for i ̸= j and j not occurring in φ

A class of frames F admits a rule provided that every model that falsifies the
consequent can be extended to a model that falsifies the premises.

Theorem. A neighborhood frame is augmented iff it admits∗ the rule BG.

B. ten Cate and T. Litak (2007). Topological Perspective on Hybrid Proof Rules. Electronic
Notes in Theoretical Computer Science, 174, pp. 79 - 94.

3



Course Plan

✓ Introduction and Motivation: Background (Relational Semantics for
Modal Logic), Neighborhood Structures, Motivating Weak Modal
Logics/Neighborhood Semantics
(Monday, Tuesday)

✓ Core Theory: Non-Normal Modal Logic, Completeness, Decidability,
Complexity, Incompleteness, Relationship with Other Semantics for Modal
Logic, Model Theory
(Tuesday, Wednesday, Thursday)

3. Extensions: Inquisitive Logic on Neighborhood Models; First-Order Modal
Logic, Subset Spaces, Common Knowledge/Belief, Dynamics with
Neighborhoods: Game Logic and Game Algebra, Dynamics on
Neighborhoods (Friday)
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I. Ciardelli. Describing neighborhoods in inquisitive modal logic. Proceedings of Advances in
Modal Logic, 2022.
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Support

Rather than taking semantics to specify in what circumstances a sentence is true,
we may take it to specify what information it takes to settle, or establish, the
sentence.

▶ Let W be a set of possible worlds. A state is an subset s ⊆ W .

▶ s |= φ is read “s supports φ”
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Entailment and the Conditional

Entailment: φ |= ψ when for all models M = ⟨W ,V ⟩ and s ⊆ W ,
s |= φ implies s |= ψ

Internalizing entailment: s |= φ → ψ when for all t ⊆ s, t |= φ implies t |= ψ
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Disjunction
Truth-support bridge: Let α be a statement and M a model. For any
information state s ⊆ W we should have:

s |= α ⇐⇒ ∀w ∈ s,w |= α

This suggests two different notions of disjunction:

1. classic disjunction: ∀w ∈ s, w |= φ or w |= ψ

φ ∨ ψ

2. inquisitive disjunction: either ∀w ∈ s,w |= φ or ∀w ∈ s,w |= ψ

φ

⩾

ψ

For example:
p ∨ ¬p is a declarative statement that is a tautology
p

⩾ ¬p is a question asking whether p (denoted ?p)
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M = ⟨W ,V ⟩ where W ̸= ∅ and V : At → ℘(W )

▶ M,w |= p iff w ∈ V (p)

▶ M,w ̸|= ⊥
▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

▶ M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ

▶ M,w |= φ → ψ iff M,w |= φ implies M,w |= ψ
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M = ⟨W ,V ⟩ where W ̸= ∅ and V : At → ℘(W )

▶ M, s |= p iff s ⊆ V (p)

▶ M, s |= ⊥ iff s = ∅
▶ M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

▶ M, s |= φ

⩾

ψ iff M, s |= φ or M, s |= ψ

▶ M, s |= φ → ψ iff for all t ⊆ s, M, t |= φ implies M, t |= ψ
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Neighborhood Semantics for Inquisitive Logic
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IncCM

The language L: φ ::= p | ⊥ | (φ ∧ φ) | (φ → φ) | (φ

⩾

φ) | (φ ⇛ φ)

¬φ := φ → ⊥, ⊤ := ¬⊥, φ ∨ ψ := ¬(¬φ ∧ ¬ψ), and ?φ := φ
⩾ ¬φ

Declaratives L!: α ::= p | ⊥ | (α ∧ α) | (α → α) | (φ ⇛ φ), where φ ∈ L

Models: ⟨W ,Σ,V ⟩ where
▶ W ̸= ∅,

▶ Σ : W → ℘(℘(W )) such that for all w ∈ W , ∅ ̸∈ Σ(w), and

▶ V : At → ℘(W ).
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▶ every neighborhood of w1 settles whether p (i.e., the truth value of p is
constant within each neighborhood) while this is not the case for w2 and w3

▶ every neighborhood of w2 that settles whether p also settles whether q,
whereas this is not the case for w3.
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Suppose the above model represents what an agent can force to be true.

s ∈ Σ(w) means that the agent has an action that guarantees that s obtains.

