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Course Plan

1. Introduction and Motivation: Background (Relational Semantics for
Modal Logic), Neighborhood Structures, Motivating Weak Modal
Logics/Neighborhood Semantics
(Monday, Tuesday)

2. Core Theory: Non-Normal Modal Logic, Completeness, Decidability,
Complexity, Incompleteness, Relationship with Other Semantics for Modal
Logic, Model Theory
(Tuesday, Wednesday, Thursday)

3. Extensions: Inquisitive Logic on Neighborhood Models; First-Order Modal
Logic, Subset Spaces, Common Knowledge/Belief, Dynamics with
Neighborhoods: Game Logic and Game Algebra, Dynamics on
Neighborhoods (Thursday, Friday)
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Plan for Today

▶ Background: Relational semantics for modal logic, Logics of belief

▶ From Relational to Neighborhood Semantics

▶ Validities and Non-Validities

▶ Interpretation of Neighborhood Models: Evidence Models

▶ Neighborhood Frames/Models
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Background: Relational Semantics

Suppose that At is a set of atomic propositions. The basic modal language L
based on At is generated by the following grammar:

p | ¬φ | (φ ∧ ψ) | 2φ

where p ∈ At. The Boolean connectives are defined as usual.

Relational Semantics

▶ Relational Frame: F = ⟨W ,R⟩ where W ̸= ∅ and R ⊆ W ×W

▶ Relational Model: M = ⟨W ,R ,V ⟩ where ⟨W ,R⟩ is a frame and
V : At → ℘(W )
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Background: Relational Semantics

Suppose that M = ⟨W ,R ,V ⟩ is a model. Truth of a formula φ ∈ L at a state
in M, denoted M,w |= φ is defined as follows:

▶ M,w |= p iff w ∈ V (p)

▶ M,w |= ¬φ iff M,w ̸|= φ

▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

▶ M,w |= 2φ iff for all v ∈ W , if wRv then M, v |= φ

▶ Let 3φ be ¬2¬φ
M,w |= 3φ iff there is a v ∈ W such that w R v and M, v |= φ
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Background: Relational Semantics

Given a model M = ⟨W ,R ,V ⟩, let [[·]]M : L → ℘(W ) be the map where:

[[φ]]M = {w | M,w |= φ}

[[p]]M = V (p)

[[¬φ]]M = W \ [[φ]]M
[[φ ∨ ψ]]M = [[φ]]M ∪ [[ψ]]M
[[φ ∧ ψ]]M = [[φ]]M ∩ [[ψ]]M
[[2φ]]M = {w | for all x , if w R x , then x ∈ [[φ]]M}
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Background: Doxastic Logic

Model: ⟨W ,R ,V ⟩

States/possible worlds: W ̸= ∅

Quasi-partitions: R ⊆ W ×W is serial, transitive and Euclidean

▶ serial: for all w ∈ W , there is a v ∈ W such that w R v

▶ transitive: for all w , v , u ∈ W , if w R v and v R u, then w R u

▶ Euclidean: for all w , v , u ∈ W , if w R v and w R u, then v R u

Valuation function: V : At → ℘(W ), where At is a set of atomic propositions.
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Background: Doxastic Logic

p | φ ∧ φ | ¬φ | Bφ

Boolean connectives:

▶ M,w |= p iff w ∈ V (p)

▶ M,w |= ¬φ iff it is not the case that M,w |= φ

▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

Belief operators: M,w |= Bφ iff for all v , if w R v , then M, v |= φ.
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Background: Doxastic Logic (KD45)

K B(φ → ψ) → (Bφ → Bψ)

D Bφ → ¬B¬φ

4 Bφ → BBφ

5 ¬Bφ → B¬Bφ

The logic KD45 adds the above axiom schemes to an axiomatization of classical
propositional logic with the rules Modus Ponens, Substitution of Equivalents, and
Necessitation (from φ infer Bφ).

