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Preface Paradox

D. Makinson. The Paradox of the Preface. Analysis, 25, 205 - 207, 1965.



Preface Paradox

Suppose that in the course of his book an author makes a great many assertions:
s1, s2, . . . , sn.

Given each one of these, he believes that it is true (for each i , BA(si))

If he has already written other books, and received corrections from readers and
reviewers, he may also believe that not everything he has written in his latest
book is true.

BA(¬(s1 ∧ s2 ∧ · · · ∧ sn))

But {s1, . . . , sn,¬(s1 ∧ · · · ∧ sn)} is logically inconsistent.
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Preface Paradox

A philosopher who asserts “all of my present philosophical positions are correct”
would be regarded as rash and over-confident

A philosopher who asserts “at least some of my present philosophical beliefs will
turn out to be incorrect” is simply being sensible and honest.



Preface Paradox

1. each belief from the set {s1, . . . , sn, sn+1} is rational

2. the set {s1, . . . , sn, sn+1} of beliefs is rational.

1. does not necessarily imply 2.



Preface Paradox: The Problem

“The author of the book is being rational even though inconsistent. More than
this: he is being rational even though he believes each of a certain collection of
statements, which he knows are logically incompatible....this appears to present a
living and everyday example of a situation which philosophers have commonly
dismissed as absurd; that it is sometimes rational to hold incompatible beliefs.”

D. Makinson. The Paradox of the Preface. Analysis, 25, 205 - 207, 1965.



Lottery Paradox

H. Kyburg. Probability and the Logic of Rational Belief. Wesleyan University Press, 1961.

G. Wheeler. A Review of the Lottery Paradox. Probability and Inference: Essays in honor of
Henry E. Kyburg, Jr., College Publications, 2007.



Lottery Paradox

Consider a fair lottery with 1,000,000 tickets and one prize.

The probability that a given ticket will win is 0.000001 (1/1, 000, 000) and the
probability that it will not win is 0.999999.

“Surely if a sheer probability is ever sufficient to warrant the acceptance of a
hypothesis, this is a case”

For each lottery ticket ti (i = 1, . . . , 1000000), the agent believes that ti will
loose BA(¬‘ti will win’)
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Lottery Paradox

A rule of acceptance: If S and T are acceptable statements, their conjunction
is also acceptable.

So, the conjunction
∧1000000

i=1 ‘ti will not win’ should be accepted. That is, the
agent should rationally accept that no lottery ticket will win.

But, this is a fair lottery, so at least one ticket is guaranteed to win!
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The Lottery Paradox

Kyburg: The following are inconsistent,

1. It is rational to accept a proposition that is very likely true,

2. It is not rational to accept a propositional that you are aware is inconsistent

3. It is rational to accept a proposition P and it is rational to accept another
proposition P ′ then it is rational to accept P ∧ P ′



Conceptions of Belief

Binary: “all-out” belief. For any statement p, the agent either does or does not
believe p. It is natural to take an unqualified assertion as a statement of belief of
the speaker.

Graded: beliefs come in degrees. We are more confident in some of our beliefs
than in others.

Eric Schwitzgebel. Belief. In The Stanford Encyclopedia of Philosophy.

Franz Huber. Formal Theories of Belief. In The Stanford Encyclopedia of Philosophy.

http://plato.stanford.edu/entries/belief/
http://plato.stanford.edu/entries/formal-belief/
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Conceptions of Beliefs: Questions

What are the formal constraints on rational belief?

▶ rational graded beliefs should obey the laws of probability

▶ rational all-out beliefs should be consistent/deductively closed

▶ how should we justify these constraints?

D. Christensen. Putting Logic in its Place. Oxford University Press.
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Suppose that W is a set of states (the set of outcomes).

A σ-algebra is a set Σ ⊆ ℘(W ) such that

▶ W ∈ Σ

▶ If A ∈ Σ, then A ∈ Σ

▶ If {Ai} is a countable collection of sets from Σ, then
⋃

i Ai ∈ Σ

A probability function is a function p : Σ → [0, 1] satisfying:

▶ p(W ) = 1

▶ p(A ∪ B) = p(A) + p(B) whenever A ∩ B = ∅

(W ,Σ, p) is called a probability space.