From the perspective of logics of strategic ability, all situations represent an
agent that is in effect a dictator who can force any of the outcomes, while other
agents cannot prevent any outcome. Yet, there is a clear sense in which these
situations are very different.
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1. In w1, not only is there an action the agent can perform that settles p, she
must decide on p and q. (⊤ ⇛?p) ∧ (?p ⇛?q)

2. In w2, there is an action the agent can perform that settles p, but the agent
must decide on q if she wants to decide on p. ?p ⇛?q

3. In w3, there is an action the agent can perform that settles p, and the agent
can delegate her decision on q
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IncCM - Truth

▶ M, s |= p iff s ⊆ V (p)

▶ M, s |= ⊥ iff s = ∅

▶ M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

▶ M, s |= φ

⩾

ψ iff M, s |= φ or M, s |= ψ

▶ M, s |= φ → ψ iff for all t ⊆ s,
M, t |= φ implies M, t |= ψ

▶ M, s |= φ ⇛ ψ iff for all w ∈ s, for all t ∈ Σ(w),
M, t |= φ implies M, t |= ψ
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If α, β1, . . . , βn are declaratives, then

w |= (α ⇛ (

⩾

i≤nβi )) ⇐⇒ ∀s ∈ Σ(w) : if s ⊆ [[α]], then s ⊆ [[βi ]] for some i

Then ¬(α ⇛ (

⩾

i≤nβi )) expresses the existence of a neighborhood s such that α
is true everywhere in s and for each i ≤ n, βi is true somewhere in s.

This expresses the modality 2(β1, . . . , βn; α):

J. van Benthem, N. Bezhanishvili, S. Enqvist and J. Yu. Instantial neighbourhood logic. The
Review of Symbolic Logic 10 (2017), pp. 116–144.

J. van Benthem, N. Bezhanishvili and S. Enqvist. A new game equivalence, its logic and algebra.
Journal of Philosophical Logic 48 (2019), pp. 649–684.

J. van Benthem and EP. Dynamic Logics of Evidence-Based Beliefs. Studia Logica, 99(61), pp.
61 - 92, 2011.
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Since φ ⇛ ψ is declarative, we have the following:

M,w |= φ ⇛ ψ iff for all s ∈ Σ(w), M, s |= φ implies M, s |= ψ

▶ ?p ⇛?q expresses the fact that any neighborhood that settles whether p
also settles whether q.

▶ p ⇛ (q →?r): if we restrict to those neighborhoods that support p and
then we restrict each of these neighborhoods to the q-worlds, all the
resulting states settle whether r .

▶ ?p ⇛ (?q →?r): if we restrict to neighborhoods that settle whether p, and
then look at the parts of such neighborhoods where the truth value of q is
settled, each of these parts settles whether r .
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▶ w1 |= (⊤ ⇛?p) ∧ (?p ⇛?q)
▶ w2 |= ¬(⊤ ⇛?p) ∧ (?p ⇛?q)
▶ w3 |= ¬(⊤ ⇛?p) ∧ ¬(?p ⇛?q)

Since the models in (a), (b), and (c) are monotonically bisimilar, these
distinctions cannot be expressed in the basic modal language containing only the
modality ⟨ ]. This means that monotonic bisimulation is not the appropriate
notion of bisimulation for the language L.
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Monotonic Bisimulation

A bisimulation between M = ⟨W ,Σ,V ⟩ and M′ = ⟨W ′,Σ′,V ′⟩ is a
non-empty binary relation Z ⊆ W ×W ′ such that whenever wZw ′:

Atomic harmony: for each p ∈ At, w ∈ V (p) iff w ′ ∈ V ′(p)