KD45 is sound and strongly complete with respect to all quasi-partition frames.
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Background: Doxastic Logic

Exercise: Show that the following axiom schemes and rules are valid on
quasi-partition models and are theorems of KD45:

▶ agglomeration: (Bφ ∧ Bψ) → B(φ ∧ ψ)

▶ consistency: ¬B⊥

▶ monotonicity: From φ → ψ infer Bφ → Bψ

▶ B(Bφ → φ)

▶ correctness of own beliefs:
B¬Bφ → ¬Bφ

BBφ → Bφ
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From Relational to Neighborhood Models
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From Relational to Neighborhood Models

R(w)

[[φ]]

w

w |= 2φ iff for all v , if w R v , then v |= φ
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w
R(w)

w |= 2φ iff for all v , if w R v , then v |= φ (i.e., R(w) ⊆ [[φ]])
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From Relational to Neighborhood Models

w
R(w)

A relation R ⊆ W ×W can be viewed as a function R : W → ℘(W )
blah

14



From Relational to Neighborhood Models

w
R(w)

w |= 2φ iff the set of accessible worlds is contained in the truth-set of φ
R(w) ⊆ [[φ]]
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From Relational to Neighborhood Models

w
R(w)

w |= ⊞φ iff the set of accessible worlds is equal to the truth-set of φ
R(w) = [[φ]]
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N

w

w |= 2φ iff a neighborhood of w is contained in the truth-set of φ
X ∈ N(w) ⊆ [[φ]] ⊆ X
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X

[[φ]]
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From Relational to Neighborhood Models

N

w

X

[[φ]]

w |= 2φ iff the truth-set of φ is a neighborhood of w
there is a X ∈ N(w) such that X = [[φ]] (i.e., [[φ]] ∈ N(w))
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From Relational to Neighborhood Models

Relational model: ⟨W ,R ,V ⟩ where R : W → ℘(W )

▶ w |= 2φ iff R(w) ⊆ [[φ]]

Neighborhood model: ⟨W ,N ,V ⟩ where N : W → ℘(℘(W ))

▶ w |= 2φ iff [[φ]] ∈ N(w)

▶ w |= ⟨ ]φ iff there is a X ∈ N(w) such that X ⊆ [[φ]]
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Scott-Montague Semantics

To see the necessity of the more general approach, we could consider
probability operators, conditional necessity, or, to invoke an especially
perspicuous example of Dana Scott, the present progressive tense....Thus
N might receive the awkward reading ‘it is being the case that’, in the
sense in which ‘it is being the case that Jones leaves’ is synonymous with
‘Jones is leaving’.

(Montague, pg. 73)

R. Montague (1970). Pragmatics and Intentional Logic. Synthese, 22, pp. 68 - 94.

D. Scott (1970). “Advice on modal logic”, in Philosophical Problems in Logic. Reidel.
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Segerberg’s Essay

K. Segerberg. An Essay on Classical Modal Logic. Uppsula Technical Report, 1970.

This essay purports to deal with classical modal logic. The qualification
“classical” has not yet been given an established meaning in connection
with modal logic....Clearly one would like to reserve the label “classical”
for a category of modal logics which—if possible—is large enough to
contain all or most of the systems which for historical or theoretical
reasons have come to be regarded as important, and which also posses
a high degree of naturalness and homogeneity.

(pg. 1)
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Minimal Models for Modal Logic (Part III)

B. Chellas (1980). Modal Logic: An Introduction. Cambridge University Press.
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Validities and Non-Validities
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Some Validities

(M) 2(φ ∧ ψ) → 2φ ∧2ψ

(C ) 2φ ∧2ψ → 2(φ ∧ ψ)

(N) 2⊤

(K ) 2(φ → ψ) → (2φ → 2ψ)

(Dual) 2φ ↔ ¬3¬φ

(Nec) from ⊢ φ infer ⊢ 2φ

(Re) from ⊢ φ ↔ ψ infer ⊢ 2φ ↔ 2ψ

(RM)
⊢ φ → ψ

⊢ 2φ → 2ψ
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...on Neighborhood Models

(M) 2(φ ∧ ψ) → 2φ ∧2ψ

(C ) 2φ ∧2ψ → 2(φ ∧ ψ)

(N) 2⊤

(K ) 2(φ → ψ) → (2φ → 2ψ)

(Dual) 2φ ↔ ¬3¬φ

(Nec) from ⊢ φ infer ⊢ 2φ

(Re) from ⊢ φ ↔ ψ infer ⊢ 2φ ↔ 2ψ
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Agglomeration Axiom

(C ) (2φ ∧2ψ) → 2(φ ∧ ψ)

w

[[φ]]

[[ψ]]

Logics of high probability

Rational belief

Ability

Weakly aggregative logics
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Agglomeration Axiom

(C ) (2φ ∧2ψ) → 2(φ ∧ ψ)

w

[[φ]]

[[ψ]]

▶ Logics of high-probability

▶ Rational belief

▶ Ability

▶ Weakly aggregative logics
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Logics of High Probability

2φ means “φ is assigned ‘high’ probability”, where high means above some
threshold r ∈ [0, 1].

