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Margin

Let P be a profile and a, b ∈ X (P). Then the margin of a over b is:

MarginP(a, b) = |{i ∈ V (P) | aPib}| − |{i ∈ V (P) | bPia}|.
We say that a is majority preferred to b in P when MarginP(a, b) > 0.



Margin Graph

The margin graph of P, M(P), is the weighted directed graph whose set of
nodes is X (P) with an edge from a to b weighted by Margin(a, b) when
Margin(a, b) > 0. We write

a
α→P b if α = MarginP(a, b) > 0.
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Margin Graph
A margin graph is a weighted directed graph M where all the weights have the
same parity.
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Theorem (Debord, 1987)
For any margin graph M, there is a profile P such that M is the margin graph
of P.



The “Paradox of Voting”
Arrow re-discovered Condorcet’s Paradox or the “Paradox of Voting.”

For a real example, consider the 2007 Glasgow City Council election for Ward 5
(Govan). The election was run using Single-Transferable Vote to elect four
candidates, but we can also imagine selecting one winner based on these ballots.

The top three candidates were in a majority cycle:

Dornan

Flanagan

Hunter

602 86

21

The numbers are margins of victory. Given a profile P and x , y ∈ X (P), let

MarginP(x , y) = |{i ∈ V (P) : xPiy}| − |{i ∈ V (P) : yPix}|.
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If we had to pick a single winner, and if we base our choice on the pairwise
comparisons, it seems clear who the winner should be. . . .

It’s Dornan.
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Incoherence and inconsistency

The cyclic incoherence of the majority relation in the Paradox of Voting is
analogous to the inconsistency of a set of premises in logic.

Not just analogous: “every majority preference is a defeat” is inconsistent in a
logic with the axiom that defeat is acyclic.

Now just as in logic we consider which premises from the inconsistent set to give
up, we need to consider which majority preference relations to give up.

Here we have some help without a typical analogue in logic: the strength of
majority preferences as measured by margins.
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Examples of CCRs

I Copeland

I Uncovered Set

I Beat Path

I Split Cycle

I Borda defeat



Arrow’s Theorem

Theorem (Arrow, 1951) Assume that |X | ≥ 3 and V is finite. Then any
(V ,X )-CCR satisfying UD, IIA, FR, and P is a dictatorship.

K. Arrow. Social Choice and Individual Values. Yale University Press (1951, 2nd ed., 1963, 3rd
ed., 2012).



Escaping impossibility

Key assumptions in Arrow’s Theorem:

I The number of voters is finite

P. Fishburn (1970). Arrow’s impossibility theorem: concise proof and infinitely many
voters. Journal of Economic Theory, 2, pp. 103 - 106.

I Universal domain

W. Gaertner (2001). Domain Conditions in Social Choice Theory. Cambridge University
Press.

E. Elkind, M. Lackner, and D. Peters (2022). Preference Restrictions in Computational
Social Choice: A Survey. https://arxiv.org/abs/2205.09092.

I There are at least 3 alternatives

I IIA

https://arxiv.org/abs/2205.09092


Anonymity and Neutrality

Anonymity: if x defeats y in P, and P′ is obtained from P by swapping the
ballots assigned to two voters, then x still defeats y in P′.

Neutrality: if x defeats y in P, and P′ is obtained from P by swapping x and y
on each voter’s ballot, then y defeats x in P′.

Availability: for all profiles P, there is some undefeated candidate.



Monotonicity

Monotonicity (resp. Monotonicity for two-candidate profiles): if x defeats
y in a profile (resp. two-candidate profile) P, and P′ is obtained from P by some
voter i moving x above the candidate that i ranked immediately above x in P,
then x defeats y in P′.



Lemma
If f satisfies Anonymity, Neutrality, and Monotonicity with respect to
two-candidate profiles, then f satisfies Special Majority Defeat: for any
two-candidate profile P, x defeats y in P according to f only if x is majority
preferred to y .