Zig: If s ∈ Σ(w) then there is an s ′ ⊆ W ′ such that

s ′ ∈ Σ′(w ′) and ∀w ′ ∈ s ′ ∃w ∈ s such that wZw ′

Zag: If s ′ ∈ Σ′(w ′) then there is an s ⊆ W such that

s ∈ Σ(w) and ∀w ∈ s ∃w ′ ∈ s ′ such that wZw ′
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Monotonic Bisimulation

pqw2

pqw1

pqw0

pq w ′
2

pq w ′
1

pq w ′
0w0 |= ¬(p ⇛ ¬q) w ′

0 |= p ⇛ ¬q
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Not Bisimilar

pqw2

pqw1

pqw0

pq w ′
2

pq w ′
1

pq w ′
0not ∀w ∈ {w1,w2}∃w ′ ∈ {w ′

1}wZw ′
∀w ′ ∈ {w ′

1}∃w ∈ {w1,w2}wZw ′

w0 |= ¬(p ⇛ ¬q) w ′
0 |= p ⇛ ¬q
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Proposition 3.3 For any worlds w ,w ′, w ↔ w ′ implies w ↭ w ′; For any
states s, s ′, s ↔ s ′ implies s ↭ s ′.

Theorem 3.4 If M and M′ are image-finite, then for all worlds w ,w ′,
w ↭ w ′ implies w ↔ w ′; for all states s, s ′, s ↭ s ′ implies s ↔ s ′.
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Axiomatization
▶ φ → (ψ → φ)

▶ φ → (ψ → χ) → ((φ → ψ) → (φ → χ))

▶ φ → (ψ → (φ ∧ ψ))

▶ (φ ∧ ψ) → φ, (φ ∧ ψ) → ψ

▶ φ → (φ

⩾

ψ), ψ → (φ

⩾

ψ)

▶ (φ → χ) → ((ψ → χ) → ((φ

⩾

ψ) → χ))

▶ ⊥ → φ

▶ ¬¬α → α

▶ α → (φ

⩾

ψ) → ((α → φ)

⩾

(α → ψ))

▶ ((φ ⇛ ψ) ∧ (ψ ⇛ χ)) → (φ ⇛ χ)

▶ ((φ ⇛ ψ) ∧ (φ ⇛ χ)) → (φ ⇛ (ψ ∧ χ))

▶ ((φ ⇛ χ) ∧ (φ ⇛ χ)) → ((φ
⩾

ψ) ⇛ χ)
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Theorem The previous axiomatization is sound and complete with respect to
neighborhood structures.
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Concluding Remarks

▶ One could define a standard translation (into a two-sorted first-order logic)
and aim for a van Benthem-style characterization of InqCM as the
bisimulation-invariant fragment of first-order logic.

▶ It would be interesting to develop modal correspondence theory for InqCM
relating validity of InqCM-schemata over a neighborhood frame ⟨W ,Σ⟩ to
corresponding properties of the set of neighborhoods at each state.

▶ One can allow empty neighborhoods without substantive changes to the
results of the paper.
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Neighborhood Models for First-Order Modal Logic

H. Arlo Costa and E. Pacuit (2006). First-Order Classical Modal Logic. Studia Logica, 84, pp.
171 - 210.

Also, see:

G. Boella, D. Gabbay, V. Genovese, and L. van der Torre (2010). Higher-Order Coalition Logic.
SeriesFrontiers in Artificial Intelligence and Applications, Volume 215: ECAI.
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First-Order Modal Language: L1

Extend the propositional modal language L with the usual first-order machinery
(constants, terms, predicate symbols, quantifiers).

A := P(t1, . . . , tn) | ¬A | A∧ A | 2A | ∀xA

(note that equality is not in the language!)
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First-order Modal Logic

A constant domain Kripke frame is a tuple ⟨W ,R ,D⟩ where W and D are
sets, and R ⊆ W ×W .

A constant domain Kripke model adds a valuation function I , where for each
n-ary relation symbol P and w ∈ W , I (P ,w) ⊆ Dn.

A substitution is any function σ : V → D (V the set of variables).

A substitution σ′ is said to be an x-variant of σ if σ(y) = σ′(y) for all variable
y except possibly x , this will be denoted by σ ∼x σ′.
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sets, and R ⊆ W ×W .

