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Deliberation in games

§ The Harsanyi-Selten tracing procedure

§ Brian Skyrms’ model of “dynamic deliberation”

§ Robin Cubitt and Robert Sugden’s “reasoning based expected utility
procedure”

§ Johan van Benthem et col.’s “virtual rationality announcements”

Different frameworks, common thought: the “rational solutions” of a game are
the result of individual deliberation about the “rational” action to choose.



Information Feedback

In the simplest case, deliberation is trivial; one calculates expected utility and
maximizes

Information feedback: “the very process of deliberation may generate information
that is relevant to the evaluation of the expected utilities. Then, processing costs
permitting, a Bayesian deliberator will feed back that information, modifying his
probabilities of states of the world, and recalculate expected utilities in light of
the new knowledge.”
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Rational deliberation in games

B. Skyrms (1990). The Dynamics of Rational Deliberation. Harvard University Press.

It is not just a question of what common knowledge obtains at the
moment of truth, but also how common knowledge is preserved, created,
or destroyed in the deliberational process which leads up to the moment
of truth. (pg. 159)
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G = xN , (Si )iPN , (ui )iPNy

For each player i P N , the state of indecision is a pair (Ii ,Pi ), where Ii P ∆(Si )
is called i ’s inclinations and Pi P ∆(S´i ) is i ’s beliefs about the other player’s
choice.

The expected utility of s P Si is: EUi (s) =
ř

tPS´i
Pi (t)ui (s, t).

The status quo is: SQi =
ř

siPSi
Ii (si )EUi (si ).
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Pa = x0.2, 0.8y and Pb = x0.4, 0.6y

EU(U) = 0.4 ¨ 2+ 0.6 ¨ 0 = 0.8
EU(D) = 0.4 ¨ 0+ 0.6 ¨ 1 = 0.6
EU(L) = 0.2 ¨ 1+ 0.8 ¨ 0 = 0.2
EU(R) = 0.2 ¨ 0+ 0.8 ¨ 2 = 1.6
SQA = 0.2 ¨ EU(U) + 0.8 ¨ EU(D) = 0.2 ¨ 0.8+ 0.8 ¨ 0.6 = 0.64
SQB = 0.4 ¨ EU(L) + 0.6 ¨ EU(R) = 0.4 ¨ 0.2+ 0.6 ¨ 1.6 = 1.04



Nash dynamics

The covetability of a strategy s for player i is: covi (s) = max(EUi (s)´ SQi , 0).

Then, Nash dynamics rule transforms Ii P ∆(Si ) into a new probability
I 1
i P ∆(Si ) as follows. For each s P Si :

I 1
i (s) =

k ¨ Ii (s) + covi (s)

k +
ř

sPSi
covi (s)

,

where k ą 0 is the “index of caution”.
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Update by emulation

1. The players’ initial states of indecision and the dynamical rule used to
update inclinations are common knowledge.

2. Each player assumes that the other players are rational deliberators who
have just carried out a similar process. So, she can simply go through their
calculations to see their new states of indecision and update her beliefs for
their acts accordingly.



BoS - Nash Dynamics



Bayes dynamics

The Bayes dynamics, also called Darwin dynamics, transforms Ii P ∆(Si ) into
a new probability I 1

i P ∆(Si ) as follows. For each s P Si :

I 1
i (s) = Ii (s) +

1

k
Ii (s)

EUi (s) ´ SQi

SQi
.

where k ą 0 is the “index of caution”.



BoS - Bayes



Battle of the sexes



Matching pennies - Nash deliberators



Prisoner’s dilemma - Nash deliberators



Stag hunt
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A
nn

U S H

S 3, 3 0, 2 U

H 2, 0 1, 1 U

(S , S) and (H ,H) are Nash equilibria



Stag hunt - Nash deliberators



Learning to Play

Theorem. If players start with subjectively rational strategies, and if their
individual subjective beliefs regarding opponents’ strategies are “compatible with
truly chosen strategies”, then they must converge in a finite amount of time to
play according to an ϵ-Nash in the repeated game.

E. Kalai and E. Lehrer. Rational Learning Leads to Nash Equilibrium. Econometrica, 61:5, pgs.
1019 - 1045, 1993.

Y. Shoham, R. Powers and T. Granager. If multi-agent learning is the answer, what is the
question?. Artificial Intelligence, 171(7), pgs. 365 - 377, 2007.



Modeling Deliberation in Games

§ Characterize outcomes in terms of accessibility and/or stability

§ Deliberation in decision theory (“deliberation crowds out prediction”, logical
omniscience)

§ Weaken the common knowledge assumptions (payoffs, beliefs, dynamical
rule, updating by emulation)

§ Generalize the basic model: extensive games (with imperfect information),
imprecise probabilities, more than two players

§ Relation with correlated equilibrium (correlation through rational
deliberation)
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Deliberation on extensive games
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When the players deliberate simultaneously, Bob’s expected utility of L is a
weighted average of his payoff if Ann chooses O and his payoff if Ann chooses I .

However, when deliberating on the extensive form game, Bob should calculate
the expected utilities by conditioning on his information at his decision node:
Bob should assign probability 0 to Ann choosing O, and this does not change
during deliberation.
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Deliberational Dynamics

“There is nothing in the nature of deliberational dynamics that requires that
deliberators be simpleminded, but the illustrations I have chosen...are relatively
unsophisticated. These players follow their noses in the direction of the current
apparent good, with no real memory of where they have been, no capability of
recognizing patterns, and no sense of where they are going.” (Skyrms, pg. 152)



Backward and forward induction reasoning

Backward induction reasoning: player’s ignore past behavior and reason only
about their opponents’ future moves.

Forward induction reasoning: player’s rationalize past behavior and use it as a
basis to form beliefs about their opponents’ future moves.
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R. Aumann. Backwards induction and common knowledge of rationality. Games and Economic
Behavior, 8, pp. 6 - 19, 1995.

R. Stalnaker. Knowledge, belief and counterfactual reasoning in games. Economics and Philos-
ophy, 12, pp. 133 - 163, 1996.

J. Halpern. Substantive Rationality and Backward Induction. Games and Economic Behavior,
37, pp. 425-435, 1998.
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Forward Induction Principle: a player should use all information she acquired
about her opponents’ past behavior in order to improve her prediction of their
future simultaneous and past (unobserved) behavior, relying on the assumption
that they are rational.

P. Battigalli. On Rationalizability in Extensive Games. Journal of Economic Theory, 74, pgs. 40
- 61, 1997.
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1. Ann can achieve at least 0.75 by choosing N .
2. Ann plays B , then she will not subsequently choose d .
3. Since Bob knows 2., if Ann plays B , Bob will play l .
4. So, Ann expects a payout of 2 by playing B .
5. If Bob observes N , then he knows Ann will not play d (since N strictly

dominances Bd).
6. Knowing all of the above, Ann will play Nu and Bob will play l .



Whatever her belief about Bob, Ann can achieve at least 0.75 by choosing N .
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Ben-Porath and Dekel (1992) generalized this result as follows: in games in
which a player has a strict preference for a equilibrium point, and if this player
can self-sacrifice (burning utility), then, based on the forward induction
rationality and iterative elimination of weakly dominated strategies, such player
will achieve her most preferred outcome.

E. Ben-Porath and E. Dekel. Signaling future actions and the potential for sacrifice. Journal
of Economic Theory, 57, 36-51, 1992.



P. Battigalli and M. Siniscalchi. Strong Belief and Forward Induction Reasoning. Journal of
Economic Theory, 106, pp. 356 - 391, 2002.