Probability

Kolmogorov Axioms:

1. For each E , 0 ≤ p(E ) ≤ 1

2. p(W ) = 1, p(∅) = 0

3. If E1, . . . ,En, . . . are pairwise disjoint (Ei ∩ Ej = ∅ for i ̸= j), then
p(
⋃

i Ei) =
∑

i p(Ei)

▶ p(E ) = 1− p(E ) (E is the complement of E )

▶ If E ⊆ F then p(E ) ≤ p(F )

▶ p(E ∪ F ) = p(E ) + p(F )− p(E ∩ F )
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Suppose that (L, |=) is a logic. A probability function is a map p : L → [0, 1]
such that

1. For each E , 0 ≤ p(φ) ≤ 1

2. p(φ) = 1 if |= φ

3. If p(φ ∨ ψ) = p(φ) + p(ψ) when |= ¬(φ ∧ ψ).



I.J. Good. 46,656 Varieties of Bayesians. Good Thinking: The Foundations of Probability and
Its Applications, University of Minnesota Press (1983).



Conditional Probability

The probability of E given F , dented p(E |F ), is defined to be

p(E |F ) = p(E ∩ F )

p(F )
.

provided P(F ) > 0.



Bridge Principles

Probability 1: B(A) iff P(A) = 1

The Lockean Thesis: B(A) iff P(A) > r

Decision-theoretic accounts: B(A) iff
∑

w∈W P({w}) · u(B(A),w) has
such-and-such property

The Nihilistic proposal: “...no explication of belief is possible within the
confines of the probability model.”
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The Review Paradox

H. Leitgeb. The Review Paradox: On the Diachronic Costs of Not Closing Rational Belief Under
Conjunction. Nous, 2013.



Bt is the set of propositions believed at time t

Pt is the agent’s degree of belief function at time t

t ′ > t



P1 If the degrees of belief that the agents assigns to two propositions are
identical then either the agent believes both of them or neither of them.

For all X ,Y : if Pt(X ) = Pt(Y ), then Bt(X ) iff Bt(Y ).



P2 If the agent already believes X , then updating on the piece of evidence X
does not change her system of (all-or-nothing) beliefs at all.

For all X : if the evidence that the agent obtains between t and t ′ > t is the
proposition X , but it holds already that Bt(X ), then for all Y :

Bt′(Y ) iff Bt(Y )



P3 When the agent learns, this is captured probabilistically by
conditionalization.

For all X (with Pt(X ) > 0): if the evidence that the agent obtains between t and
t ′ > t is the proposition X , but it holds already that Bt(X ), then for all Y :

Pt′(Y ) = Pt(Y | X )



Assume Bt(A),Bt(B) but not Bt(A ∩ B)

▶ Suppose that the agent receive A as evidence.

▶ Pt′(B) = Pt(B | A) = Pt(A ∩ B | A) = Pt′(A ∩ B).

▶ By P1, the agent must have the same doxastic attitude towards B and
A ∩ B .

▶ By P2, the agent’s attitude towards B and A ∩ B must be the same at t ′ as
at t.

▶ But, Bt(B) and not Bt(A ∩ B)



t t ′Receives evidence A

Bt(A),Bt(B)

¬Bt(A ∩ B)

0 < Pt(A) < 1

Pt′(B) = Pt(B | A)

Pt′(A ∩ B) = Pt(A ∩ B | A) = Pt(B | A)

Bt′(B) iff Bt′(A ∩ B)

Bt(A) iff Bt′(A)

Bt(B) iff Bt′(B)

Bt(A ∩ B) iff Bt′(A ∩ B)

Assumption

Bt(B) iff Bt′(B) iff Bt′(A ∩ B) iff Bt(A ∩ B)



t t ′Receives evidence A

Bt(A),Bt(B)

¬Bt(A ∩ B)

0 < Pt(A) < 1

Pt′(B) = Pt(B | A)

Pt′(A ∩ B) = Pt(A ∩ B | A) = Pt(B | A)

Bt′(B) iff Bt′(A ∩ B)

Bt(A) iff Bt′(A)