A constant domain Kripke model adds a valuation function V , where for each
n-ary relation symbol P and w ∈ W , I (P ,w) ⊆ Dn.

Suppose that σ is a substitution.

1. M,w |=σ P(x1, . . . , xn) iff ⟨σ(x1), . . . , σ(xn)⟩ ∈ I (P ,w)

2. M,w |=σ 2A iff R(w) ⊆ [[φ]]M,σ

3. M,w |=σ ∀xA iff for each x-variant σ′, M,w |=σ′ A
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First-order Modal Logic

A constant domain Neighborhood frame is a tuple ⟨W ,N ,D⟩ where W and
D are sets, and N : W → ℘(℘(W )).

A constant domain Neighborhood model adds a valuation function V , where
for each n-ary relation symbol P and w ∈ W , I (P ,w) ⊆ Dn.

Suppose that σ is a substitution.

1. M,w |=σ P(x1, . . . , xn) iff ⟨σ(x1), . . . , σ(xn)⟩ ∈ I (P ,w)

2. M,w |=σ 2A iff [[φ]]M,σ ∈ N(w)

3. M,w |=σ ∀xA iff for each x-variant σ′, M,w |=σ′ A
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Example

Suppose that F is a unary predicate symbol, V = {x , y}, and ⟨W ,N ,D, I ⟩ is a
first order constant domain neighborhood model where

▶ W = {w , v , u};
▶ N(w) = {{w , v}, {u}}, N(v) = {{v}}, N(u) = {{w , v}, {v}};
▶ D = {a, b}; and
▶ I (F ,w) = {a}, I (F , v) = {a, b}, and I (F , u) = ∅.
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Example

I (F ,w) = {a}, I (F , v) = {a, b}, and I (F , u) = ∅

There are four possible substitutions:

▶ σ1 : V → D where σ1(x) = a, σ1(y) = b;

▶ σ2 : V → D where σ2(x) = b, σ2(y) = a;

▶ σ3 : V → D where σ3(x) = σ3(y) = a; and

▶ σ4 : V → D where σ4(x) = σ4(y) = b

▶ [[F (x)]]M,σ1 = {w , v};
▶ [[F (x)]]M,σ2 = {v};
▶ [[F (x)]]M,σ3 = {w , v}; and
▶ [[F (x)]]M,σ4 = {v}.
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Example

In general, every formula φ ∈ L1 is associated with a function

[[φ]] : DV → ℘(W )
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Example

▶ W = {w , v , u};
▶ N(w) = {{w , v}, {u}}, N(v) = {{v}}, N(u) = {{w , v}, {v}};
▶ D = {a, b}; and
▶ I (F ,w) = {a}, I (F , v) = {a, b}, and I (F , u) = ∅.

▶ [[2F (x)]]M,σ1 = [[2F (x)]]M,σ3 = {w , u}
[[2F (x)]]M,σ2 = [[2F (x)]]M,σ4 = {v , u};

▶ [[2∀xF (x)]]M,σ1 = {v}; and
▶ [[∀x2F (x)]]M,σ1 = {v , u}.
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Barcan Schemas

▶ Barcan formula (BF ): ∀x2A(x) → 2∀xA(x)
▶ converse Barcan formula (CBF ): 2∀xA(x) → ∀x2A(x)

Observation 1: CBF is provable in FOL+ EM

Observation 2: BF and CBF both valid on relational frames with constant
domains

Observation 3: BF is valid in a varying domain relational frame iff the frame
is anti-monotonic; CBF is valid in a varying domain relational frame iff the
frame is monotonic.

See (Fitting and Mendelsohn, 1998) for an extended discussion
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Constant Domains without the Barcan Formula

The system EMN and seems to play a central role in characterizing monadic
operators of high probability (See Kyburg and Teng 2002, Arló-Costa 2004).

