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Margin

Let P be a profile and a, b € X(P). Then the margin of a over b is:

Marginp(a, b) = |{i € V(P) | aP:b}| — |{i € V(P) | bP;a}|.
We say that a is majority preferred to b in P when Marginp(a, b) > 0.



Margin Graph

The margin graph of P, M(P), is the weighted directed graph whose set of
nodes is X(P) with an edge from a to b weighted by Margin(a, b) when
Margin(a, b) > 0. We write

a >p b if a = Marginp(a, b) > 0.
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Margin Graph

A margin graph is a weighted directed graph M where all the weights have the

same parity.
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Theorem (Debord, 1987)

For any margin graph M, there is a profile P such that M is the margin graph
of P.



Social choice correspondence

A voting method is a function F on the domain of all profiles such that for any
profile P, @ # F(P) C X(P) (also called a variable social choice
correspondence VSCC).

> A (V,X)-SCC is a social choice correspondence defined on (V/, X)-profiles.

» A voting method F is resolute if for all P, |F(P)| = 1. Resolute SCCs are
called social choice functions.


https://pref_voting.readthedocs.io

Social choice correspondence

A voting method is a function F on the domain of all profiles such that for any
profile P, @ # F(P) C X(P) (also called a variable social choice
correspondence VSCC).

> A (V,X)-SCC is a social choice correspondence defined on (V/, X)-profiles.

» A voting method F is resolute if for all P, |F(P)| = 1. Resolute SCCs are
called social choice functions.

There are many examples of voting methods.

See https://pref_voting.readthedocs.io for a Python package that
provides computational tools to study different voting methods.


https://pref_voting.readthedocs.io

Positional scoring rules

A scoring vector is a vector (sy,...,s,) of numbers such that for each
me{l,....n—1}, s, > Spi1.

Given a profile P with | X(P)| = n, x € X(P), a scoring vector s of length n, and
i € V(P), define scores(x,P;) = s, where r = Rank(x,P;).

Let scores(x, P) = 3_,c\/(p) Scores(x, P;). A voting method F is a positional
scoring rule if there is a map S assigning to each natural number n a scoring
vector of length n such that for any profile P with | X(P)| = n,

F(P) = argmax, ¢ x (p)SCOres(n) (x,P).



Examples

Borda: S(n)=(n—-1,n—-2,...,1,0)
Plurality: S(n) =(1,0,...,0)
Anti-Plurality:  S(n) = (1,1,...,1,0)
1 3 2 4
a b b ¢
c a c a
b ¢ a b
Borda winner c
Plurality winner b

Anti-Plurality winner a



lterative procedures: Instant Runoff

> If some alternative is ranked first by an absolute majority of voters, then it is
declared the winner.

» Otherwise, the alternative ranked first be the fewest voters (the plurality
loser) is eliminated.

» Votes for eliminated alternatives get transferred: delete the removed
alternatives from the ballots and “shift” the rankings (e.g., if 1st place
alternative is removed, then your 2nd place alternative becomes 1st).

Also known as Ranked-Choice, STV, Hare

How should you deal with ties? (e.g., multiple alternatives are plurality losers)



|terative procedures

Variants:
» Plurality with runoff: remove all candidates except top two plurality score;
» Coombs: remove candidates with most last place votes;
» Baldwin: remove candidate with smallest Borda score;

» Nanson: remove candidates with below average Borda score



Example
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Instant Runoff {b}
Plurality with Runoff {a, b}
Coombs {d}
Baldwin {a, b, d}
Strict Nanson {a}



Condorcet criteria

The Condorcet winner in a profile P is a candidate x € X(P) that is the
maximum of the majority ordering, i.e., for all y € X(P), if x # y, then
Marginpg(x,y) > 0.

The Condorcet loser in a profile P is a candidate x € X(P) that is the minimum
of the majority ordering, i.e., for all y € X(P), if x # y, then Marginp(y, x) < 0.

A voting method F is Condorcet consistent, if for all P, if x is a Condorcet
winner in P, then F(P) = {x}.