Bt(B) iff Bt′(B)

Bt(A ∩ B) iff Bt′(A ∩ B)

By P3

Bt(B) iff Bt′(B) iff Bt′(A ∩ B) iff Bt(A ∩ B)



t t ′Receives evidence A

Bt(A),Bt(B)

¬Bt(A ∩ B)

0 < Pt(A) < 1

Pt′(B) = Pt(B | A)

Pt′(A ∩ B) = Pt(A ∩ B | A) = Pt(B | A)

Bt′(B) iff Bt′(A ∩ B)

Bt(A) iff Bt′(A)

Bt(B) iff Bt′(B)

Bt(A ∩ B) iff Bt′(A ∩ B)

By P1

Bt(B) iff Bt′(B) iff Bt′(A ∩ B) iff Bt(A ∩ B)



t t ′Receives evidence A

Bt(A),Bt(B)

¬Bt(A ∩ B)

0 < Pt(A) < 1

Pt′(B) = Pt(B | A)

Pt′(A ∩ B) = Pt(A ∩ B | A) = Pt(B | A)

Bt′(B) iff Bt′(A ∩ B)

Bt(A) iff Bt′(A)

Bt(B) iff Bt′(B)

Bt(A ∩ B) iff Bt′(A ∩ B)

By P2

Bt(B) iff Bt′(B) iff Bt′(A ∩ B) iff Bt(A ∩ B)



t t ′Receives evidence A

Bt(A),Bt(B)

¬Bt(A ∩ B)

0 < Pt(A) < 1

Pt′(B) = Pt(B | A)

Pt′(A ∩ B) = Pt(A ∩ B | A) = Pt(B | A)

Bt′(B) iff Bt′(A ∩ B)

Bt(A) iff Bt′(A)

Bt(B) iff Bt′(B)

Bt(A ∩ B) iff Bt′(A ∩ B)

By P2

Bt(B) iff Bt′(B) iff Bt′(A ∩ B) iff Bt(A ∩ B)



Assume with the paradox that the author believes each of T1, . . . ,Tn without
believing T1 ∩ · · ·Tn.

Let m be the maximal number less than n so that the author believes
T1 ∩ · · · ∩ Tm without believing T1 ∩ · · ·Tm+1; clearly, there must be such a
number m in the preface paradox situation.

Suppose that someone writes a review of the author’s book in which the reviewer
strengthens the author’s case for T1 ∩ · · · ∩ Tm, without saying anything at all
about Tm+1 or any other of the author’s theses (maybe the reviewer is simply not
interested in them): “What I can say about this book is that T1 ∩ · · · ∩ Tm

definitely is the case.”



Assume that the author is rationally absorbing this report—updating on the
proposition T1 ∩ · · · ∩ Tm if stated in qualitative terms, and, if stated in
quantitative terms, updating on T1 ∩ · · · ∩ Tm by conditionalization: then given
P1− P3, one encounters a contradiction: It seems that the author cannot
rationally take in a perfectly positive review of her book. Call this the review
paradox.



Beliefs that obey the Lockean thesis can be undermined by new evidence that is
consistent with the agent’s current beliefs.



For each i = 1, 2, 3, let li be the proposition Ticket i won’t win (and wi is the
proposition that “ticket i will win”). And let us set our threshold for Lockean
belief at r = 0.6.



(1) ⊤

(2/3) l3 (2/3) l2 (2/3) l1

(1/3) w1 (1/3) w2 (1/3) w3

(0) ⊥
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(2/3) l3 (2/3) l2 (2/3) l1

(1/3) w1 (1/3) w2 (1/3) w3

(0) ⊥



(1) ⊤

(2/3) l3 (2/3) l2 (1) l1

(0) w1 (1/3) w2 (1/3) w3

(0) ⊥



(1) ⊤

(1/2) l3 (1/2) l2 (1) l1

(0) w1 (1/2) w2 (1/2) w3

(0) ⊥



(1) l1 ≡ ⊤

(1/2) w2 ≡ l3 (1/2) w3 ≡ l2

(0) w1 ≡ ⊥



Resiliency, Robust Belief, Stable Belief

B. Skyrms. Resiliency, propensities, and causal necessity. Journal of Philosophy, 74:11, pgs. 704
- 713, 1977.

A. Baltag and S. Smets. Probabilistic Belief Revision. Synthese, 2008.

H. Leitgeb. Reducing belief simpliciter to degrees of belief. Annals of Pure and Applied Logic,
16:4, pgs. 1338 - 1380, 2013.

