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Social choice correspondence

A voting method is a function F on the domain of all profiles such that for any
profile P, ∅ 6= F (P) ⊆ X (P) (also called a variable social choice
correspondence VSCC).

I A (V ,X )-SCC is a social choice correspondence defined on (V ,X )-profiles.

I A voting method F is resolute if for all P, |F (P)| = 1. Resolute SCCs are
called social choice functions.

There are many examples of voting methods.

See https://pref_voting.readthedocs.io for a Python package that
provides computational tools to study different voting methods.

https://pref_voting.readthedocs.io
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We are interested in voting methods that:

1. respond in a reasonable way to new voters joining the election;

2. respond in a reasonable way to new candidates joining the election.



Stability for Winners

If wins and wins

then wins .



Stability for Winners

If wins and wins

then wins .



Stability for Winners

If wins and wins

then wins .



Stability for Winners

Definition
A voting method F satisfies Stability for Winners if for any profile P and
a, b ∈ X (P), if a ∈ F (P−b) and MarginP(a, b) > 0, then a ∈ F (P).
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Definition
A voting method F satisfies Stability for Winners if for any profile P and
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Spoilers, Stealers

Definition
Let F be a voting method, P ∈ dom(F ), and a, b ∈ X (P). Then we say that:

1. b spoils the election for a in P
if a ∈ F (P−b), MarginP(a, b) > 0, a 6∈ F (P), and b 6∈ F (P);

2. b steals the election from a in P
if a ∈ F (P−b), MarginP(a, b) > 0, a 6∈ F (P), and b ∈ F (P).



Spoilers, Stealers

Definition
Let F be a voting method.

1. F satisfies immunity to spoilers if for P ∈ dom(F ) and a, b ∈ X (P), b does
not spoil the election for a.

2. F satisfies immunity to stealers if for P ∈ dom(F ) and a, b ∈ X (P), b does
not steal the election from a.

3. F satisfies stability for winners if for P ∈ dom(F ) and a, b ∈ X (P), if
a ∈ F (P−b) and MarginP(a, b) > 0, then a ∈ F (P).
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Violations of Quasi-Resoluteness

The known methods that satisfy Binary Expansion violate Asymptotic
Resolvability/Quasi-Resoluteness.

Voting Method 3 4 5 6 7 8 9 10 20 30
Split Cycle 1 1.01 1.03 1.06 1.08 1.11 1.14 1.16 1.42 1.62
Uncovered Set 1.17 1.35 1.53 1.71 1.9 2.09 2.26 2.46 4.56 6.82
Top Cycle 1.17 1.44 1.8 2.21 2.72 3.31 3.94 4.68 13.55 22.94

Figure: Estimated average sizes of winning sets for profiles with a given number of
candidates (top row) in the limit as the number of voters goes to infinity, obtained
using the Monte Carlo simulation technique in M. Harrison Trainor, “An Analysis of
Random Elections with Large Numbers of Voters,” arXiv:2009.02979.

https://arxiv.org/abs/2009.02979
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The Cost of Quasi-Resoluteness

Theorem (W. Holliday, EP, and S. Zahedian)
There is no Anonymous and Neutral voting method that satisfies Binary
Expansion and Quasi-Resoluteness.

Moral: Making room for tiebreaking (runoff, lottery, etc.) is necessary and
sufficient to find voting methods that satisfy Binary Expansion.



High-level idea of proof:

We first use a SAT solver to prove that there is no pairwise voting method, i.e.,
voting method that outputs the same set of winners for any two profiles whose
margin graphs are the same, satisfying the stated axioms.

We then apply a theory that allows us to transfer impossibility theorems involving
certain kinds of axioms from pairwise voting methods to all voting methods.
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Leveraging pairwise impossibilities for general impossibilities



Theorem (McGarvey 1953, Debord 1987)
Every weak tournament is the majority graph of a profile, and every weighted
weak tournament in which all weights have the same parity is the margin graph
of a profile.
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From weighted tournaments to pairwise methods

Corollary

1. There is a neutral and anonymous voting method that is pairwise and
satisfies quasi-resoluteness and stability for winners on the domain
{P | |X (P)| ≤ 3}.

2. For any Y ⊂ X with |Y | ≥ 4, there is no neutral and anonymous voting
method that is pairwise and satisfies quasi-resoluteness and stability for
winners on the domain

{P | X (P) ⊆ Y ,M(P) is uniquely weighted, and all positive weights

belong to {2, 4, 6, 8, 10, 12}}.