A voting method F is susceptible to the Condorcet loser paradox (also known
as Borda’s paradox) if there is some P such that x is a Condorcet loser in P and
x € F(P).



Condorcet paradox

O T o3

L 0O T3>

oL O3>

AN G



20 13 21 14 22 10 Q
b b

a a ¢ c
c b b a ¢ a
b ¢ a ¢ a b (\j 14 i)

Condorcet winner:
Instant Runoff winner:

Plurality winner:

oS- o T 0O

Borda winner:



Theorem (Smith 1973, Young 1974)

A voting method satisfies Anonymity, Neutrality and Reinforcement if and only
if F is a scoring rule.

Saari's argument, Balinski and Laraki (2010, pg. 77); Zwicker (2016, Proposition
2.5): Multiple districts paradox, f cancels properly.
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» no Condorcet winner in the left profile

c

» b is the Condorcet winner in the right profile

» ais the Condorcet winner in the combined profiles



Condorcet consistent voting methods

Minimax
Copeland
Beat Path
Ranked Pairs
Split Cycle

vvyyVvyvyy



Minimax: For a profile P, The Minimax winners in P are:

argmin, . xpymax{ Marginp(y, x) | y € X(P)}

Copeland/Llull: For a € [0, 1], the Copeland,, score of a in P is the number of
b € X(P) such that Marginp(a, b) > 0 plus « times the number of b € X(P)
such that Marginp(a, b) = 0. Copeland(P) (resp. Llull(P)) is the set of
candidates with maximal Copeland;, (resp. Copeland;) score in P.



Schulze Beat Path

For a, b € X(P), a path from a to b in P is a sequence p = xi, ..., x, of distinct
candidates in X(P) with x; = a and x,, = b such that for 1 < k < n—1,
Marginp (xi, Xk+1) > 0.

The strength of p is min{Marginp(xx, xx41) | 1 < k < n—1}.

Then a defeats b in P according to Beat Path if the strength of the strongest
path from a to b is greater than the strength of the strongest path from b to a.

BP(P) is the set of undefeated candidates.



Tideman Ranked Pairs, |

For a profile P and T € L({(x,y) | x # y and Marginp(x, y) > 0}), called the
tie-breaking ordering

A pair (x,y) of candidates has a higher priority than a pair (x’, y’) of candidates
according to T when either Marginp(x,y) > Marginp(x', y’) or
Margine(x,y) = Marginp(x', y') and (x,y) T (X', y").



Tideman Ranked Pairs, Il

We construct a Ranked Pairs ranking =p 1 € L(X) as follows:

1. Initialize >p 7 to @.

2. If all pairs (x, y) with x # y and Marginp(x,y) > 0 have been considered,
then return >p 1. Otherwise let (a, b) be the pair with the highest priority
among those with a # b and Marginp(a, b) > 0 that have not been
considered so far.

3. If =p 7 U{(a, b)} is acyclic, then add (a, b) to >p 1; otherwise, add (b, a)
to >p 1. Go to step 2.

When the procedure terminates, >p 7 is a linear order.

The set RP(P) of Ranked Pairs winners is the set of all x € X(P) such that x is
the maximum of >p 1 for some tie-breaking ordering T.



Split Cycle

Split Cycle defeat: a candidate a defeats a candidate b just in case
» the majority margin of a over b is greater than 0, and
» for every majority cycle containing a and b, the margin of a over b is greater
than the smallest margin between consecutive candidates in the cycle.

The Split Cycle winners are the undefeated candidates.

An intuitive way defeat relation is as follows:

1. In each majority cycle, identify the wins with the smallest margin in that
cycle.

2. After completing step 1 for all cycles, discard the identified wins. All
remaining wins count as defeats.



Example

Minimax:
Copeland:
Beat Path:
Ranked Pairs:
Split Cycle:

{d}
{a, b}
{d}
{b}
{b, d}



Key idea: Unequivocal increase in support for a candidate should not result in
that candidate going from being a winner to being a loser.

1. monotonicity: if a candidate x is a winner given a preference profile P, and
P’ is obtained from P by one voter moving x up in their ranking, then x
should still be a winner given P’.

