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General Neighborhood Frames

A general neighborhood frame is a tuple 78 = (W, N, A) where (W, N) is a
neighborhood frame and A is a collection of subsets of W closed under
intersections, complements, and the my, operator.

A valuation V : At — gJ(W) is admissible for a general frame if for each p € At,
V(p) € A.

Suppose that F& = (W, N, A) is a general neighborhood frame. A general
modal based on F€ is a tuple M& = (W, N, A, V) where V is an admissible
valuation.



General Neighborhood Frames

Lemma
Let M8 = (W, N, A, V> be an general neighborhood model. Then for each

¢ €L, [¢]me € A.

Lemma
Let L be any logic extending E. Then a general canonical frame for L validates L.

Corollary
Any modal logic extending E is strongly complete with respect to some class of
general frames.



Summary

For any consistent modal logic L:
» If L is Kripke complete, then it is neighborhood complete

» L is complete with respect to its class of general frames



Summary

For any consistent modal logic L:
» If L is Kripke complete, then it is neighborhood complete

» L is complete with respect to its class of general frames

There are modal logics showing that
» neighborhood completeness does not imply Kripke completeness

» algebraic completeness does not imply neighborhood completeness



Non-Normal Modal Logic with a Universal Modality

(A-K) Alp = ) = (Ap — Ap)
(A-T) Ap = ¢

(A-4) Ap — AAg

(A-B) Ep — AE¢

(A-Nec) From ¢ infer A

((-RM) ~ From ¢ — ¢ infer (J¢ — (¢
((J-Cons)  —(]L

(A-N) Ap — (g
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Non-Normal Modal Logic with a Universal Modality

(A-K) Al = 9) = (Ap — AY)
(A-T) Ap = ¢

(A-4) Ap — AAg

(A-B) Ep — AE¢

(A-Nec) From ¢ infer A

((-RM) ~ From ¢ — ¢ infer (J¢ — (¢
((J-Cons)  —(]L

(A-N) Ap — (g

(Pullout) (1(pNAY) < (( o A AY)

Theorem. The logic EMA is sound and strongly complete with respect to
neighborhood frames that are consistent, non-trivial and monotonic.



We can simulate any non-normal modal logic with a bi-modal normal modal logic.



Definition
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M® = (V,Rn, Rz, Ry, Pt, V) as follows:
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Definition
Given a neighborhood model M = (W, N, V), define a Kripke model
M® = (V,Rn, Rz, Ry, Pt, V) as follows:

> V=WUp(W)

> Rs ={(uw) |we W uep(W)we u}

> Ry ={(uw) |weW,uepW)wdu}

> Ry ={(w,u) |we W, ue p(W)ue Nw)}



Definition

Given a neighborhood model M = (W, N, V), define a Kripke model
M® = (V,Rn, Rz, Ry, Pt, V) as follows:

V=WUp(W)

Ry ={(u,w) lwe W,ue p(W),we u}

Ry ={(uw)|weW,ucp(W)w¢u}

Ry={(w,u) |we W,uec p(W),uec N(w)}

Pt =W
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Definition
Given a neighborhood model M = (W, N, V), define a Kripke model
M® = (V,Rn, Rz, Ry, Pt, V) as follows:

V=WuUp(W)

Ry ={(u,w) lwe W,ue p(W),we u}

Ry ={(uw)|weW,ucp(W)w¢u}
Ry={(w,u) |we W,uec p(W),uec N(w)}
> Pt=W

Let £’ be the language

vvyyy

p:=p|-p|loAy|[Dle]|[Zle| [Ne]|Pt

where p € At and Pt is a unary modal operator.



Define ST : L — L' as follows
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Define ST : L — L' as follows
> ST(p)=p
> ST ) = —|5T(g0)

(-
> ST(pAy) =ST(¢) AST(9)
> ST(Og) = (N)([2]5T(9) A [Z]-5T(9))



Define ST : £ — L' as follows

> ST(p)=p

> ST(—¢p) = —ST(¢)
> ST(pAy) = ST(g) AST(9)
> ST(Dg) = (N)([2]ST () A [Z]-5T (¢))

Lemma
For each neighborhood model M = (W, N, V> and each formula ¢ € L, for any
we W,

M, w =@ iff M°, w = ST (¢)



\/

M,w = 0Opand M,v E=DOL.
> MO w b= (N)([S1p A [#]p) and M, v I (N)([]p A [#]-)
> Mo v = (N)([BILAZ]T) and M w = (N)([3]LA[Z]T)

<

M Me
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Monotonic Models

Lemma
On Monotonic Models (N)([3]ST (¢) A [Z]-ST (¢)) is equivalent to

(M)([3]5T(9))

11



O. Gasquet and A. Herzig. From Classical to Normal Modal Logic. in Proof Theory of Modal
Logic, Kluwer, pgs. 293 - 311, 1996.

