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Plan for Today

✓ Completeness

✓ Incompleteness

▶ Simulating non-normal modal logics

▶ Brief discussion of decidability and complexity

▶ Bisimulations

▶ Neighborhood semantics for inquisitive logic
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General Neighborhood Frames

A general neighborhood frame is a tuple Fg = ⟨W ,N ,A⟩ where ⟨W ,N⟩ is a
neighborhood frame and A is a collection of subsets of W closed under
intersections, complements, and the mN operator.

A valuation V : At→ ℘(W ) is admissible for a general frame if for each p ∈ At,
V (p) ∈ A.

Suppose that Fg = ⟨W ,N ,A⟩ is a general neighborhood frame. A general
modal based on Fg is a tupleMg = ⟨W ,N ,A,V ⟩ where V is an admissible
valuation.
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General Neighborhood Frames

Lemma
LetMg = ⟨W ,N ,A,V ⟩ be an general neighborhood model. Then for each
φ ∈ L, [[φ]]Mg ∈ A.

Lemma
Let L be any logic extending E. Then a general canonical frame for L validates L.

Corollary
Any modal logic extending E is strongly complete with respect to some class of
general frames.
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Summary

For any consistent modal logic L:

▶ If L is Kripke complete, then it is neighborhood complete

▶ L is complete with respect to its class of general frames

There are modal logics showing that

▶ neighborhood completeness does not imply Kripke completeness

▶ algebraic completeness does not imply neighborhood completeness
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Non-Normal Modal Logic with a Universal Modality
(A-K ) A(φ→ ψ)→ (Aφ→ Aψ)

(A-T ) Aφ→ φ

(A-4) Aφ→ AAφ

(A-B) E φ→ AE φ

(A-Nec) From φ infer Aφ

(⟨ ]-RM) From φ→ ψ infer ⟨ ]φ→ ⟨ ]ψ
(⟨ ]-Cons) ¬⟨ ]⊥
(A-N) Aφ→ ⟨ ]φ
(Pullout) ⟨ ](φ ∧ Aψ)↔ (⟨ ]φ ∧ Aψ)

Theorem. The logic EMA is sound and strongly complete with respect to
neighborhood frames that are consistent, non-trivial and monotonic.
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We can simulate any non-normal modal logic with a bi-modal normal modal logic.
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Definition
Given a neighborhood modelM = ⟨W ,N ,V ⟩, define a Kripke model
M◦ = ⟨V ,RN ,R ̸∋,RN ,Pt,V ⟩ as follows:

▶ V = W ∪ ℘(W )

▶ R∋ = {(u,w) |w ∈ W , u ∈ ℘(W ),w ∈ u}
▶ R ̸∋ = {(u,w) |w ∈ W , u ∈ ℘(W ),w ̸∈ u}
▶ RN = {(w , u) | w ∈ W , u ∈ ℘(W ), u ∈ N(w)}
▶ Pt = W

Let L′ be the language

φ := p | ¬φ | φ ∧ ψ | [∋]φ | [ ̸∋]φ | [N ]φ | Pt

where p ∈ At and Pt is a unary modal operator.
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Define ST : L → L′ as follows

▶ ST (p) = p

▶ ST (¬φ) = ¬ST (φ)

▶ ST (φ ∧ ψ) = ST (φ) ∧ ST (φ)

▶ ST (2φ) = ⟨N⟩([∋]ST (φ) ∧ [ ̸∋]¬ST (φ))

Lemma
For each neighborhood modelM = ⟨W ,N ,V ⟩ and each formula φ ∈ L, for any
w ∈ W,

M,w |= φ iffM◦,w |= ST (φ)
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w v

{w} {v} ∅

M

w v

{w} {v}

{w , v}

∅

RN :
R∋:
R ̸∋:

M◦

M,w |= 2p andM, v |= 2⊥.
▶ M◦,w |= ⟨N⟩([∋]p ∧ [ ̸∋]¬p) andM◦, v ̸|= ⟨N⟩([∋]p ∧ [ ̸∋]¬p)
▶ M◦, v |= ⟨N⟩([∋]⊥∧ [ ̸∋]⊤) andM◦,w ̸|= ⟨N⟩([∋]⊥∧ [ ̸∋]⊤)
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Monotonic Models

Lemma
On Monotonic Models ⟨N⟩([∋]ST (φ) ∧ [ ̸∋]¬ST (φ)) is equivalent to
⟨N⟩([∋]ST (φ))
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O. Gasquet and A. Herzig. From Classical to Normal Modal Logic. in Proof Theory of Modal
Logic, Kluwer, pgs. 293 - 311, 1996.