There is a problem going beyond pairwise methods: The Debord/McGarvey
constructions do not commute with transposition/restriction...



If F is Neutral, then G where G (T) = F (Deb(T)) is Neutral?
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Multiple claims based on stability
The basic problem is that inevitably there are profiles with multiple candidates
who have the same kind of claim to winning based on stability for winners:

wins and wins

wins and wins

In such a situation—and only such a situation—it is legitimate to violate stability
for winners for one of red or green in the name of tiebreaking between them.
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Condorcetian candidates

Definition
Given a voting method F , profile P, and a ∈ X (P), we say that a is Condorcetian
for F in P if there is some b ∈ X (P) such that a ∈ F (P−b) and
MarginP(a, b) > 0.
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I There are two Condorcetian candidates a and c

I Beat Path elects c

I Ranked Pairs elects a



Stability for Winners with Tiebreaking

Definition
A voting method satisfies Stability for Winners with Tiebreaking if for any
profile P and a, b ∈ X (P), if a wins in P−b and MarginP(a, b) > 0,

then either

I a wins in P or

I there are a′, b′ ∈ X (P) such that a′ wins in P−b′ , MarginP(a′, b′) > 0, and a′

wins in P′.

That is, all winners are Condorcetian.
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Recursion to the Rescue: Stable Voting

Our proposed voting method is Stable Voting, defined recursively as follows:

I If only one candidate a appears on all ballots, then a wins.

I Otherwise list all head-to-head matches a vs. b, where a is undefeated
according to Split Cycle, in order from the largest to the smallest margin of
a vs. b.

Find the first match such that a wins according to Stable Voting after b is
removed from all ballots; this a is the winner for the original set of ballots.

W. Holliday and EP. Stable Voting. arXiv:2108.00542 [econ.TH].

https://arxiv.org/abs/2108.00542
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A logic for resolute social choice correspondences

G. Ciná and U. Endriss. Proving classical theorems of social choice theory in modal logic.
Autonomous Agents and Multi-Agent Systems, 30, pp. 963 - 989, 2016.

N. Troquard, W. van der Hoek, and M. Wooldridge. Reasoning about social choice functions.
Journal of Philosophical Logic 40(4), 473 - 498 (2011).

T. Agotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment
aggregation. Journal of Autonomous Agents and Multiagent Systems 22(1), 4 - 30 (2011).



Language

Atomic Propositions:

I Pref [V ,X ] := {pi
x�y | i ∈ V , x , y ∈ X} is the set of preference atomic

propositions, where pi
x�y means i prefers y to x .

I Each x ∈ X is an atomic proposition.

Modality:

I ♦Cϕ: C can ensure the truth of ϕ.

p | ¬ϕ | ϕ ∧ ψ | ♦Cϕ
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Model

A model is a triple M = 〈N ,X ,F 〉, consisting of a finite set of agents N (with
n = |N |), a finite set of alternatives X , and a resolute SCC F : L(X )V → X .

A world is a profile (P1, . . . ,Pn)



Truth

Let w = (P1, . . . ,Pn)

I M ,w |= pi
x�y iff xPiy

I M ,w |= x if and only if F (P1, . . . ,Pn) = x

I M ,w |= ¬ϕ if and only if M ,w 6|= ϕ

I M ,w |= ϕ ∧ ψ if and only if M ,w |= ϕ and M ,w |= ψ

I M ,w |= ♦Cϕ if and only if M ,w ′ |= ϕ for some w ′ = (P′1, . . . ,P
′
n) with

Pj = P′j for all j ∈ N − C .



(1) pi
x�x

(2) pi
x�y ↔ ¬pi

y�x for x 6= y

(3) pi
x�y ∧ pi

y�y → pi
x�z

balloti(w) = pi
x1�x2 ∧ · · · ∧ pi

xm−1�xm

profile(w) = ballot1(w) ∧ · · · ∧ ballotn(w)
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8 Giovanni Ciná, Ulle Endriss

We write Nw
x<y to denote both the set of agents and the formula; the context will

disambiguate the intended meaning. Note that
V

x,y2X Nw
x<y is logically equivalent to

profile(w): this reflects the fact that a profile can either be presented by specifying
the preferences of each individual or by specifying the sets of agents preferring one
alternative over another, for all pairs of alternatives.