Other rules satisfying Anonymity, Neutrality and Monotonicity: The completely
indecisive method; Unanimity; Quota rules (cf. Fishburn 1974, Section 1)



Pareto: if for all profiles P and x , y ∈ X (P), if xPiy for all i ∈ V (P), then x
defeats y in P.

Neutral Reversal: if P′ is obtained from P by adding two voters with reversed
ballots, then x defeats y in P if and only if x defeats y in P′.



Pareto: if for all profiles P and x , y ∈ X (P), if xPiy for all i ∈ V (P), then x
defeats y in P.

Neutral Reversal: if P′ is obtained from P by adding two voters with reversed
ballots, then x defeats y in P if and only if x defeats y in P′.



Variable candidate/voter profiles

Fix infinite sets V and X of voters and candidates, respectively.

For X ⊆ X , let L(X ) be the set of all strict linear orders on X .

A profile is a function P : V (P)→ L(X (P)) for some nonempty finite V (P) ⊆ V
and nonempty finite X (P) ⊆ X .

We call V (P) and X (P) the sets of voters in P and candidates in P, respectively.

We call P(i) voter i ’s ranking, and we write ‘xPiy ’ for (x , y) ∈ P(i). As usual,
we take xPiy to mean that voter i strictly prefers candidate x to candidate y .



A variable-election collective choice rule (VCCR) is a function f on the
domain of all profiles such that for any profile P, f (P) is an asymmetric binary
relation on X (P), which we call the defeat relation for P under f .

For x , y ∈ X (P), we say that x defeats y in P according to f when (x , y) ∈ f (P).



Characterizing Majority Rule

Proposition
For any VCCR f on two-candidate profiles, the following are equivalent:

1. f coincides with majority rule;

2. f satisfies the following axioms: Anonymity, Neutrality, Monotonicity,
Pareto, and Neutral Reversal.

W. Holliday and EP (2021). Axioms for Defeat in Democratic Elections. Journal of Theoretical
Politics, https://arxiv.org/pdf/2008.08451.pdf.

https://arxiv.org/pdf/2008.08451.pdf


Characterizing Majority Rule

K. May. A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision.
Econometrica, Vol. 20 (1952).

G. Asan and R. Sanver. Another Characterization of the Majority Rule. Economics Letters, 75
(3), 409-413, 2002.

E. Maskin. Majority rule, social welfare functions and game forms. in Choice, Welfare and
Development, The Clarendon Press, pgs. 100 - 109, 1995.

G. Woeginger. A new characterization of the majority rule. Economic Letters, 81, pgs. 89 - 94,
2003.



Fixed vs. Variable-Candidate Axioms

f satisfies fixed-candidate IIA (FIIA) if for any profiles P and P′ with
X (P) = X (P′),

if P|{x ,y} = P′|{x ,y}, then x defeats y in P according to f if and only if x defeats y
in P′ according to f ;

f satisfies variable-candidate IIA (VIIA) if for any profiles P and P′, for all
x , y ∈ X (P) ∩ X (P′)

if P|{x ,y} = P′|{x ,y}, then x defeats y in P according to f if and only if x defeats y
in P′ according to f .
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Arrow’s Theorem

Theorem (Arrow, 1952) Assume that |X | ≥ 3 and V is finite. Then any
collective choice rule for 〈X ,V 〉 satisfying universal domain, FIIA, full rationality,
and Pareto is a dictatorship.

Pareto: if for all i ∈ V (P), xPiy , then x defeats y according to f (P).

full rationality: the defeat relation is a strict weak order.

dictatorship: there is an i ∈ V such that for all P and x , y ∈ X (P),
if xPiy , then xf (P)y .



Escaping impossibility

1. Variable-candidate setting

2. Weaken the IIA axiom

Weak IIA: For all profiles P and P′, if x defeats y in P according to f and
P|{x ,y} = P′|{x ,y}, then y does not defeat x in P′ according to f .