M. Kracht and F. Wolter. Normal Monomodal Logics can Simulate all Others. The Journal of
Symbolic Logic, 64:1, pgs. 99 - 138, 1999.
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Filtrations

Let M = <W, N, V) be a neighborhood model and suppose that % is a set of
sentences from L.

For each w,v € W, we say w ~y v iff for each ¢ € X, w |= ¢ iff v |= ¢.

For each w € W, let [w|y = {v | w ~5 v} be the equivalence class of ~y.

If X C W, let [X]z = {[w] | w € X}.

13



Filtrations

Definition
Let M = (W, N, V) be a neighborhood model and X a set of sentences closed
under subformulas. A filtration of M through X is a model
M= (Wf, NT, Vf> where
1 wf=[w]
2. Foreachw e W
2.1 for each D¢ € %, [@]m € N(w) iff [[@]m] € NF([w])

3. For each p € At, V(p) = [V(p)]
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Filtrations

Definition
Let M = (W, N, V) be a neighborhood model and X a set of sentences closed
under subformulas. A filtration of M through X is a model
M= (W Nf, V) where
1 wWf=[w]
2. Foreachwe W
2.1 for each D¢ € %, [@]pm € N(w) iff [[@]m] € NF([w])

3. For each p € At, V(p) = [V(p)]

Theorem
Suppose that M = (Wf, NT, Vf> is a filtration of M = (W, N, V) through (a
subformula closed) set of sentences .. Then for each p e,

M,W]:q)iffj\/lf, w] E ¢
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Filtrations

Definition
Let M = (W, N, V) be a neighborhood model and X a set of sentences closed
under subformulas. A filtration of M through X is a model

M= (W NFf, V) where
1 wf=[w]
2. Foreach w € W
2.1 for each D¢ € %, [@]m € N(w) iff [[@]m] € NF([w])
3. For each p € At, V(p) = [V(p)]

Corollary
E has the finite model property. le., if ¢ has a model then there is a finite model.
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A Few Comments on Complexity

Logics without C (eg., E,EM,E + (—=OL),E 4+ (O¢ — OOg)) are in NP,
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A Few Comments on Complexity

Logics without C (eg., E,EM,E + (—0OL1),E + (O¢ — OO¢)) are in NP.
Logics with C are in PSPACE.

M. Vardi. On the Complexity of Epistemic Reasoning. |EEE (1989).
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A Few Comments on Complexity

Is it the ability to combine information that leads to PSPACE-hardness?
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M. Allen. Complexity results for logics of local reasoning and inconsistent belief. in Theoretical
Aspects of Rationality and Knowledge: Proc. Tenth Conference, pgs. 92 - 108, 2005.
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A Few Comments on Complexity

Is it the ability to combine information that leads to PSPACE-hardness? No!

M. Allen. Complexity results for logics of local reasoning and inconsistent belief. in Theoretical
Aspects of Rationality and Knowledge: Proc. Tenth Conference, pgs. 92 - 108, 2005.

J. Halpern and L. Rego. Characterizing the NP-PSPACE gap in the satisfiability problem for
modal logic. Journal of Logic and Computation, 17:4, pgs. 795-806, 2007.
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Background: Bismulations for Relational Semantics

16



Relational Models: M = (W, R, V) where W # &, RC W x W, and

VAt — (W)
Truth:
> M,w = piffwe V(p)
> M,w = - iff M, w = ¢
> MwlEeAPiff M,wl=¢@and M,w =1

> M,
M,

w = Og iff for all v € W if wRv then M, v |= ¢
w=Ogiff {v [wR v} =R(w) C [¢]m

17



Distinguishing States
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What is the difference between states wy and v¢?
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Distinguishing States
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Is there a modal formula true at wy but not at v¢?
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Distinguishing States
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wy = OO—p but v = OO—p.
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Distinguishing States
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Distinguishing States
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Distinguishing States
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Distinguishing States
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wi = OOC—p but vy = OC—p.
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Distinguishing States
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What about now? Is there a modal formula true at wy but not v¢?



Distinguishing States
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No modal formula can distinguish wy and vq!
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Consider the following modalities:

> M,wi=Agiffforalwe W, M,w = ¢

> M,w =<0 giff thereisa v € W, vRw and M, v |= ¢.

> M, w = Ong iff there are vy, ..., v, such that for all 1 < j # k < n,
Vi # vi, forall j=1,....n, wRyjand forall j =1,...,n, M, v; = ¢.
For instance, O is true at a state if there are at least two accessible states
that satisfy ¢.

> M, w EO iff wRw

Are these modalities definable using the basic modal language? Intuitively, the
answer is “no”, but how do we prove this?