(fixed-electorate axiom)

2. positive involvement: if a candidate x is a winner given P, and P* is
obtained from P by adding a new voter who ranks x in first place, then x
should still be a winner given P*.

(variable-electorate axiom)



More-is-Less Paradox: Instant Runoff

6 5 4 2 6 5
a ¢ b b c
b c a b



More-is-Less Paradox: Instant Runoff

6 5 4 2 6 b5
a c¢ b B a ¢
b a c [EB b a
c b a ¢ c b
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More-is-Less Paradox: Instant Runoff

6 5 4 2 6 b5
a b b c
b a b

b a c b

[Instant Runoff Winner: a}




More-is-Less Paradox: Instant Runoff

6 5 4 2 6 5 4 2
a b b a ¢ a
b a a ¢

b a c a ¢

[Instant Runoff Winner: a} [Instant Runoff Winner: c}




More-is-Less Paradox: Instant Runoff

6 5 4 2 6 5 4 2
a c bu a c bn
b a c |ER b a c I3
c b a ¢ c b a ¢

Instant Runoff Winner: a ‘ ‘ Instant Runoff Winner: ¢ ‘




Any failure of monotonicity for a resolute voting rule F represents an opportunity
for a voter to manipulate F in a particular way: via a simple drop or simple lift.



Manipulation

Suppose that F is a resolute voting rule
F is manipulable provided there are two profiles

P:(P1>"'7Pi7"'apn)and P/:(P]/_,...,P{

and a voter i such that
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Manipulation

Suppose that F is a resolute voting rule
F is manipulable provided there are two profiles

P:(P1>"'7Pi7"'apn)and P/:(P]/_,...,P{

and a voter i such that

P; = P; for all j # i, and
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Manipulation

Suppose that F is a resolute voting rule
F is manipulable provided there are two profiles

P:(P1>"'7Pi7"'7pn) and P/:(P]/_,...,P{
and a voter i such that

P; = P; for all j # i, and

i strictly prefers the winner under P’ to the winner under P:
aP;b where F(P') = {a} and F(P) = {b}.

eI



Manipulation

Suppose that F is a resolute voting rule
F is manipulable provided there are two profiles

P:(P1>"'7Pi7"'7pn) and P/:(P]/_,...,P{
and a voter i such that

P; = P; for all j # i, and

i strictly prefers the winner under P’ to the winner under P:
aP;b where F(P') = {a} and F(P) = {b}.

Intuition: P; is voter i's “true preference”.

eI



Strategizing













Strategizing
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Copeland winning set: {d}

Copeland winning set: {e}




2 3 1 2 3 1
e d a e d a
c e b c e b
a b c a b c
d ¢ d d ¢ d
b a e b a e
Borda winning set: {e} Borda winning set: {d}
Borda scores: Borda scores:
a: 12 a: 11
b: 12 b: 11
c: 13 c: 12
d: 16 d: 19
e: 17 e: 17



Monotonicity Properties

Strategyproofness if for all profiles P, if P’ = P[P;/Q;], then not F(P")P;F(P)



Monotonicity Properties

Strategyproofness if for all profiles P, if P’ = P[P;/Q;], then not F(P")P;F(P)

Maskin monotonicity if for all profiles P, if P’ = P[P;/Q;] and for all y, F(P)P;y
implies F(P’)Q;y, then F(P) = F(P’)



The Gibbard-Satterthwaite Theorem

Gibbard-Satterthwaite Theorem. Consider a resolute voting rule F that is
defined for some number m of alternatives with m > 3, with no restrictions on
the preference domain. Then, this rule must be at least one of the following:

1. dictatorial: there exists a single fixed voter whose most-preferred alternative
is chosen for every profile;

2. imposing: there is at least one alternative that does not win under any
profile;

3. manipulable (i.e., not strategy-proof ).

M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspon-

dence theorems for voting procedures and social welfare functions. Journal of Economic Theory,
10(2):187-217, 1975.

A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41(4):587-601,
1973.