R. Stalnaker. Belief revision in games: forward and backward induction. Mathematical Social
Sciences, 36, pgs. 31 - 56, 1998.
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Probability

Let W be a set of states and A a σ-algebra: A ⊆ ℘(W ) such that

▶ W , ∅ ∈ A

▶ if X ∈ A then W − X ∈ A

▶ if X ,Y ∈ A then X ∪ Y ∈ A

▶ if X0,X1, . . . ∈ A then
⋃

i∈N Xi ∈ A.



Probability

P : A → [0, 1] satisfying the usual constraints

▶ P(W ) = 1

▶ (finite additivity) If X1,X2 ∈ A are pairwise disjoint, then
P(X1 ∪ X2) = P(X1) + P(X2)

P(Y |X ) = P(Y∩X )
P(X )

whenever P(X ) > 0. So, P(Y |W ) is P(Y ).

▶ P is countably additive (σ-additive): if X1,X2, . . . ,Xn, . . . are pairwise
disjoint members of A, then P(

⋃
n∈N Xn) =

∑
n∈N P(Xn)



P-stabilityr

Definition. Let P be a probability measure on A over W , let 0 ≤ t < 1. For all
X ∈ A:

X is P-stablet if and only if for all Y ∈ A with Y ∩ X ̸= ∅ and P(Y ) > 0:
P(X |Y ) > t.

▶ Trivially, the empty set of P-stablet .

▶ If P(X ) = 1, then X is P-stablet .

▶ There are P-stablet sets with 0 < P(X ) < 1.
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▶ Assuming countable additivity and t ≥ 1
2
, The class of P-stablet propositions

X in A with P(X ) < 1 is well-ordered with respect to the subset relation.

▶ If there is a non-empty P-stabler X ∈ A with P(X ) < 1, then there is also a
least such X .



. . .

▶ Assuming countable additivity and t ≥ 1
2
, The class of P-stablet propositions
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w ∈ SB(H) iff for all E ∈ A(W ) with H ∩ E ̸= ∅ and P(E ) ̸= 0: P(H | E ) ≥ t

The threshold t is determined contextually
(the “cautiousness level”)

The evidence “relevant” to H

The states may be contextually determined (by a partition on a set W of
“maximally specific worlds”)



w ∈ SB(H) iff for all E ∈ A(W ) with H ∩ E ̸= ∅ and P(E ) ̸= 0: P(H | E ) ≥ tC

1. The threshold t is determined contextually
(the “cautiousness level”)

The evidence “relevant” to H

The states may be contextually determined (by a partition on a set W of
“maximally specific worlds”)



w ∈ SB(H) iff for all E ∈ AH(W ) with H ∩ E ̸= ∅ and P(E ) ̸= 0:
P(H | E ) ≥ tC

1. The threshold t is determined contextually
(the “cautiousness level”)

2. The evidence “relevant” to H

The states may be contextually determined (by a partition on a set W of
“maximally specific worlds”)



w ∈ SB(H) iff for all E ∈ AH(WΠ) with H ∩ E ̸= ∅ and P(E ) ̸= 0:
P(H | E ) ≥ tC

1. The threshold t is determined contextually
(the “cautiousness level”)

2. The evidence “relevant” to H

3. The states may be contextually determined (by a partition Π on a set W of
“maximally specific worlds”)



H. Leitgeb. The Stability Theory of Belief. The Philosophical Review 123/2, 131-171, 2014.

H. Leitgeb. The Humean Thesis on Belief. Proceedings of the Aristotelian Society of Philosophy
89(1), 143-185, 2015.

R. Pettigrew. Pluralism about belief states. Proceedings of the Aristotelian Society 89(1):187-
204, 2015.
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(1) ⊤

(0.7) K (0.65) F ∨ L (0.65) C ∨ L

(0.35) F (0.35) C (0.3) L

(0) ⊥



(1) ⊤

(0.54) K (1) F ∨ L (0.46) C ∨ L

(0.54) F (0) C (0.46) L

(0) ⊥



Thus, while stable belief is stable under acquisition of new (doxastically
possible) evidence and Lockean belief is not, stable belief is not stable under
fine-graining of possibilities while Lockean belief is.