Of course, BF should fail in this case, given that it instantiates cases of what is
usually known as the ‘lottery paradox’:

For each individual x , it is highly probably that x will loose the lottery; however it
is not necessarily highly probably that each individual will loose the lottery.
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Converse Barcan Formulas and Neighborhood Frames

A frame F is consistent iff for each w ∈ W , N(w) ̸= ∅

A first-order neighborhood frame F = ⟨W ,N ,D⟩ is nontrivial iff |D | > 1

Lemma Let F be a consistent constant domain neighborhood frame. The
converse Barcan formula is valid on F iff either F is trivial or F is supplemented.
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W

X

X ∈ N(w)
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W

X

Y

Y ̸∈ N(w)
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W

Y

X

F = ∅

∀v ̸∈ Y , I (F , v) = ∅

39



W

X

Y

F = ∅

F = D

∀v ∈ X , I (F , v) = D = {a, b}
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W

Y

X

F = ∅

F = DF = {a}

∀v ∈ Y − X , I (F , v) = D = {a}
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W

Y

X

F = ∅

F = DF = {a}

(F [a])M = Y ̸∈ N(w) hence w ̸|= ∀x2F (x)
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W

Y

X

F = ∅

F = DF = {a}

(∀xF (x))M = (F [a])M ∩ (F [b])M = X ∈ N(w)

hence w |= 2∀xF (x)
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Barcan Formulas and Neighborhood Frames

We say that a frame closed under ≤ κ intersections if for each state w and each
collection of sets {Xi | i ∈ I} where |I | ≤ κ, ∩i∈IXi ∈ N(w).

Lemma Let F be a consistent constant domain neighborhood frame. The
Barcan formula is valid on F iff either

1. F is trivial or

2. if D is finite, then F is closed under finite intersections and if D is infinite
and of cardinality κ, then F is closed under ≤ κ intersections.
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Suppose that L is a propositional modal logic. Let FOL+ L denote the set of
formulas closed under the following rules and axiom schemes

L All axiom schemes and rules from L.

All ∀xφ(x) → φ[y/x ] is an axiom scheme,
where y is free for x in φ.

Gen
φ → ψ

φ → ∀xψ
, where x is not free in φ.
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Theorem FOL+ E is sound and strongly complete with respect to the class of
all constant domain neighborhood frames.
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CBF

⊢FOL+EM 2∀xφ(x) → ∀x2φ(x)

̸⊢FOL+E+CBF 2(φ ∧ ψ) → (2φ ∧2ψ)
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Completeness Theorems

Theorem FOL+ E is sound and strongly complete with respect to the class of
all frames.

Theorem FOL+ EC is sound and strongly complete with respect to the class of
frames that are closed under intersections.

Theorem FOL+ EM is sound and strongly complete with respect to the class
of supplemented frames.

Theorem FOL+ E+ CBF is sound and strongly complete with respect to the
class of frames that are either non-trivial and supplemented or trivial and not
supplemented.

48



Completeness Theorems

Theorem FOL+ E is sound and strongly complete with respect to the class of
all frames.

Theorem FOL+ EC is sound and strongly complete with respect to the class of
frames that are closed under intersections.

Theorem FOL+ EM is sound and strongly complete with respect to the class
of supplemented frames.

Theorem FOL+ E+ CBF is sound and strongly complete with respect to the
class of frames that are either non-trivial and supplemented or trivial and not
supplemented.

48



Completeness Theorems

Theorem FOL+ E is sound and strongly complete with respect to the class of
all frames.

Theorem FOL+ EC is sound and strongly complete with respect to the class of
frames that are closed under intersections.

Theorem FOL+ EM is sound and strongly complete with respect to the class
of supplemented frames.

Theorem FOL+ E+ CBF is sound and strongly complete with respect to the
class of frames that are either non-trivial and supplemented or trivial and not
supplemented.

48



Completeness Theorems

Theorem FOL+ E is sound and strongly complete with respect to the class of
all frames.

Theorem FOL+ EC is sound and strongly complete with respect to the class of
frames that are closed under intersections.

Theorem FOL+ EM is sound and strongly complete with respect to the class
of supplemented frames.

Theorem FOL+ E+ CBF is sound and strongly complete with respect to the
class of frames that are either non-trivial and supplemented or trivial and not
supplemented.

48



FOL+K and FOL+K+ BF

Theorem FOL+K is sound and strongly complete with respect to the class of
filters.