For any two alternatives x,y 2 X , we define profile(w)(x,y) as the formula fixing
the relative ordering of x and y for all agents as in profile w:

profile(w)(x,y) := Nw
x<y ^Nw

y<x

This formula will be used to express the fact that two profiles ‘agree’ on the prefer-
ences concerning the alternatives x and y.

We now state the remaining axioms defining the logic L[N,X ]:

(4) all propositional tautologies
(5) 2i(j ! y) ! (2ij !2iy) (K(i))
(6) 2ij ! j (T(i))
(7) j !2i3ij (B(i))
(8) 3i2 jj $2 j3ij (confluence)
(9) 2C12C2 j $2C1[C2j (union)

(10) 2 /0j $ j (empty coalition)
(11) (3i p^3i¬p) ! (2 j p_2 j¬p), where i 6= j (exclusiveness)
(12) 3iballoti(w) (ballot)
(13) 3C1d1 ^3C2d2 !3C1[C2(d1 ^d2) (cooperation)
(14)

W
x2X (x^Vy2X\{x} ¬y) (resoluteness)

(15) (profile(w)^j) !2N(profile(w) ! j) (functionality)

Here j and y range over arbitrary formulas, x over atomic propositions in X , i and
j over agents, C1 and C2 over coalitions, and w over profiles. In axiom (11), p is
ranging only over atomic propositions in the set Pref [N,X ], and in axiom (13) d1 and
d2 do not contain any common atoms.

Axioms (4)–(8) describe well-known properties of normal modal logics [6]. Ax-
iom (9) describes the capability of a coalition to enforce a certain formula in terms of
the capabilities of its sub-coalitions. Axiom (10) states that the empty coalition cannot
enforce any formula. Axiom (11) enforces a division among the atomic propositions
of the shape pi

x<y: if an atom is controlled by an agent i, then other agents cannot
change its value. Axiom (12) ensures that every agent can express every possible
preference. Due to axiom (13), if two formulas d1 and d2 do not contain a common
atom and two coalitions C1 and C2 can each enforce one of the formulas, then the
joint coalition can enforce the conjunction d1 ^ d1. Axiom (14) expresses that any
outcome associated with a profile must be a single winning alternative. Thus, this
axioms encodes the resoluteness of the SCF in question. Finally, axiom (15) ensures
that every profile is associated with a single outcome, i.e., it encodes the fact that the
SCF being modelled must be a function.

The inference rules of the logic are modus ponens and necessitation w.r.t. all
modalities of the form 2i [6]:

– (MP) from j ! y and j , infer y



Theorem (Ciná and Endriss) The logic L[V ,X ] is sound and complete w.r.t. the
class of models of resolute social choice correpsondences.



Pareto

Par :=
∧

x∈X

∧

y∈X−{x}

[(∧

i∈N

pi
x�y

)
→ ¬y

]



IIA

IIA :=
∧

w∈L(X )n

∧

x∈X

∧

y∈X−{x}

[♦V (profile(w) ∧ x)→ (profile(w)(x , y)→ ¬y)]

I Nw
x�y =

∧{pi
x�y | xPiy in w}

I profile(w)(x , y) := Nw
x�y ∧ Nw

y�x



Dictatorship

Dic :=
∨

i∈N

∧

x∈X

∧

y∈X−{x}

(pi
x�y → ¬y)



Arrow’s Theorem

Theorem (Ciná and Endriss) Consider a logic L[V ,X ] with a language
parameterised by X such that |X | > 3. Then we have:

` Par ∧ IIA→ Dic



Strong Monotonicity

SM :=
∧

w∈L(X )n

∧

x∈X


♦V (profile(w) ∧ x) ∧


 ∧

y∈X\{x}

Nw
x�y


→ x






Surjectivity

Sur :=
∧

x∈X

∧

w∈L(X )V

♦V (profile(w) ∧ x)



Theorem (Ciná and Endriss) Consider a logic L[V ,X ] with a language
parameterised by X such that |X | ≥ 3. Then we have:

` SM ∧ Sur → Dic



Compare principles of group decision making in terms of the language used to
express them

M. Pauly. On the Role of Language in Social Choice Theory. Synthese, 163, 2, pgs. 227 - 243,
2008.

M. Pauly. Axiomatizing Collective Judgement Sets in a Minimal Logical Language. Synthese,
158, pp. 233 - 250, 2007.

T. Daniëls. Social choice and logic of simple games. Journal of Logic and Computation, 21:6,
pp. 883 - 906, 2011.



A Minimal Language

M. Pauly. Axiomatizing Collective Judgement Sets in a Minimal Logical Language. Synthese,
158, pp. 233 - 250, 2007.

Let ϕI be the set of individual formulas (standard propositional language)

VI the set of individual valuations

ϕC the set of collective formulas: �α | ϕ ∧ ψ | ¬ϕ
�α: The group collectively accepts α.
VC the set of collective valuations: v : ϕC → {0, 1}
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M. Pauly. Axiomatizing Collective Judgement Sets in a Minimal Logical Language. Synthese,
158, pp. 233 - 250, 2007.