Claim: RM (from φ → ψ infer 2φ → 2ψ) is a valid rule of inference.

Claim: (2φ ∧2ψ) → 2(φ ∧ ψ) is not valid.

H. Kyburg and C.M. Teng. The Logic of Risky Knowledge. Proceedings of WoLLIC (2002).

A. Herzig. Modal Probability, Belief, and Actions. Fundamenta Informaticae (2003).

J. Hawthorne (2009). The Lockean Thesis and the Logic of Belief. In Degrees of belief, Franz
Huber & Christoph Schmidt-Petri (eds.), Springer, pp. 49 - 74.
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Preface Paradox

D. Makinson (1965). The Paradox of the Preface. Analysis, 25, pp. 205 - 207.
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Preface Paradox

Suppose that in the course of writing a book the author makes a number of
assertions: s1, s2, . . . , sn.

For each assertion, the author believes that it is true:

B(s1) ∧ · · · ∧ B(sn)

If the author has already written other books, and received corrections from
readers and reviewers, the author may also believe that not everything in the
latest book is true:

B(¬(s1 ∧ s2 ∧ · · · ∧ sn))

But (B(s1) ∧ · · · ∧ B(sn)) → B(s1 ∧ · · · ∧ sn) is valid.
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Preface Paradox: The Problem

“The author of the book is being rational even though inconsistent. More than
this: he is being rational even though he believes each of a certain collection of
statements, which he knows are logically incompatible....this appears to present a
living and everyday example of a situation which philosophers have commonly
dismissed as absurd; that it is sometimes rational to hold incompatible beliefs.”

D. Makinson. The Paradox of the Preface. Analysis, 25, 205 - 207, 1965.
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Defining Beliefs from Knowledge

R. Stalnaker (2006). On logics of knowledge and belief. Philosophy Studies,128, pp. 169 - 199.

A. Baltag, N. Bezhanishvili, A. Özgün, and S. Smets (2019). A Topological Approach to Full
Belief. Journal of Philosophical Logic, 48(2), pp. 205 - 244.

A. Bjorndahl and A. Özgün (2020). Logic and Topology for Knowledge, Knowability, and Belief.
The Review of Symbolic Logic, 13(4), pp. 748-775.
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Defining Beliefs from Knowledge

Stalnaker bases his analysis on a conception of belief as ‘subjective certainty’:
From the point of the agent in question, her belief is subjectively
indistinguishable from her knowledge.

Bi-modal language of knowledge and belief: p | ¬φ | φ ∧ ψ | K φ | Bψ
Define ⟨K ⟩φ as ¬K¬φ and ⟨B⟩φ as ¬B¬φ
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Defining Beliefs from Knowledge

K K (φ → ψ) → (K φ → Kψ)

T K φ → φ

4 K φ → KK φ

CB Bφ → ¬B¬φ

PI Bφ → KBφ

NI ¬Bφ → K¬Bφ

KB K φ → Bφ

FB Bφ → BK φ

28
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Defining Beliefs from Knowledge

Proposition (Stalnaker). The following equivalence is a theorem of the
propositional modal logic that contains the previous axiom schemas (with Modus
Ponens and Necessitation for both K and B):

Bφ ↔ ⟨K ⟩K φ

Moreover, all of the axioms of KD45 and the (.2)-axiom ⟨K ⟩K φ → K ⟨K ⟩φ are
provable.
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Defining Beliefs from Knowledge
This means that we can take the logic of knowledge to be S4.2 (the axioms K ,
T , 4 and .2) and define full belief as the ‘epistemic possibility of knowledge’.

K K (φ → ψ) → (K φ → Kψ)

T K φ → φ

4 K φ → KK φ

.2 ⟨K ⟩K φ → K ⟨K ⟩φ

Nec From φ infer K φ

DefKB Bφ ↔ ⟨K ⟩K φ

Claim. B validates all of the KD45 axioms. In particular,

(Bφ ∧ Bψ) → B(φ ∧ ψ)

is valid/derivable.
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w

φ ψ

▶ w |= ⟨K ⟩K φ ∧ ⟨K ⟩Kψ

⟨K ⟩K φ → K ⟨K ⟩φ
convergence: for all x , y , z if x R y and
x R z , then there is a v such that
y R v and z R v .