Leitgeb’s Solution to the Lottery Paradox



In a context in which the agent is interested in whether ticket i will be drawn; for
example, for i = 1: Let Π be the corresponding partition:

{{w1}, {w2, . . . ,w1,000,000}}

The resulting probability measure PΠ is given so that P is given by P so that:

PΠ({{w1}}) =
1

1, 000, 000
PΠ({{w2, . . . ,w1,000,000}}) =

999, 999

1, 000, 000



There are two PΠ-stable sets, and one of the two possible choices for the
strongest believed proposition BΠ

W = {{w2, . . . ,w1,000,000}}.

If BΠ
W is chosen as such, our perfectly rational agent believes of ticket i = 1 that

it will not be drawn, (and of course P1 -P3 are satisfied).

For example, this might be a context in which a single ticket holder—the person
holding ticket 1—would be inclined to say of his or her ticket: “I believe it won’t
win.”



In a context in which the agent is interested in which ticket will be drawn: Let Π′

be the corresponding partition that consists of all singleton subsets of W . The
probability measure PΠ is the uniform probability on W .

The only P-stable set—and hence the only choice for the strongest believed
proposition BΠ′

W—is W itself: our perfectly rational agent believes that some
ticket will be drawn, but he or she does not believe of any ticket that it will not
win

For example, this might be a context in which a salesperson of tickets in a lottery
would be inclined to say of each ticket: “It might win” (that is, it is not the case
that I believe that it won’t win).



In either of the two contexts from before, the theory avoids the absurd conclusion
of the Lottery Paradox; in each context, it preserves the closure of belief under
conjunction; and in each context, it preserves the Lockean thesis for some
threshold (r = 999,999

1,000,000
in the first case, r = 1 in the second case)-all of this

follows from P-stability and the theorem.



In the first Π-context, the intuition is preserved that, in some sense, one believes
of ticket i that it will lose since it is so likely to lose.

In the second Π′-context, the intuition is preserved that, in a different sense, one
should not believe of any ticket that it will lose since the situation is symmetric
with respect to tickets, as expressed by the uniform probability measure, and of
course some ticket must win.



Finally, by disregarding or mixing the contexts, it becomes apparent why one
might have regarded all of the premises of the Lottery Paradox as true.

But according to the present theory, contexts should not be disregarded or mixed:
partitions Π and Π′ differ from each other, and different partitions may lead to
different beliefs, as observed in the last section and as exemplified in the Lottery
Paradox.



Conditioning



p0 pt(·)= p0(· | E )=⇒
Learn that E



Conditional Probability

The probability of E given F , dented p(E |F ), is defined to be

p(E |F ) = p(E ∩ F )

p(F )
.

provided P(F ) > 0.



Setting pt(·) = p0(· | E ) is demonstrably the correct thing to do just in case, for
all propositions H ∈ Σ, both:

1. Certainty: pt(E ) = 1

2. Rigidity: pt(H | E ) = p0(H | E )
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Observation by candlelight

An agent inspects a piece of cloth by candlelight, and gets the impression that it
is green (G ), although he concedes that it might be blue (B) or even (but very
improbably) violet (V ).

p0(G ) = p0(B) = 0.3, p0(V ) = 0.4

⇓

pt(G ) = 0.7, pt(B) = 0.25, pt(V ) = .05

Is there a proposition E such that pt(·) = p0(· | E )?
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Jeffrey Conditionalization

When an observation bears directly on the probabilities over a partition {Ei},
changing them from p(Ei) to q(Ei), the new probability for any proposition H
should be

q(H) =
∑
i

p(H | Ei)q(Ei)

Fact: If q is obtained from p by Jeffrey Conditioning on the partition {E ,E}
with q(E ) = 1, then q(·) = p(· | E ).
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