M. Kracht and F. Wolter. Normal Monomodal Logics can Simulate all Others. The Journal of
Symbolic Logic, 64:1, pgs. 99 - 138, 1999.
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Filtrations

LetM = ⟨W ,N ,V ⟩ be a neighborhood model and suppose that Σ is a set of
sentences from L.

For each w , v ∈ W , we say w ∼Σ v iff for each φ ∈ Σ, w |= φ iff v |= φ.

For each w ∈ W , let [w ]Σ = {v | w ∼Σ v} be the equivalence class of ∼Σ.

If X ⊆ W , let [X ]Σ = {[w ] | w ∈ X}.
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Filtrations

Definition
LetM = ⟨W ,N ,V ⟩ be a neighborhood model and Σ a set of sentences closed
under subformulas. A filtration ofM through Σ is a model
Mf = ⟨W f ,N f ,V f ⟩ where
1. W f = [W ]

2. For each w ∈ W

2.1 for each 2φ ∈ Σ, [[φ]]M ∈ N(w) iff [[[φ]]M] ∈ N f ([w ])

3. For each p ∈ At, V (p) = [V (p)]
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Filtrations

Definition
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A Few Comments on Complexity

Logics without C (eg., E,EM,E + (¬2⊥),E + (2φ→ 22φ)) are in NP.

Logics with C are in PSPACE.

M. Vardi. On the Complexity of Epistemic Reasoning. IEEE (1989).
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A Few Comments on Complexity

Is it the ability to combine information that leads to PSPACE-hardness?

No!

M. Allen. Complexity results for logics of local reasoning and inconsistent belief. in Theoretical
Aspects of Rationality and Knowledge: Proc. Tenth Conference, pgs. 92 - 108, 2005.

J. Halpern and L. Rego. Characterizing the NP-PSPACE gap in the satisfiability problem for
modal logic. Journal of Logic and Computation, 17:4, pgs. 795-806, 2007.
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Background: Bismulations for Relational Semantics
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Relational Models: M = ⟨W ,R ,V ⟩ where W ̸= ∅, R ⊆ W ×W , and
V : At→ ℘(W )

Truth:

▶ M,w |= p iff w ∈ V (p)

▶ M,w |= ¬φ iffM,w ̸|= φ

▶ M,w |= φ ∧ ψ iffM,w |= φ andM,w |= ψ

▶ M,w |= 2φ iff for all v ∈ W if wRv thenM, v |= φ

M,w |= 2φ iff {v | w R v} = R(w) ⊆ [[φ]]M
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Distinguishing States

pqw1

pq

w2

pqv1

pq

v2

pq v3

What is the difference between states w1 and v1?
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Distinguishing States
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Is there a modal formula true at w1 but not at v1?
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Distinguishing States

pqw1
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w2
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What about now? Is there a modal formula true at w1 but not v1?
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Distinguishing States

pqw1

pq

w2

pqv1

pq

v2

pq v3

No modal formula can distinguish w1 and v1!
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Consider the following modalities:

▶ M,w |= Aφ iff for all w ∈ W ,M,w |= φ

▶ M,w |= 3←φ iff there is a v ∈ W , vRw andM, v |= φ.

▶ M,w |= 3nφ iff there are v1, . . . , vn such that for all 1 ≤ j ̸= k ≤ n,
vj ̸= vk , for all j = 1, . . . , n, wRvj and for all j = 1, . . . , n,M, vj |= φ.

For instance, 32φ is true at a state if there are at least two accessible states
that satisfy φ.

▶ M,w |=⟲ iff wRw

Are these modalities definable using the basic modal language? Intuitively, the
answer is “no”, but how do we prove this?
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Bisimulation

A bisimulation betweenM = ⟨W ,R ,V ⟩ andM′ = ⟨W ′,R ′,V ′⟩ is a
non-empty binary relation Z ⊆ W ×W ′ such that whenever wZw ′:

Atomic harmony: for each p ∈ At, w ∈ V (p) iff w ′ ∈ V ′(p)
Zig: if wRv , then ∃v ′ ∈ W ′ such that vZv ′ and w ′R ′v ′

Zag: if w ′R ′v ′ then ∃v ∈ W such that vZv ′ and wRv
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Bisimulation

A bisimulation betweenM = ⟨W ,R ,V ⟩ andM′ = ⟨W ′,R ′,V ′⟩ is a
non-empty binary relation Z ⊆ W ×W ′ such that whenever wZw ′:

Atomic harmony: for each p ∈ At, w ∈ V (p) iff w ′ ∈ V ′(p)
Zig: if wRv , then ∃v ′ ∈ W ′ such that vZv ′ and w ′R ′v ′

Zag: if w ′R ′v ′ then ∃v ∈ W such that vZv ′ and wRv

▶ We writeM,w ↔M′,w ′ if there is a Z such that wZw ′.