Observation The augmentation of the smallest canonical model for FOL+K is
not a canonical model for FOL+K. In fact, the closure under infinite
intersection of the minimal canonical model for FOL+K is not a canonical
model for FOL+K.

Lemma The augmentation of the smallest canonical model for FOL+K+ BF
is a canonical for FOL+K+ BF .

Theorem FOL+K+ BF is sound and strongly complete with respect to the
class of augmented first-order neighborhood frames.
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Dynamics on Neighborhoods

J. van Benthem and EP. Dynamic Logics of Evidence-Based Beliefs. Studia Logica, 99(61), pp.
61 - 92, 2011.

Minghui Ma, Katsuhiko Sano (2018). How to update neighbourhood models. Journal of Logic
and Computation, 28:8, pp. 1781 - 1804.
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Richer Languages

p | ¬φ | φ ∧ ψ | 2φ | ⟨ ]φ

▶ M,w |= 2φ iff [[φ]]M ∈ N(W )

▶ M,w |= ⟨ ]φ iff there is a X ∈ N(W ) such that X ⊆ [[φ]]M

▶ M,w |= ⟨ ⟩φ there is a X ∈ N(w) such that X ∩ [[φ]]M ̸= ∅

▶ M,w |= ⟨ ]ψ φ there is a X ∈ N(W ) such that X ∩ [[ψ]]M ̸= ∅ and
X ∩ [[ψ]]M ⊆ [[φ]]M.

▶ M,w |= [B ]φ iff for all max-f.i.p. X ⊆ N(w),
⋂X ⊆ [[φ]]M

▶ M,w |= [B ]ψ φ iff for all maximal ψ-f.i.p. X ψ ⊆ N(w),⋂X ∩ [[ψ]]M ⊆ [[φ]]M
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Background: Modeling Informational Changes
▶ Modeling strategies: temporal-based vs. change-based;

rich states and algebra/simple operation vs. simples states and
algebra/complex or many operation

M τ
=⇒ Mτ

Given an operation for transforming a model, what are the “recursion
axioms” that characterize this operation?

Example: “Public Announcement of φ”: M!φ is the submodel of M where
all states satisfy φ

[!φ]Kψ ↔ (φ → K (φ → [!φ]ψ))
[!φ]Bψ ↔ (φ → Bφ[!φ]ψ)
[!φ]Bαψ ↔ (φ → Bφ∧[!φ]α[!φ]ψ)
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“Public Announcements”

Accept evidence from an infallible source.

Let M = ⟨W ,E ,V ⟩ be an evidence model and φ ∈ L a formula. The model
M!φ = ⟨W !φ,E !φ,V !φ⟩ is defined as follows: W !φ = [[φ]]M, for each p ∈ At,
V !φ(p) = V (p) ∩W !φ and for all w ∈ W ,

E !φ(w) = {X | ∅ ̸= X = Y ∩ [[φ]]M for some Y ∈ E (w)}.

[!φ]ψ: “ψ is true after the public announcement of φ”

M,w |= [!φ]ψ iff M,w |= φ implies M!φ,w |= ψ
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Public Announcements: Recursion Axioms

[!φ]p ↔ (φ → p) (p ∈ At)

[!φ](ψ ∧ χ) ↔ ([!φ]ψ ∧ [!φ]χ)

[!φ]¬ψ ↔ (φ → ¬[!φ]ψ)

[!φ]2ψ ↔ (φ → 2φ[!φ]ψ)

[!φ]Bψ ↔ (φ → Bφ[!φ]ψ)

[!φ]2αψ ↔ (φ → 2φ∧[!φ]α[!φ]ψ)

[!φ]Bαψ ↔ (φ → Bφ∧[!φ]α[!φ]ψ)

[!φ]Aψ ↔ (φ → A[!φ]ψ)
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1. Other definition of public announcement

2. Dissecting the public announcement operation
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Public Announcement

Suppose that M = ⟨W ,N ,V ⟩ is a monotonic neighborhood modeland
∅ ̸= X ⊆ W .