Let ϕI be the set of individual formulas (standard propositional language)

VI the set of individual valuations

ϕC the set of collective formulas: �α | ϕ ∧ ψ | ¬ϕ
�α: The group collectively accepts α.
VC the set of collective valuations: v : ϕC → {0, 1}



A Minimal Language

Let CON n = {v ∈ VC | v(�α) = 1 iff ∀i ≤ n, vi(α) = 1}

E. �ϕ↔ �ψ provided ϕ↔ ψ is a tautology

M. �(ϕ ∧ ψ)→ (�ϕ ∧�ψ)

C. (�ϕ ∧�ψ)→ (�ϕ ∧�ψ)

N. �>
D. ¬�⊥

Theorem [Pauly, 2005] VC (KD) = CON n, provided n ≥ 2|ϕ0|.

(D = VC , T = CON n, ∆ = EMCND, then ∆ absolutely axiomatizes T .)



A Minimal Language

Let MAJ n = {v ∈ VC | v([>]α) = 1 iff |{i | vi(α) = 1}| > n
2
}

STEM contains all instances of the following schemes

S. [>]ϕ→ ¬[>]¬ϕ
T. ([≥]ϕ1 ∧ · · · ∧ [≥]ϕk ∧ [≤]ψ1 ∧ · · · ∧ [≤]ψk)→ ∧

1≤i≤k([=]ϕi ∧ [=]ψi)
where ∀v ∈ VI : |{i | v(ϕi) = 1}| = |{i | v(ψi) = 1}|

E. [>]ϕ↔ [>]ψ provided ϕ↔ ψ is a tautology

M. [>](ϕ ∧ ψ)→ ([>]ϕ ∧ [>]ψ)

Theorem [Pauly, 2005] VC (STEM) =MAJ .

(D = VC , T =MAJ n, ∆ = STEM , then ∆ absolutely axiomatizes T .)



SAT

Arrow’s Theorem for a fixed set of alternatives (e.g., |N | = 2, |X | = 3) can be
embedded into classical propositional logic and automatically checked as a SAT
problem. (The full theorem is proved by mathematical induction).

P. Tang. Computer-aided theorem discovery—a new adventure and its application to economic
theory. Ph.D. thesis, Hong Kong University of Science and Technology, 2010.

P. Tang and F. Lin. Computer-aided proofs of Arrow’s and other impossibility theorems. Artificial
Intelligence, 173(11), pp. 1041 - 1053, 2009.

C. Geist and U. Endriss. Automated Search for Impossibility Theorems in Social Choice Theory:
Ranking Sets of Objects. Journal of Artificial Intelligence Research, 40, pp. 143 - 174, 2011.



SAT

F. Brandt, C. Geist, and D. Peters. Optimal bounds for the no-show paradox via SAT solving.
Mathematical Social Science, 90, pp. 18 - 27, 2017.

F. Brandt and C. Geist. Finding strategyproof social choice functions via SAT solving. Journal
of AI Research, 55, pp. 565 - 602, 2016.

F. Brandl, F. Brandt, and C. Geist. Proving the incompatibility of efficiency and strategyproofness
via SMT solving. Proceedings of 25th IJCAI, pp. 116 - 122, 2016.

W. Holliday, EP, and S. Zahedian. Extending a SAT solving approach to impossibility theorems
in social choice. under submission.



social choice theory turns out to be perfectly suitable for mechanical
theorem proving.”

F. Wiedijk. Arrow’s impossibility theorem. Formalized Mathematics, 15:171–174, 2007.

T. Nipkow. Social choice theory in HOL: Arrow and Gibbard-Satterthwaite. Journal of Auto-
mated Reasoning, 43:289–304, 2009.

M. Eberl. Verifying Randomised Social Choice. International Symposium on Frontiers of Com-
bining Systems, FroCoS 2019: Frontiers of Combining Systems pp 240-256.