K φ → KK φ
transitivity: for all x , y , z if x R y and
y R z , then x R z .

w |= ⟨K ⟩K (φ ∧ ψ)
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(⟨K ⟩K φ ∧ ⟨K ⟩Kψ) → ⟨K ⟩K (φ ∧ ψ) is not valid if we drop convergence
and/or transitivity.

D. Klein, N. Gratzl, and O. Roy (2015). Introspection, normality and agglomeration. Logic,
Rationality, and Interaction, 5th Workshop, LORI 2015, pp. 195 - 206.
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Ability

Abli φ: i is able to guarantee that φ is true
(alternatively, i has the ability to see to it that φ)

Are the following valid?

1. (Abli φ ∧ Abliψ) → Abli (φ ∧ ψ)

2. Abli (φ ∨ ψ) → (Abli φ ∨ Abliψ)
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(Abli φ ∧ Abliψ) ̸→ Abli(φ ∧ ψ)
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(Abli φ ∧ Abliψ) ̸→ Abli(φ ∧ ψ)

As1

Bs2 B s3

p p, q p, q q

p p, q

s1 |= AblAp

p, q q

s1 |= AblAp ∧ AblAq

p, q p, q

s1 |= AblAp ∧ AblAq ∧ ¬AblA(p ∧ q)
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(Abli φ ∧ Abliψ) ̸→ Abli(φ ∧ ψ)

See the course by Val Goranko on Logics for Strategic Reasoning!

R. Parikh (1985). The Logic of Games and its Applications. Annals of Discrete Mathematics.

M. Pauly and R. Parikh (2003). Game Logic — An Overview. Studia Logica.

J. van Benthem (2014). Logic in Games. The MIT Press.
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Abli(φ ∨ ψ) ̸→ Abli φ ∨ Abliψ

Suppose that Ann has the ability to hit the dart board, but has no other control
over the placement of the dart.

Now, when she throws the dart, as a matter of fact, it will either hit the top half
of the board or the bottom half of the board.

Since, Ann has the ability to hit the dart board, she has the ability to either hit
the top half of the board or the bottom half of the board.

However, intuitively, Ann does not have the ability to hit the top half of the dart
board, and does not have the ability to hit the bottom half of the dart board.
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Weakly Aggregative Logics

Suppose that the instructors at ESSLLI are divided into groups of two and you
are told the following: For each pair,

▶ at least one person in the pair teaches a course on logic; and

▶ at least one person in the pair teaches a course on language.

Does this imply that there is at least one person from each pair that teaches a
course on logic and language? No!
blah
blah
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Weakly Aggregative Logics

Suppose that the instructors at ESSLLI are divided into groups of two and you
are told the following: For each pair,

▶ at least one person in the pair teaches a course on logic;

▶ at least one person in the pair teaches a course on language; and

▶ at least one person in the pair teaches a course on computation.

What can you conclude now?

For each pair, there must be one person that:

1. teaches a course on logic and language,

2. teaches a course on logic and computation, or

3. teaches a course on language and computation.
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Weakly Aggregative Logics

2p: For each pair of people, at least one person in the pair has property p

▶ (2p ∧2q) → 2(p ∧ q) is not valid

▶ (2p ∧2q ∧2r) → 2((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)) is valid
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Weakly Aggregative Logics: n-ary Relational Model

An n-ary relational model is a tuple ⟨W ,R ,V ⟩ where W is a non-empty set
and R ⊆ W n+1 is an (n+ 1)-ary relation and V : At → ℘(W ) is a valuation
function.

Suppose that Mn = ⟨W ,R ,V ⟩ is an n-relational model an φ is a formula.
Truth is defined as follows:

▶ The atomic propositions and Boolean connectives are defined as usual.