19



Bisimulation

A bisimulation between M = (W, R, V) and M’ = (W' R', V') is a
non-empty binary relation Z C W x W' such that whenever wZw':

Atomic harmony: for each p € At, w € V(p) iff w’ € V/(p)
Zig: if wRv, then 3v/ € W’ such that vZv/ and w'R'V/
Zag: if w'R'V' then dv € W such that vZv’ and wRv

20
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Bisimulation

A bisimulation between M = (W, R, V) and M’ = (W', R, V') is a
non-empty binary relation Z C W x W' such that whenever wZw':

Atomic harmony: for each p € At, w € V(p) iff w’ € V/(p)
Zig: if wRv, then 3v/ € W’ such that vZv' and w'R'V/
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Bisimulation

A bisimulation between M = (W, R, V) and M’ = (W', R, V') is a
non-empty binary relation Z C W x W' such that whenever wZw':

Atomic harmony: for each p € At, w € V(p) iff w’ € V/(p)
Zig: if wRv, then 3v/ € W’ such that vZv' and w'R'V/
Zag: if w'R'V' then dv € W such that vZv’ and wRv

» We write M, w < M/, w' if there is a Z such that wZw'.
> We write M, w «~ M, W/ iff forall ¢ € L, M, w |= ¢ iff M',w' = ¢.

» Lemma If M, w < M, w' then M, w o~ M’ W'
» Lemma On finite models, if M, w &~ M’ w' then M, w <& M’ w'.
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Bisimulation for Relational Models

A bisimulation between M = (W, R, V) and M’ = (W' R, V') is a
non-empty binary relation Z C W x W' such that whenever wZw':

Atomic harmony: for each p € At, w € V(p) iff w’ € V/(p)
Zig: If wRv, then there is a v/ € W’ such that

w'R'V and vZv/
Zag: If w'R'V' then there is a v € W such that

wRv and vZv’

22



Bisimulation for Relational Models

A bisimulation between M = (W, R, V) and M’ = (W', R’, V') is a
non-empty binary relation Z C W x W' such that whenever wZw':

Atomic harmony: for each p € At, w € V(p) iff w’ € V/(p)
Zig: If wRv , then thereisa v/ € W' such that

w'R'v' and vZv'
Zag: If w/'R'V' then thereisa v € W such that

wRv and vZV/

22



Monotonic Bisimulation for Neighborhood Models

A bisimulation between M = (W, N, V) and M’ = (W', N', V') is a
non-empty binary relation Z C W x W' such that whenever wZw':

Atomic harmony: for each p € At, w € V(p) iff w’ € V/(p)
Zig: If X € N(w) then there is an X’ C W' such that

X' € N'(w') and Vx' € X’ Ix € X such that xZx’

Zag: If X’ € N'(w’) then there isan X C W such that

X € N(w) and Vx € X 3x’ € X’ such that xZx’

22



Example

wo = —OpA(]p

23



» We write M, w < M’ w' if there is a monotonic bisimulation Z such that

wZw'.

> We write M, w «~» M’ w' iff for all @ in the language with the modality
(], M,w = @ iff M', W E ¢.

24



» We write M, w < M’ w' if there is a monotonic bisimulation Z such that

wZw'.

> We write M, w «~» M’ w' iff for all @ in the language with the modality
(], M,w = @ iff M', W E ¢.

» Lemma If M, w < M, w' then M, w &~ M’ W'
» Lemma On finite models, if M, w e~ M’ w' then M, w < M’ w'.
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» We write M, w < M’ w' if there is a monotonic bisimulation Z such that

wZw'.

> We write M, w «~» M’ w' iff for all @ in the language with the modality
(], M,w = @ iff M', W E ¢.

» Lemma If M, w < M, w' then M, w &~ M’ W'
» Lemma On finite models, if M, w e~ M’ w' then M, w < M’ w'.

M. Pauly. Bisimulation for Non-normal Modal Logic. Manuscript, 1999.
H. Hansen. Monotonic Modal Logic. Masters Thesis, ILLC, 2003.

H. Hansen, C. Kupke, EP. Neighbourhood Structures: Bisimilarity and Basic Model Theory.
Logical Methods in Computer Science, 5(2:2), pp. 1 - 38, 20009.
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Locally Core-Finite Models

Suppose that F is a monotonic collection of subsets of W. The
non-monotonic core, denoted F "¢, is a subset of F defined as follows:

F€={X|X€Fandforall X' C W, if X' C X, then X' ¢ F}.

A monotonic collection of sets F is core-complete provided for all X € F,
there exists a Y € F¢ such that Y C X.

25



Locally Core-Finite Models
Suppose that F is a monotonic collection of subsets of W. The

non-monotonic core, denoted F "¢, is a subset of F defined as follows:

F€={X|X€Fandforall X' C W, if X' C X, then X' ¢ F}.