▶ We writeM,w ↭M′,w ′ iff for all φ ∈ L,M,w |= φ iffM′,w ′ |= φ.

▶ Lemma IfM,w ↔M′,w ′ thenM,w ↭M′,w ′.

▶ Lemma On finite models, ifM,w ↭M′,w ′ thenM,w ↔M′,w ′.
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Bisimulation for Relational Models

A bisimulation betweenM = ⟨W ,R ,V ⟩ andM′ = ⟨W ′,R ′,V ′⟩ is a
non-empty binary relation Z ⊆ W ×W ′ such that whenever wZw ′:

Atomic harmony: for each p ∈ At, w ∈ V (p) iff w ′ ∈ V ′(p)

Zig: If wRv , then there is a v ′ ∈ W ′ such that

w ′R ′v ′ and vZv ′

Zag: If w ′R ′v ′ then there is a v ∈ W such that

wRv and vZv ′
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non-empty binary relation Z ⊆ W ×W ′ such that whenever wZw ′:

Atomic harmony: for each p ∈ At, w ∈ V (p) iff w ′ ∈ V ′(p)

Zig: If wRv , then there is a v ′ ∈ W ′ such that

w ′R ′v ′ and vZv ′

Zag: If w ′R ′v ′ then there is a v ∈ W such that

wRv and vZv ′
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Monotonic Bisimulation for Neighborhood Models

A bisimulation betweenM = ⟨W ,N ,V ⟩ andM′ = ⟨W ′,N ′,V ′⟩ is a
non-empty binary relation Z ⊆ W ×W ′ such that whenever wZw ′:

Atomic harmony: for each p ∈ At, w ∈ V (p) iff w ′ ∈ V ′(p)

Zig: If X ∈ N(w) then there is an X ′ ⊆ W ′ such that

X ′ ∈ N ′(w ′) and ∀x ′ ∈ X ′ ∃x ∈ X such that xZx ′

Zag: If X ′ ∈ N ′(w ′) then there is an X ⊆ W such that

X ∈ N(w) and ∀x ∈ X ∃x ′ ∈ X ′ such that xZx ′
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Example

pqw2

pqw1

pqw0

pq w ′2

pq w ′1

pq w ′0w0 |= 2p ∧ ⟨ ]p w ′0 |= ¬2p ∧ ⟨ ]p
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▶ We writeM,w ↔M′,w ′ if there is a monotonic bisimulation Z such that
wZw ′.

▶ We writeM,w ↭M′,w ′ iff for all φ in the language with the modality
⟨ ],M,w |= φ iffM′,w ′ |= φ.

▶ Lemma IfM,w ↔M′,w ′ thenM,w ↭M′,w ′.

▶ Lemma On finite models, ifM,w ↭M′,w ′ thenM,w ↔M′,w ′.

M. Pauly. Bisimulation for Non-normal Modal Logic. Manuscript, 1999.

H. Hansen. Monotonic Modal Logic. Masters Thesis, ILLC, 2003.

H. Hansen, C. Kupke, EP. Neighbourhood Structures: Bisimilarity and Basic Model Theory.
Logical Methods in Computer Science, 5(2:2), pp. 1 - 38, 2009.
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Locally Core-Finite Models

Suppose that F is a monotonic collection of subsets of W . The
non-monotonic core, denoted Fnc , is a subset of F defined as follows:

Fnc = {X | X ∈ F and for all X ′ ⊆ W , if X ′ ⊆ X , then X ′ ̸∈ F}.

A monotonic collection of sets F is core-complete provided for all X ∈ F ,
there exists a Y ∈ Fnc such that Y ⊆ X .

Question: Is every monotonic collection core-complete?
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Locally Core-Finite Models

A neighborhood modelM = ⟨W ,N ,V ⟩ is locally core-finite provided thatM
is core-complete and for each w ∈ W , Nnc(w) is finite, and for all X ∈ Nnc(w),
X is finite.