3. Weaken properties of the defeat relation

x1, . . . , xn is a cycle in B if x1 = xn and for all i = 1, . . . , n − 1, xiBxi+1.
A relation B is acyclic if there is no cycle in B .
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Baigent’s Theorem

Weak IIA: For all profiles P and P′, if x defeats y in P according to f and
P|{x ,y} = P′|{x ,y}, then y does not defeat x in P′ according to f .

Given a (V ,X )-CCR f , a voter i ∈ V is a vetoer for f if for all (V ,X )-profiles P
and x , y ∈ X (P), if xPiy , then y does not defeat x in P according to f .

Theorem (Baigent, 1987)
Assume V is finite and |X | ≥ 4. Any (V ,X )-SWF satisfying Weak IIA and
Pareto has a vetoer.
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Blau and Deb Theorem

A coalition C ⊆ V of voters has veto power for f if for any (V ,X )-profile P and
x , y ∈ X , if xPiy for all i ∈ C , then y does not defeat x in P according to f

Theorem (Blau and Deb, 1977)
Let f be an acyclic (V ,X )-CCR satisfying IIA, Neutrality, and Monotonicity.

1. For any partition of V into at least |X |-many coalitions, at least one of the
coalitions has veto power.

2. If |X | ≥ |V |, then f has a vetoer.

Theorem (Holliday and P, 2021)
If f is an acyclic VCCR satisfying VIIA, Neutrality, and Monotonicity, then for
any finite V ⊆ V , f has a V -vetoer.
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The Fallacy of IIA

Suppose x defeats y in a profile P, and a profile P′ is exactly like P with respect
to how every voter ranks x vs. y . Should it follow that x defeats y in P′?

Arrow’s Independence of Irrelevant Alternatives (IIA) says ‘yes’.

We say ‘no’: if P′ is sufficiently incoherent, we may need to suspend judgment on
many defeat relations that could be coherently accepted in P.

W. Holliday and EP (2021). Axioms for Defeat in Democratic Elections. Journal of Theoretical
Politics.
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In the context of the following perfectly coherent profile P, the margin of n for a
over b should be sufficient for a to defeat b:

n n n
a b c
b a a
c c b a c

b

n n

n

Yet in the following P′ with P′|{a,b} = P|{a,b}, no VCCR satisfying Anonymity,
Neutrality, and Availability can say that a defeats b:

n n n
a b c
b c a
c a b a c

b

n n

n

This is a counterexample to IIA as a plausible axiom.
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Coherent IIA

Key idea: Move away from the local evaluation of x vs. y when increasing
incoherence demands we be more conservative in locking in relations of defeat.

Although there is a perfectly reasonable notion of the advantage of x over y that
only depends on how voters rank x vs. y , whether that intrinsic advantage is
sufficient for x to defeat y may depend on a standard that takes into whether
the electorate is incoherent with respect to a set of candidates including x , y .

The advantage-standard idea is formalized in:
W. Holliday and M. Kelley (2022). Escaping Arrow’s Theorem. arXiv:2108.01134.

https://arxiv.org/abs/2108.01134
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Theorem (Patty and Penn, 2014)
Arrow’s IIA condition is equivalent to the condition of unilateral flip
independence: if two profiles are alike except that one voter flips one pair of
adjacent candidates on her ballot, then the defeat relations for the two profiles
can differ at most on the flipped candidates.

This theorem “demonstrates a fundamental basis of the normative appeal of IIA”
(p. 52, Penn and Patty, 2014).

However, unilateral flip independence makes the same mistake as IIA in ignoring
how context can affect the standard for defeat (let n = 1 and consider the middle
voter in the previous example).
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Maskin (2020) proposes a weakening of IIA called Modified IIA, which states for
all profiles P and P′, if P{x ,y} = P′{x ,y}, and for each voter i and candidate z , i
ranks z in between x and y in P if and only if i ranks z in between x and y in P′,
then x defeats y in P if and only if x defeats y in P′. (cf. Saari, 1994, 1995,
1998)
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Coherent IIA

Coherent IIA: if x defeats y in P,

and P′ is a profile such that

1. P|{x ,y} = P′|{x ,y} and

2. the margin graph of P′ is obtained from that of P by deleting zero or more
candidates other than x and y and deleting or reducing the margins on zero
or more edges not connecting x and y ,

then x still defeats y in P′.