▶ Mn,w |= 2φ iff for all v1, . . . , vn ∈ W , if (w , v1, . . . , vn) ∈ R , then there
exists i such that 1 ≤ i ≤ n and Mn, vi |= φ.
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Weakly Aggregative Logics

w
p, r

v1

q, r

v2 p, r

v3

q

v4

q, r

v6

p

v5

M2,w |= 2p (and M2,w |= 2¬p)
M2,w |= 2q (and M2,w |= 2¬q)
M2,w ̸|= 2(p ∧ q)
M2,w |= 2r
M2,w |= 2((p ∧ r) ∨ (q ∧ r))
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Weakly Aggregative Logics

(C ) (2φ0 ∧2φ1) → 2(φ0 ∧ φ1)

(C n) (2φ0 ∧ · · · ∧2φn) → 2
∨

0≤i<j≤n

(φi ∧ φj )

Example: (2φ0 ∧2φ1 ∧2φ2) → 2((φ0 ∧ φ1) ∨ (φ1 ∧ φ2) ∨ (φ0 ∧ φ2))
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Weakly Aggregative Logics

P. Schotch and R. Jennings (1980). Modal logic and the theory of modal aggregation.
Philosophia, 9(2), pp. 265 - 278.

T. Nicholson and M. Allen (2003). Aggregative combinatorics: an introduction. In: Proceedings
of the Student Session, 2nd North American Summer School in Logic, Language, and Information
(NASSLLI-03), pp. 15 - 25.

Yifeng Ding, Jixin Liu, and Yanjing Wang (2022). Model Theoretical Aspects of Weakly Ag-
gregative Modal Logic. Journal of Logic, Language and Information, 31, pp. 261 - 286.

41



Monotonicity

(M) 2(φ ∧ ψ) → 2φ ∧2ψ

w
R(w) [[φ]]

[[ψ]]

▶ equivalent to the inference rule:
from φ → ψ infer 2φ → 2ψ

⟨ ] is monotonic

2 is not monotonic

Deontic logic
A minimal logic of ability
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Deontic Logic

2φ means “it is obliged that φ.”

1. Jones murders Smith

2. Jones ought not to murder Smith

3. If Jones murders Smith, then Jones ought to murder Smith gently

4. Jones ought to murder Smith gently

5. If Jones murders Smith gently, then Jones murders Smith.

6. If Jones ought to murder Smith gently, then Jones ought to murder Smith

7. Jones ought to murder Smith

James William Forrester (1984). Gentle Murder, Or The Adverbial Samaritan. The Journal of
Philosophy, 81(4), pp. 193 - 197.

L. Goble (1991). Murder Most Gentle: The Paradox Deepens. Philosophical Studies, 64(2), pp.
217 - 227.
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Deontic Logic

2φ means “it is obliged that φ.”

1. Jones murders Smith

✗ Jones ought not to murder Smith

3. If Jones murders Smith, then Jones ought to murder Smith gently

4. Jones ought to murder Smith gently

5. If Jones murders Smith gently, then Jones murders Smith.

6. If Jones ought to murder Smith gently, then Jones ought to murder Smith

✗ Jones ought to murder Smith

James William Forrester (1984). Gentle Murder, Or The Adverbial Samaritan. The Journal of
Philosophy, 81(4), pp. 193 - 197.
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A Minimal Logic of Abilities

M. Brown. On the Logic of Ability. Journal of Philosophical Logic, Vol. 17, pp. 1 - 26, 1988.

D. Elgesem. The modal logic of agency. Nordic Journal of Philosophical Logic 2(2), 1 - 46,
1997.

G. Governatori and A. Rotolo. On the Axiomatisation of Elgesem’s Logic of Agency and Ability.
Journal of Philosophical Logic, 34, pgs. 403 - 431 (2005).
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A Minimal Logic of Abilities

C φ means “the agent is capable of realizing φ”

E φ means “the agent does bring about φ”

1. All propositional tautologies

2. ¬C⊤
3. (E φ ∧ Eψ) → E (φ ∧ ψ)

4. E φ → φ

5. E φ → C φ

6. Modus Ponens plus from φ ↔ ψ infer E φ ↔ Eψ and from φ ↔ ψ infer
C φ ↔ Cψ
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A Minimal Logic of Abilities: Non-Monotonicity

RM for E is inconsistent with ¬E⊤ assuming that the agent performs at least
one action.

46



Axioms

(M) 2(φ ∧ ψ) → 2φ ∧2ψ

(C ) 2φ ∧2ψ → 2(φ ∧ ψ)

(N) 2⊤

(K ) 2(φ → ψ) → (2φ → 2ψ)

(Dual) 2φ ↔ ¬3¬φ

(Nec) from ⊢ φ infer ⊢ 2φ

(Re) from ⊢ φ ↔ ψ infer ⊢ 2φ ↔ 2ψ

47