F. Brandt, M. Eberl, C. Saile and C. Stricker. The Incompatibility of Fishburn-Strategyproofness
and Pareto-Efficiency. https://www.isa-afp.org/entries/Fishburn_Impossibility.

html.

https://www.isa-afp.org/entries/Fishburn_Impossibility.html
https://www.isa-afp.org/entries/Fishburn_Impossibility.html


Lean

The Lean Theorem Prover aims to bridge the gap between interactive and
automated theorem proving, by situating automated tools and methods in a
framework that supports user interaction and the construction of fully specified
axiomatic proofs. The goal is to support both mathematical reasoning and
reasoning about complex systems, and to verify claims in both domains.

https://leanprover.github.io/

https://leanprover.github.io/


W. Holliday, C. Norman, and EP. Voting Theory in the Lean Theorem Prover. Proceedings of
LORI 2021, https://arxiv.org/abs/2110.08453.

https://arxiv.org/abs/2110.08453


Profiles of Preferences



Profiles

Definition
For V ⊆ V and X ⊆ X , a (V ,X )-profile is a map P : V → B(X ).

Given a (V ,X )-profile P, let V (P) be V and X (P) be X .

We then define a function Prof that assigns to each pair (V ,X ) of V ⊆ V and
X ⊆ X the set Prof(V ,X ) of all (V ,X )-profiles.

def Prof : Type → Type → Type :=

λ (V X : Type), V → X → X → Prop
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Majority Preferred

Definition
Given a profile P and x , y ∈ X (P), we say that x is majority preferred to y in P if
more voters rank x above y than rank y above x .

def majority preferred {V X : Type} :

Prof V X → X → X → Prop := λ P x y,

cardinal.mk {v : V // P v x y} >

cardinal.mk {v : V // P v y x}
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Margin

Definition
Given a profile P and x , y ∈ X (P), the margin of x over y in P, denoted
MarginP(x , y), is |{i ∈ V (P) | xPiy}| − |{i ∈ V (P) | yPix}|.

def margin {V X : Type} [fintype V] :

Prof V X → X → X → Z
:= λ P x y, ↑(finset.univ.filter (λ v, P v x y)).card -

↑(finset.univ.filter (λ v, P v y x)).card
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Definition
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:= λ P x y, ↑(finset.univ.filter (λ v, P v x y)).card -

↑(finset.univ.filter (λ v, P v y x)).card



Simple Example



Condorcet Winner and Majority Winner

Definition
Given a profile P and x ∈ X (P), x is a Condorcet winner in P if for all y ∈ X (P)
with y 6= x , x is majority preferred to y in P.

We say that x is a majority winner in P if the number of voters who rank x (and
only x) in first place is greater than the number of voters who do not rank x in
first place.

def condorcet winner {V X : Type} (P : Prof V X) (x : X) :

Prop := ∀ y 6= x, majority preferred P x y

def majority winner {V X : Type} (P : Prof V X) (x : X) :

Prop := cardinal.mk {v : V // ∀ y 6= x, P v x y} >

cardinal.mk {v : V // ∃ y 6= x, P v y x}
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def condorcet winner {V X : Type} (P : Prof V X) (x : X) :
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Lemma. For any profile P, for all x ∈ X (P), if x is a majority winner in P, then
x is a Condorcet winner in P.

lemma condorcet of majority winnner {V X : Type}
(P : Prof V X) [fintype V] (x : X) :

majority winner P x → condorcet winner P x :=



Lean has a very well-developed library of mathematical results called mathlib. For
instance, we made use of the following theorem from mathlib:

theorem cardinal.mk subtype mono {α : Type u}
{ϕ ψ : α → Prop} (h : ∀ x, ϕ x → ψ x) :

cardinal.mk {x // ϕ x} ≤ cardinal.mk {x // ψ x}



lemma condorcet of majority winnner {V X : Type}
(P : Prof V X) [fintype V] (x : X) :

majority winner P x → condorcet winner P x :=

begin

1. intros majority z z ne x,

2. have imp1 : ∀ v, (∀ y 6= x, P v x y) → P v x z :=

by finish,

3. refine lt of lt of le (cardinal.mk subtype mono imp1),

4. have imp2 : ∀ v, P v z x → (∃ y 6= x, P v y x) :=

by finish,

5. apply lt of le of lt (cardinal.mk subtype mono imp2),

6. exact majority,

end



Functions on Profiles



Definition
For V ⊆ V and X ⊆ X , a social choice correspondence for (V ,X ), or
(V ,X )-SCC, is a function F : Prof(V ,X )→ ℘(X ).