Key idea: the operations described in 2 cannot increase cyclic incoherence.

Note: this is a variable-candidate axiom, so it is best compared to what we call
VIIA (see our “Axioms for Defeat in Democratic Elections”).



Coherent IIA

Coherent IIA: if x defeats y in P, and P′ is a profile such that

1. P|{x ,y} = P′|{x ,y}

and

2. the margin graph of P′ is obtained from that of P by deleting zero or more
candidates other than x and y and deleting or reducing the margins on zero
or more edges not connecting x and y ,

then x still defeats y in P′.

Key idea: the operations described in 2 cannot increase cyclic incoherence.

Note: this is a variable-candidate axiom, so it is best compared to what we call
VIIA (see our “Axioms for Defeat in Democratic Elections”).



Coherent IIA

Coherent IIA: if x defeats y in P, and P′ is a profile such that

1. P|{x ,y} = P′|{x ,y} and

2. the margin graph of P′ is obtained from that of P by deleting zero or more
candidates other than x and y and deleting or reducing the margins on zero
or more edges not connecting x and y ,

then x still defeats y in P′.

Key idea: the operations described in 2 cannot increase cyclic incoherence.

Note: this is a variable-candidate axiom, so it is best compared to what we call
VIIA (see our “Axioms for Defeat in Democratic Elections”).



Coherent IIA

Coherent IIA: if x defeats y in P, and P′ is a profile such that

1. P|{x ,y} = P′|{x ,y} and

2. the margin graph of P′ is obtained from that of P by deleting zero or more
candidates other than x and y and deleting or reducing the margins on zero
or more edges not connecting x and y ,

then x still defeats y in P′.

Key idea: the operations described in 2 cannot increase cyclic incoherence.

Note: this is a variable-candidate axiom, so it is best compared to what we call
VIIA (see our “Axioms for Defeat in Democratic Elections”).



Coherent IIA

Coherent IIA: if x defeats y in P, and P′ is a profile such that

1. P|{x ,y} = P′|{x ,y} and

2. the margin graph of P′ is obtained from that of P by deleting zero or more
candidates other than x and y and deleting or reducing the margins on zero
or more edges not connecting x and y ,

then x still defeats y in P′.

Key idea: the operations described in 2 cannot increase cyclic incoherence.

Note: this is a variable-candidate axiom, so it is best compared to what we call
VIIA (see our “Axioms for Defeat in Democratic Elections”).



Coherent IIA

Coherent IIA: if x defeats y in P, and P′ is a profile such that

1. P|{x ,y} = P′|{x ,y} and

2. the margin graph of P′ is obtained from that of P by deleting zero or more
candidates other than x and y and deleting or reducing the margins on zero
or more edges not connecting x and y ,

then x still defeats y in P′.

Key idea: the operations described in 2 cannot increase cyclic incoherence.

Note: this is a variable-candidate axiom, so it is best compared to what we call
VIIA (see our “Axioms for Defeat in Democratic Elections”).



Violations of Coherent IIA

2 3
c a
b c
a b

a c b1 5

1

Borda: c defeats a

2 3
c a
a c
x x

a c1

Borda winner: a defeats c



Violations of Coherent IIA

b a

c

d

3 3

11

3
3

Beat Path: d defeats b

b a

c

d

1 3

11

3
3

Beat Path: d doesn’t defeat b



Coherent IIA and acyclicity

Proposition
Coherent IIA implies Weak IIA.

There is an acyclic VCCR satisfying Coherent IIA: The Split Cycle defeat relation

W. Holliday and EP (2021). Axioms for Defeat in Democratic Elections. Forthcoming in Public
Choice.

W. Holliday and EP (2022). Axioms for Defeat in Democratic Elections. Journal of Theoretical
Politics, https://arxiv.org/pdf/2008.08451.pdf.