Intersection submodel
N⋒X (w) = {Y | ∅ ̸= Y = X ∩ Z for some Z ∈ N(w)}

Strong intersection submodel:
N∩X (w) = {Y | Y = Z ∩ X for some Z ∈ N(w)}.

Subset submodel: N⊆X (w) = {Y | Y ⊆ X and Y ∈ N(w)}.
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▶ [φ]∩2ψ ↔ (φ → 2[φ]∩ψ) is valid on monotonic frames.

▶ [φ]⊆2ψ ↔ (φ → 2⟨φ⟩⊆ψ) is valid on monotonic frames.

▶ Suppose that M = ⟨W ,N ,V ⟩ is augmented. Then, for any formula φ,
M∩φ = M⊆φ.

▶ The formula [φ]⋒2ψ ↔ (φ → 2[φ]⋒ψ) is not valid on monotonic frames.

▶ [φ]⋒2ψ ↔ (φ → 2φ[φ]⋒ψ) is valid on monotonic frames.

▶ [φ]⋒2αψ ↔ (φ → 2φ∧[φ]⋒α[φ]⋒ψ) is valid on monotonic frames.
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Dissecting the Public Announcement Operation

On evidence models, a public announcement (!φ) is a complex combination of
three distinct epistemic operations:

1. Evidence addition: accepting that φ is a piece of evidence

2. Evidence removal: remove evidence for ¬φ

3. Evidence modification: incorporate φ into each piece of evidence
gathered so far
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Evidence Addition

Let M = ⟨W ,E ,V ⟩ be an evidence model, and φ a formula in L. The model
M+φ = ⟨W+φ,E+φ,V+φ⟩ has W+φ = W , V+φ = V and for all w ∈ W ,

E+φ(w) = E (w) ∪ {[[φ]]M}

[+φ]ψ: “ψ is true after φ is accepted as an admissible piece of evidence”

M,w |= [+φ]ψ iff M,w |= E φ implies M+φ,w |= ψ
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Evidence Addition: Recursion Axioms

[+φ]p ↔ (E φ → p) (p ∈ At)

[+φ](ψ ∧ χ) ↔ ([+φ]ψ ∧ [+φ]χ)

[+φ]¬ψ ↔ (E φ → ¬[+φ]ψ)

[+φ]Aψ ↔ (E φ → A[+φ]ψ)
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Evidence Addition: Recursion Axioms

[+φ]2ψ ↔ (E φ → (2[+φ]ψ ∨ A(φ → [+φ]ψ)))

[+φ]2αψ ↔ (E φ → (2[+φ]α[+φ]ψ ∨ (E (φ ∧ [+φ]α)∧
A((φ ∧ [+φ]α) → [+φ]ψ))))
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Evidence Addition: Recursion Axioms

[+φ]Bψ ↔ ????

[+φ]Bαψ ↔ ????
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E1 E2

E3
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Compatibile vs. Incompatible

1. X is maximally φ-compatible provided ∩X ∩ [[φ]]M ̸= ∅ and no proper
extension X ′ of X has this property; and

2. X is incompatible with φ provided there are X1, . . . ,Xn ∈ X such that
X1 ∩ · · · ∩ Xn ⊆ [[¬φ]]M.

Conditional belief: B+φψ iff for each maximally φ-compatible X ⊆ E (w),⋂X ∩ [[φ]]M ⊆ [[ψ]]M

Conditional Beliefs (Incompatibility Version): M,w |= B−φψ iff for all
maximal f.i.p., if X is incompatible with φ then

⋂X ⊆ [[ψ]]M.
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B+¬φ vs. B−φ
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Recursion Axiom

Fact. [+φ]Bψ ↔ (E φ → (B+φ[+φ]ψ ∧ B−φ[+φ]ψ)) is valid.

But now, we need a recursion axiom for B−φ.

Language Extension: M,w |= Bφ,ψχ iff for all maximally φ-compatible sets
X ⊆ E (w), if

⋂X ∩ [[φ]]M ⊆ [[ψ]]M, then
⋂X ∩ [[φ]]M ⊆ [[χ]]M.