Theorem 13.1 For n = 3 voters and m > 3 alternatives, no (resolute) voting
rule satisfies both strategyproofness and the majority criterion.



Theorem 13.1 For n = 3 voters and m > 3 alternatives, no (resolute) voting
rule satisfies both strategyproofness and the majority criterion.

Lemma 1. Let m = 3 and n = 3. There is no resolute voting rule F satisfying
strategyproofness and the majority criterion

Lemma 2. Let m > 3 and n = 3. If F is a resolute voting rule satisfying
strategyproofness and the majority criterion for m + 1 alternatives, then there
exists a voting rule F’ for m alternatives with the same properties.

Christian Geist and Dominik Peters. Computer-aided Methods for Social Choice Theory. Trends
in Computational Social Choice, chapter 13, pages 249-267. Al Access, 2017.



Theorem (Muller-Satterthwaite) Assume that there are more than 3
candidates. Any resolute voting method satisfying surjectivity and Maskin
monotonicity is dictatorial.



Key idea: Unequivocal increase in support for a candidate should not result in
that candidate going from being a winner to being a loser.

1. monotonicity: if a candidate x is a winner given a preference profile P, and
P’ is obtained from P by one voter moving x up in their ranking, then x
should still be a winner given P’.

(fixed-electorate axiom)

2. positive involvement: if a candidate x is a winner given P, and P* is
obtained from P by adding a new voter who ranks x in first place, then x
should still be a winner given P*.

(variable-electorate axiom)



Violating Positive Involvement: Coombs
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a

Coombs winner:

(the order of elimination is d, ¢)
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2 21 1 2 1 1 1
c b d d ¢ a b b
a a c a b d d d
b ¢ b ¢ d b a c
d d a b a ¢ ¢ a

Coombs winner: {c}

(a and d are tied for the most last
place votes)



Breaking Ties

There are many tiebreaking rules: non-anonymous, non-neutral, random

Parallel universe tiebreaking: x is a winner if x wins according to some
tiebreaking rule.

S. Obraztsova, E. Elkind and N. Hazon. Ties Matter: Complexity of Voting Manipulation Revis-
ited. Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.

J. Wang, S. Sikdar, T. Shepherd, Z. Zhao, C. Jiang and L. Xia. Practical Algorithms for Multi-
Stage Voting Rules with Parallel Universes Tiebreaking. Proceedings of AAAI, 2019.



Violating Positive Involvement: Coombs PUT

-0 o

d

Coombs winner: {a, b}
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1 1 1 1 1 1
a ¢ b ¢ d a
c d d a b d
b b a b a b
d a ¢ d c ¢
Coombs winner: {b, d}



No Show Paradox

The term “No Show Paradox” was introduced by Fishburn and Brams for
violations of what is now called negative involvement: Adding a new voter who
ranks a candidate last should not result in the candidate going from being a loser
to a winner.

P. Fishburn and S. Brams. Paradoxes of Preferential Voting. Mathematics Magazine, 56(4), pp.
207 - 214, 1983.

D. Saari. Basic Geometry of Voting. Springer, 1995.



No Show Paradox

Moulin changed the meaning of “No Show Paradox” to refer to violations of
participation: A resolute voting method satisfies participation if adding a new
voter who ranks x above y cannot result in a change from x being the unique

winner to y being the unique winner.

H. Moulin. Condorcet’s Principle Implies the No Show Paradox. Journal of Economic Theory
45(1), pp. 53 - 64, 1988.



No Show Paradox

Peréz concludes that the Strong No Show Paradox is a common flaw of many
Condorcet consistent voting methods, which are methods that always pick a
Condorcet winner—a candidate who is majority preferred to every other
candidate—if one exists.

J. Pérez. The Strong No Show Paradoxes are a common flaw in Condorcet voting correspon-
dences. Social Choice and Welfare 18(3), pp. 601 - 616, 2001.