Y. Ding, W. Holliday and EP (2022). A Full Characterization of Split Cycle. manuscript.

https://arxiv.org/pdf/2008.08451.pdf
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There is an acyclic VCCR satisfying Coherent IIA: The Split Cycle defeat relation

W. Holliday and EP (2021). Axioms for Defeat in Democratic Elections. Forthcoming in Public
Choice.

W. Holliday and EP (2022). Axioms for Defeat in Democratic Elections. Journal of Theoretical
Politics, https://arxiv.org/pdf/2008.08451.pdf.

Y. Ding, W. Holliday and EP (2022). A Full Characterization of Split Cycle. manuscript.

https://arxiv.org/pdf/2008.08451.pdf


Social choice correspondence

A voting method is a function F on the domain of all profiles such that for any
profile P, ∅ 6= F (P) ⊆ X (P) (also called a variable social choice
correspondence VSCC).

I A (V ,X )-SCC is a social choice correspondence defined on (V ,X )-profiles.

I A voting method F is resolute if for all P, |F (P)| = 1. Resolute SCCs are
called social choice functions.

There are many examples of voting methods.

See https://pref_voting.readthedocs.io for a Python package that
provides computational tools to study different voting methods.

https://pref_voting.readthedocs.io
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Positional scoring rules

A scoring vector is a vector 〈s1, . . . , sn〉 of numbers such that for each
m ∈ {1, . . . , n − 1}, sm ≥ sm+1.

Given a profile P with |X (P)| = n, x ∈ X (P), a scoring vector ~s of length n, and
i ∈ V (P), define score~s(x ,Pi) = sr where r = Rank(x ,Pi).

Let score~s(x ,P) =
∑

i∈V (P) score~s(x ,Pi). A voting method F is a positional
scoring rule if there is a map S assigning to each natural number n a scoring
vector of length n such that for any profile P with |X (P)| = n,

F (P) = argmaxx∈X (P)scoreS(n)(x ,P).



Examples

Borda: S(n) = 〈n − 1, n − 2, . . . , 1, 0〉
Plurality: S(n) = 〈1, 0, . . . , 0〉
Anti-Plurality: S(n) = 〈1, 1, . . . , 1, 0〉

1 3 2 4
a b b c
c a c a
b c a b

Borda winner c
Plurality winner b
Anti-Plurality winner a



Iterative procedures: Instant Runoff

I If some alternative is ranked first by an absolute majority of voters, then it is
declared the winner.

I Otherwise, the alternative ranked first be the fewest voters (the plurality
loser) is eliminated.

I Votes for eliminated alternatives get transferred: delete the removed
alternatives from the ballots and “shift” the rankings (e.g., if 1st place
alternative is removed, then your 2nd place alternative becomes 1st).

Also known as Ranked-Choice, STV, Hare

How should you deal with ties? (e.g., multiple alternatives are plurality losers)



Iterative procedures

Variants:

I Plurality with runoff: remove all candidates except top two plurality score;

I Coombs: remove candidates with most last place votes;

I Baldwin: remove candidate with smallest Borda score;

I Nanson: remove candidates with below average Borda score



Example

1 1 1 1 1
c b a b d
a d b c a
d a c d b
b c d a c

Instant Runoff {b}
Plurality with Runoff {a, b}

Coombs {d}
Baldwin {a, b, d}

Strict Nanson {a}



Condorcet criteria

The Condorcet winner in a profile P is a candidate x ∈ X (P) that is the
maximum of the majority ordering, i.e., for all y ∈ X (P), if x 6= y , then
MarginP(x , y) > 0.

The Condorcet loser in a profile P is a candidate x ∈ X (P) that is the minimum
of the majority ordering, i.e., for all y ∈ X (P), if x 6= y , then MarginP(y , x) < 0.