26



Proposition. Suppose thatM = ⟨W ,N ,V ⟩ andM′ = ⟨W ′,N ′,V ′⟩ are
monotonic, locally core-finite models. Then, for all w ∈ W , w ′ ∈ W ′,
M,w ≡LM′,w ′ iffM,w ↔M′,w ′.

27



Do monotonic bisimulations work when we drop monotonicity? No!

28



w1

{w1}

w2

M
V (p) = {w1,w2}

v1

{v1}

M′

V ′(p) = {v1}

Z
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Bounded Morphisms

IfM1 = ⟨W1,N1,V1⟩ andM2 = ⟨W2,N2,V2⟩ are two neighborhood models,
and f : W1 → W2 is a function, then f is a (frame) bounded morphism if

for all X ⊆ W2, we have f −1[X ] ∈ N1(w) iff X ∈ N2(f (w));

and for all p ∈ At, and all w ∈ W1: w ∈ V1(p) iff f (s) ∈ V2(p).

Lemma LetM1 = ⟨W1,N1,V1⟩ andM2 = ⟨W2,N2,V2⟩ be two neighborhood
models and f :M1 →M2 a bounded morphism. For each modal formula
φ ∈ L and state w ∈ W1,M1,w |= φ iffM2, f (w) |= φ.
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Behavioral Equivalence

Definition
Two points w1 fromM1 and w2 fromM2 are behaviorally equivalent
provided there is a neighborhood frame F and bounded morphisms f : F1 → F
and g : F2 → F such that f (w1) = g(w2).
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w2w1 w3

{w2} ∅

M

s1 s2

∅

N

v

M′
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Proposition. Suppose thatM = ⟨W ,N ,V ⟩ andM′ = ⟨W ′,N ′,V ′⟩ are two
neighborhood models. If states w ∈ W and w ′ ∈ W ′ are behaviorally equivalent,
then for all φ ∈ L,M,w |= φ iffM′,w ′ |= φ.
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Theorem
Over the class N (of neighborhood models), the following are equivalent:

▶ α(x) is equivalent to the translation of a modal formula

▶ α(x) is invariant under behavioural equivalence.

H. Hansen, C. Kupke and EP. Neighbourhood Structures: Bisimilarity and Basic Model Theory.
Logical Methods in Computer Science, 5(2:2), pgs. 1 - 38, 2009.
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The Language L2

The language L2 is built from the following grammar:

x = y | u = v | Pix | xNu | uEx | ¬φ | φ ∧ ψ | ∃xφ | ∃uφ

M = ⟨D, {Pi | i ∈ ω},N ,E ⟩ where
▶ D = Ds ∪Dn (and Ds ∩Dn = ∅),

▶ Pi ⊆ Ds,

▶ N ⊆ Ds ×Dn and

▶ E ⊆ Dn ×Ds.
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The Language L2

Definition
LetM = ⟨S ,N ,V ⟩ be a neighbourhood model. The first-order translation of
M is the structureM◦ = ⟨D, {Pi | i ∈ ω},RN ,R∋⟩ where
▶ Ds = S , Dn =

⋃
s∈S N(s)

▶ For each i ∈ ω, Pi = V (pi )

▶ RN = {(s,U) |s ∈ Ds,U ∈ N(s)}
▶ R∋ = {(U , s) |s ∈ Ds, s ∈ U}

36



The Language L2

Definition
The standard translation of the basic modal language are functions stx : L → L2

defined as follows as follows: stx (pi ) = Pix , stx commutes with boolean
connectives and

stx (2φ) = ∃u(xRNu ∧ (∀y(uR∋y ↔ sty (φ)))

Lemma
LetM be a neighbourhood structure and φ ∈ L. For each s ∈ S,
M, s |= φ iffM◦ |= stx (φ)[s ].
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N = {M | M ∼=M◦ for some neighbourhood modelM}

(A1) ∃x(x = x)

(A2) ∀u∃x(xRNu)

(A3) ∀u, v(¬(u = v)→ ∃x((uR∋x ∧ ¬vR∋x) ∨ (¬uR∋x ∧ vR∋x)))

Theorem
Suppose M is an L2-structure. Then there is a neighbourhood structure M◦
such that M ∼= (M◦)◦.
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Theorem
Over the class N (of neighborhood models), the following are equivalent:

▶ α(x) is equivalent to the translation of a modal formula

▶ α(x) is invariant under behavioural equivalence.

H. Hansen, C. Kupke and EP (2009). Neighbourhood Structures: Bisimilarity and Basic Model
Theory. Logical Methods in Computer Science, 5(2:2), pp. 1 - 38.
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