Violating Positive Involvement: Copeland

\l ‘

Copeland winners: {c} Copeland winners: {e}
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Violating Positive Involvement: Beat Path

1 1
a d d b
c

1
b

c d b

b
b d b

d

C

Beat Path winners: {a, b, c,d}

a d d b b

b

a b——4——d

b
c

c d b c
a

b

/

7\

C

d

d

C

N\ ¢

Beat Path winners: {a}



A logic for resolute social choice correspondences

G. Cind and U. Endriss. Proving classical theorems of social choice theory in modal logic.
Autonomous Agents and Multi-Agent Systems, 30, pp. 963 - 989, 2016.

N. Troquard, W. van der Hoek, and M. Wooldridge. Reasoning about social choice functions.
Journal of Philosophical Logic 40(4), 473 - 498 (2011).

T. Agotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment
aggregation. Journal of Autonomous Agents and Multiagent Systems 22(1), 4 - 30 (2011).



Language

Atomic Propositions:

> Pref[V, X] :=={p., | i € V,x,y € X} is the set of preference atomic
propositions, where p)’;jy means i prefers y to x.

» Each x € X is an atomic proposition.

Modality:

» Ocy: C can ensure the truth of .



Language

Atomic Propositions:

> Pref[V, X] :=={p., | i € V,x,y € X} is the set of preference atomic
propositions, where p)’;jy means i prefers y to x.

» Each x € X is an atomic proposition.

Modality:

» Ocy: C can ensure the truth of .

pl—e| oA | Qcp



Model

A model is a triple M = (N, X, F), consisting of a finite set of agents N (with
n = |N|), a finite set of alternatives X, and a resolute SCC F : £(X)V — X.

A world is a profile (Py,...,P,)



Truth

Let w = (Py,...,P,)

> M, w k= p., iff xP;y

M,w = x if and only if F(Py,...,P,) =x

M, w |= =y if and only if M, w [~ ¢

M,w = oA ifand only if Myw = ¢ and M, w =

M,w = Ocyp if and only if M, w' |= ¢ for some w' = (P}, ..., P’) with
Pi=P.foralljeN—-C.

vvyyvyy



(2) Pisy € 7Pysx for x £y
(3) Py A Pyry = Przz



(2) Pisy € 7Pysx for x £y
(3) Py A Pyry = Przz

balloti(w) = Pl Ao APl oo

profile(w) = ballot;(w) A -- - A ballot,(w)



(4) all propositional tautologies
S) (e — y) = (00 — Oiy) (K@)
©) Dip = (T()
(7) @009 (B()
(8) ¢« 0;C;0  (confluence)
) DC] DCQ(:D « DC] uc, @ (union)
(10) Oge <+ @ (empty coalition)
(11) (CipACi—p) — (OjpVUO;—p), wherei# j (exclusiveness)
(12) <jballot;(w)  (ballot)
(13) O, 61 NSO, 8 — Ocuc, (81 A 62)  (cooperation)
(14) Viex (*AAyex\gxy ) (resoluteness)
(15) (profile(w) A @) — Oy (profile(w) — @)  (functionality)



Theorem (Cina and Endriss) The logic L[V, X] is sound and complete w.r.t. the
class of models of resolute social choice correpsondences.



Pareto

e )

xeX yeX—{x} ieN



A

lA = /\ /\ /\ [Ov (profile(w) A x) — (profile(w)(x, y) — —y)]

weL(X)" xeX yeX—{x}

> N, = N{pl-, | XPiy in w}
> profile(w)(x,y) := NX, AN

xry yrx



Dictatorship

Dic = \//\ /\ pX>y—>—|y

ieN xeX yeX—{x}



Arrow's Theorem

Theorem (Cina and Endriss) Consider a logic L[V, X] with a language
parameterised by X such that |[X| > 3. Then we have:

F Par A IIA — Dic



Strong Monotonicity

SM = /\ /\ [(}V profile(w ( /\ XW) ]

weL(X)" xeX yeX\{x}



Surjectivity

Sur = /\ /\ Qv (profile(w) A x)

xeX weLl(X)V



Theorem (Cina and Endriss) Consider a logic L[V, X] with a language
parameterised by X such that |X| > 3. Then we have:

F SM A Sur — Dic