B+φ is Bφ,⊤ and B−φ is B⊤,¬φ

Fact. The following is valid:

[+φ]Bψ,αχ ↔ (E φ → (Bφ∧[+φ]ψ,[+φ]α[+φ]χ ∧ B [+φ]ψ,¬φ∧[+φ]α[+φ]χ))
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Dissecting the Public Announcement Operation

On evidence models, a public announcement (!φ) is a complex combination of
three distinct epistemic operations:

✓ Evidence addition: accepting that φ is a piece of evidence

2. Evidence removal: remove evidence for ¬φ

3. Evidence modification: incorporate φ into each piece of evidence
gathered so far
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Evidence Removal

Let M = ⟨W ,E ,V ⟩ be an evidence model, and φ ∈ L. The model
M−φ = ⟨W−φ,E−φ,V−φ⟩ has W−φ = W , V−φ = V and for all w ∈ W ,

E−φ(w) = E (w)− {X | X ⊆ [[φ]]M}.

[−φ]ψ: “after removing the evidence that φ, ψ is true”

M,w |= [−φ]ψ iff M,w |= ¬Aφ implies M−φ,w |= ψ
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Fact. Evidence removal extends the language.

r

rq

p

E1

r

rq

p

E2

[−p]2(p ∨ q) is true in M1 but not in M2.
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Compatible Evidence

2φψ: “ψ is entailed by some admissible evidence compatible with each of φ”

Let M = ⟨W ,E ,V ⟩ be an evidence model and φ = (φ1, . . . , φn) a finite
sequence of formulas. We say that a subset X ⊆ W is compatible with φ
provided that, for each formula φi , X ∩ [[φi ]]M ̸= ∅.

M,w |= 2φψ iff there is some X ∈ E (w) compatible with φ where X ⊆ [[ψ]]M

Recursion axiom: [−φ]2ψ ↔ (¬Aφ → 2¬φ[−φ]ψ)
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Evidence Removal: Recursion Axioms
Langage L′: p | ¬φ | φ ∧ ψ | Bα

φψ | 2α
φψ | Aφ

▶ M,w |= 2α
φψ iff there is X ∈ E (w) compatible with φ, α such that

X ∩ [[α]]M ⊆ [[ψ]]M.

▶ M,w |= Bα
φψ iff for each maximal α-f.i.p. X compatible with φ,⋂X α ⊆ [[ψ]]M.

[−φ]p ↔ (¬Aφ → p) (p ∈ At)

[−φ](ψ ∧ χ) ↔ ([−φ]ψ ∧ [−φ]χ)

[−φ]¬ψ ↔ (¬Aφ → ¬[−φ]ψ)

[−φ]2α
ψ

χ ↔ (¬Aφ → 2
[−φ]α

[−φ]ψ,¬φ
[−φ]χ)

[−φ]Bα
ψ

χ ↔ (¬Aφ → B
[−φ]α

[−φ]ψ,¬φ
[−φ]χ)

[−φ]Aψ ↔ (¬Aφ → A[−φ]ψ)
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Summary: Conditional Belief/Evidence

2ψ: “there is evidence for ψ”
2φψ: “there is evidence compatible with φ for ψ”
2γψ: “there is evidence compatible with each of the γi for ψ”

Bψ: “the agent believe χ”
Bφψ: “the agent believe χ conditional on φ”

B
φ
γ ψ: “the agent believe χ conditional on φ assuming compatibility

with each of the γi”
Bφ,αψ: “the agent believe ψ, after having settled on α and

conditional on φ”

Complete logical analysis?

Bφψ → B(φ → ψ) and B(φ → ψ) → B⊤,φψ
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Summary: Evidence Operations

Public announcement: [!φ]Bψ ↔ (φ → Bφ[!φ]ψ)

Evidence addition: [+φ]Bψ ↔ (E φ → (B+φ[+φ]ψ ∧ B−φ[+φ]ψ))

Evidence removal: [−φ]Bψ ↔ (¬Aφ → B¬φ[−φ]ψ)
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Thank you!!

https://pacuit.org/esslli2024/neighborhood-semantics/

https://pacuit.org/modal/neighborhoods/
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