A monotonic collection of sets F is core-complete provided for all X € F,
there exists a Y € F¢ such that Y C X.

Question: s every monotonic collection core-complete?
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Locally Core-Finite Models

A neighborhood model M = (W, N, V) is locally core-finite provided that M
is core-complete and for each w € W, N"(w) is finite, and for all X € N"¢(w),
X is finite.

26



Proposition. Suppose that M = (W, N, V) and M' = (W', N', V') are
monotonic, locally core-finite models. Then, for all w € W, w' € W',

Mw=, M wiff Miw < M W'

27



Do monotonic bisimulations work when we drop monotonicity? No!

28



{w1} {v1}

e S~ Vl
w2 w

M/
V(p) :/\?WL w2} V'(p) = {1}
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Bounded Morphisms

If M1 = (Wi, Ni, Vi) and Mo = (Wa, Na, Vi) are two neighborhood models,
and f : Wi — W, is a function, then f is a (frame) bounded morphism if

for all X C Wh, we have f~1[X] € Ny(w) iff X € No(f(w));

and for all p € At, and all w € Wyi: w € Vi(p) iff f(s) € Va(p).
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Bounded Morphisms

If M1 = (Wi, Ni, Vi) and Mo = (Wa, Na, Vi) are two neighborhood models,
and f : Wi — W, is a function, then f is a (frame) bounded morphism if

for all X C Wh, we have f~1[X] € Ny(w) iff X € No(f(w));

and for all p € At, and all w € Wyi: w € Vi(p) iff f(s) € Va(p).

Lemma Let M; = (Wi, Ny, Vi) and My = (Wy, Na, V,) be two neighborhood
models and f : M1 — M a bounded morphism. For each modal formula
¢ € L and state w € Wi, My, w = ¢ iff My, f(w) = ¢.
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Behavioral Equivalence

Definition
Two points wy from M7 and wy from Mo are behaviorally equivalent
provided there is a neighborhood frame F and bounded morphisms f : F; — F

and g : F» — F such that f(wy) = g(ws).

31
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S~
______

MI
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Proposition. Suppose that M = (W, N, V) and M' = (W' N', V') are two
neighborhood models. If states w € W and w’ € W' are behaviorally equivalent,

then for all ¢ € £, M, w |= ¢ iff M', W |= ¢.

33



Theorem
Over the class N (of neighborhood models), the following are equivalent:

» w«(x) is equivalent to the translation of a modal formula

» w(x) is invariant under behavioural equivalence.

H. Hansen, C. Kupke and EP. Neighbourhood Structures: Bisimilarity and Basic Model Theory.
Logical Methods in Computer Science, 5(2:2), pgs. 1 - 38, 2009.
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The Language L,

The language L, is built from the following grammar:

x=y|lu=v|Pix|xNu|uEx|—-¢|eAp| Ixe | Jup

M= (D,{P;i | i €w},N,E) where
» D=D°UD" (and D°N D" = Q),
> P C D®,
» N C D°x D" and
> EC D" x Ds.

35



The Language L,

Definition
Let M = (S, N, V) be a neighbourhood model. The first-order translation of
M is the structure M° = (D, {P; | i € w}, Ry, R5) where

> DS=S5 D" =ses N(s)

» For each i € w, P; = V(p;)

» Ry ={(s,U) |s€ D%, U € N(s)}

» Rs ={(U,s) |se D%, se U}

36



The Language L,

Definition
The standard translation of the basic modal language are functions sty : L — L3
defined as follows as follows: sty(p;) = P;x, sty commutes with boolean

connectives and

stx(O¢) = Ju(xRyu A (Vy(uRsy « sty (¢)))

37



The Language L,

Definition

The standard translation of the basic modal language are functions sty : L — L3
defined as follows as follows: sty(p;) = P;x, sty commutes with boolean
connectives and

stx(O¢) = Ju(xRyu A (Vy(uRsy « sty (¢)))

Lemma
Let M be a neighbourhood structure and ¢ € L. For eachs € S,

M, s = ¢ iff M° = st (@)]s].
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N = {9 | M = M?° for some neighbourhood model M }

(A1) Ix(x = x)
(A2) Yudx(xRyu)
(A3) VYu,v(=(u=v) = Ix((uRsx A =vR5x) V (-uRsx A vR5x)))

Theorem

Suppose M is an Ly-structure. Then there is a neighbourhood structure M
such that I = (I, )°.
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Theorem
Over the class N (of neighborhood models), the following are equivalent:

» «(x) is equivalent to the translation of a modal formula

» w«(x) is invariant under behavioural equivalence.

H. Hansen, C. Kupke and EP (2009). Neighbourhood Structures: Bisimilarity and Basic Model
Theory. Logical Methods in Computer Science, 5(2:2), pp. 1 - 38.
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