A voting method F is Condorcet consistent, if for all P, if x is a Condorcet
winner in P, then F (P) = {x}.

A voting method F is susceptible to the Condorcet loser paradox (also known
as Borda’s paradox) if there is some P such that x is a Condorcet loser in P and
x ∈ F (P).



Condorcet paradox

n n n
a b c
b c a
c a b c b

a

n

n

n



20 13 21 14 22 10
a a c b b c
c b b a c a
b c a c a b a b

c

6 2

14

Condorcet winner: c

Instant Runoff winner: b

Plurality winner: b

Borda winner: b



Theorem (Smith 1973, Young 1974)
A voting method satisfies Anonymity, Neutrality and Reinforcement if and only
if F is a scoring rule.

Saari’s argument, Balinski and Laraki (2010, pg. 77); Zwicker (2016, Proposition
2.5): Multiple districts paradox, f cancels properly.

2 2 2
a b c
b c a
c a b

1 2
a b
b a
c c

I no Condorcet winner in the left profile

I b is the Condorcet winner in the right profile

I a is the Condorcet winner in the combined profiles



Condorcet consistent voting methods

I Minimax

I Copeland

I Beat Path

I Ranked Pairs

I Split Cycle



Minimax: For a profile P, The Minimax winners in P are:

argminx∈X (P)max{MarginP(y , x) | y ∈ X (P)}

Copeland/Llull: For α ∈ [0, 1], the Copelandα score of a in P is the number of
b ∈ X (P) such that MarginP(a, b) > 0 plus α times the number of b ∈ X (P)
such that MarginP(a, b) = 0. Copeland(P) (resp. Llull(P)) is the set of
candidates with maximal Copeland1/2 (resp. Copeland1) score in P.



Schulze Beat Path

For a, b ∈ X (P), a path from a to b in P is a sequence ρ = x1, . . . , xn of distinct
candidates in X (P) with x1 = a and xn = b such that for 1 ≤ k ≤ n − 1,
MarginP(xk , xk+1) > 0.

The strength of ρ is min{MarginP(xk , xk+1) | 1 ≤ k ≤ n − 1}.

Then a defeats b in P according to Beat Path if the strength of the strongest
path from a to b is greater than the strength of the strongest path from b to a.

BP(P) is the set of undefeated candidates.



Tideman Ranked Pairs, I

For a profile P and T ∈ L
(
{(x , y) | x 6= y and MarginP(x , y) ≥ 0}

)
, called the

tie-breaking ordering

A pair (x , y) of candidates has a higher priority than a pair (x ′, y ′) of candidates
according to T when either MarginP(x , y) > MarginP(x ′, y ′) or
MarginP(x , y) = MarginP(x ′, y ′) and (x , y) T (x ′, y ′).



Tideman Ranked Pairs, II

We construct a Ranked Pairs ranking �P,T ∈ L(X ) as follows:

1. Initialize �P,T to ∅.

2. If all pairs (x , y) with x 6= y and MarginP(x , y) ≥ 0 have been considered,
then return �P,T . Otherwise let (a, b) be the pair with the highest priority
among those with a 6= b and MarginP(a, b) ≥ 0 that have not been
considered so far.

3. If �P,T ∪{(a, b)} is acyclic, then add (a, b) to �P,T ; otherwise, add (b, a)
to �P,T . Go to step 2.

When the procedure terminates, �P,T is a linear order.

The set RP(P) of Ranked Pairs winners is the set of all x ∈ X (P) such that x is
the maximum of �P,T for some tie-breaking ordering T .



Split Cycle

Split Cycle defeat: a candidate a defeats a candidate b just in case

I the majority margin of a over b is greater than 0, and

I for every majority cycle containing a and b, the margin of a over b is greater
than the smallest margin between consecutive candidates in the cycle.

The Split Cycle winners are the undefeated candidates.