Let SCC be a function that assigns to each pair (V ,X ) of V ⊆ V and X ⊆ X
the set of all (V ,X )-SCCs.

def SCC := λ (V X : Type), Prof V X → set X

def universal domain SCC {V X : Type} (F : SCC V X) : Prop :=

∀ P : Prof V X, F P 6= ∅
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Definition
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Example

The Condorcet SCC:

def condorcet SCC {V X : Type} : SCC V X := λ P,

{x : X | condorcet winner P x ∨ ¬ ∃ y, condorcet winner P y}



Variable-Election Framework

Definition
A variable-election social choice correspondence (VSCC) is a function F that
assigns to each pair (V ,X ) of a V ⊆ V and X ⊆ X a (V ,X )-SCC.

def VSCC : Type 1 := Π (V X : Type), SCC V X

Given α : Type and β : α → Type, the type

Π y z : α, β y z

is the type of functions f such that for each a b : α, we have that f a b is an
element of β a b.
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Variable-Election Framework

Definition
A variable-election social choice correspondence (VSCC) is a function F that
assigns to each pair (V ,X ) of a V ⊆ V and X ⊆ X a (V ,X )-SCC.

def VSCC : Type 1 := Π (V X : Type), SCC V X

Example: Condorcet VSCC

def condorcet VSCC : VSCC := λ V X, condorcet SCC



Other Functions on Profiles

def SCC := λ (V X : Type), Prof V X → set X

def VSCC : Type 1 := Π (V X : Type), SCC V X

def CCR := λ (V X : Type), Prof V X → X → X → Prop

def VCCR := Π (V X : Type), CCR V X

Given an asymmetric VCCR f , we define the maximal-element induced VSCC fM :

def max el VSCC : VCCR → VSCC := λ f V X P,

{x : X | ∀ y : X, ¬ f V X P y x}
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Formalized Proofs

We verified all the results about a new voting method, Split Cycle, from

W. Holliday and E. Pacuit. Split Cycle: A New Condorcet Consistent Voting Method Independent
of Clones and Immune to Spoilers . https://arxiv.org/abs/2004.02350.

https://arxiv.org/abs/2004.02350


Split
Cycle

Ranked
Pairs

Beat
Path

Mini-
max

GETCHA/
GOCHA

Ranked
Choice

Plurality

Condorcet Winner X X X X X − −
Condorcet Loser X X X − X X −
Pareto X X X X − X X
Monotonicity X X X X X − X
Independence of
Clones

X X X − X X −
Strong Stability for
Winners

X − − − X − −

Reversal Symmetry X X X − X − −
Positive Involvement X − − X X/− X X
Negative Involvement X − − X X/− − X



Future Work

I Verify axioms of other voting methods: Not just margin-based methods
(e.g., Split Cycle, Beat Path), but also scoring rules (e.g., Plurality, Borda),
and recursive voting methods (e.g., Instant Runoff, Stable Voting).

I Formalize characterization theorems (e.g., Arrow’s Theorem characterizing
dictatorship, May’s Theorem characterizing majority rule, Young’s Theorem
characterizing scoring rules, . . .).

I See https://github.com/asouther4/lean-social-choice/ by A.
Souther for a verification of proofs about Stable Voting.

https://github.com/asouther4/lean-social-choice/


Justifying Voting Outcomes

https://demo.illc.uva.nl/justify/

A. Boixel and U. Endriss. Automated Justification of Collective Decisions via Constraint Solving.
AAMAS-2020.

A. Boixel, U. Endriss, and R.. de Haan. A Calculus for Computing Structured Justifications
for Election Outcomes. Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI-2022).

https://demo.illc.uva.nl/justify/


Thank you!

https://pref-voting.readthedocs.io/

W. Holliday and EP, Axioms for defeat in democratic elections, Journal of
Theoretical Politics, https://arxiv.org/abs/2008.08451

W. Holliday and EP, Split Cycle: A New Condorcet Consistent Voting Method
Independent of Clones and Immune to Spoilers, forthcoming Public Choice,

https://arxiv.org/abs/2004.02350

https://stablevoting.org

https://pref-voting.readthedocs.io/
https://arxiv.org/abs/2008.08451
https://arxiv.org/abs/2004.02350
https://stablevoting.org