An intuitive way defeat relation is as follows:

1. In each majority cycle, identify the wins with the smallest margin in that
cycle.

2. After completing step 1 for all cycles, discard the identified wins. All
remaining wins count as defeats.



Example

a c

b

d

11

1

13

5

9

7

Minimax: {d}
Copeland: {a, b}

Beat Path: {d}
Ranked Pairs: {b}

Split Cycle: {b, d}



We are interested in voting methods that:

1. respond in a reasonable way to new candidates joining the election;

2. respond in a reasonable way to new voters joining the election.



Key idea: Unequivocal increase in support for a candidate should not result in
that candidate going from being a winner to being a loser.

1. monotonicity : if a candidate x is a winner given a preference profile P, and
P′ is obtained from P by one voter moving x up in their ranking, then x
should still be a winner given P′.
(fixed-electorate axiom)

2. positive involvement: if a candidate x is a winner given P, and P∗ is
obtained from P by adding a new voter who ranks x in first place, then x
should still be a winner given P∗.
(variable-electorate axiom)



More-is-Less Paradox: Instant Runoff

6 5 4 2

a c b b

b a c a

c b a c

Instant Runoff Winner: a

6 5 4 2

a c b a

b a c b

c b a c

Instant Runoff Winner: c
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Violating Positive Involvement: Coombs

2 2 1 1 2 1 1
c b d d c a b
a a c a b d d
b c b c d b a
d d a b a c c

Coombs winner: {b}
(the order of elimination is d , c)

2 2 1 1 2 1 1 1
c b d d c a b b
a a c a b d d d
b c b c d b a c
d d a b a c c a

Coombs winner: {c}
(a and d are tied for the most last

place votes)



Breaking Ties

There are many tiebreaking rules: non-anonymous, non-neutral, random

Parallel universe tiebreaking: x is a winner if x wins according to some
tiebreaking rule.

S. Obraztsova, E. Elkind and N. Hazon. Ties Matter: Complexity of Voting Manipulation Revis-
ited. Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.

J. Wang, S. Sikdar, T. Shepherd, Z. Zhao, C. Jiang and L. Xia. Practical Algorithms for Multi-
Stage Voting Rules with Parallel Universes Tiebreaking. Proceedings of AAAI, 2019.



Violating Positive Involvement: Coombs PUT

1 1 1 1 1
a c b c d
c d d a b
b b a b a
d a c d c

Coombs winner: {a, b}

1 1 1 1 1 1
a c b c d a
c d d a b d
b b a b a b
d a c d c c

Coombs winner: {b, d}



No Show Paradox

The term “No Show Paradox” was introduced by Fishburn and Brams for
violations of what is now called negative involvement: Adding a new voter who
ranks a candidate last should not result in the candidate going from being a loser
to a winner.

P. Fishburn and S. Brams. Paradoxes of Preferential Voting. Mathematics Magazine, 56(4), pp.
207 - 214, 1983.

D. Saari. Basic Geometry of Voting. Springer, 1995.



No Show Paradox

Moulin changed the meaning of “No Show Paradox” to refer to violations of
participation: A resolute voting method satisfies participation if adding a new
voter who ranks x above y cannot result in a change from x being the unique
winner to y being the unique winner.

H. Moulin. Condorcet’s Principle Implies the No Show Paradox. Journal of Economic Theory
45(1), pp. 53 - 64, 1988.



No Show Paradox

Peréz concludes that the Strong No Show Paradox is a common flaw of many
Condorcet consistent voting methods, which are methods that always pick a
Condorcet winner—a candidate who is majority preferred to every other
candidate—if one exists.

J. Pérez. The Strong No Show Paradoxes are a common flaw in Condorcet voting correspon-
dences. Social Choice and Welfare 18(3), pp. 601 - 616, 2001.



Violating Positive Involvement: Copeland

2 1 1
e c a
c b d
b a b
a d e
d e c

b

c

a

d

e

Copeland winners: {c}

2 1 1
e c a c
c b d e
b a b d
a d e c
d e c a

b

c

a

d

e

Copeland winners: {e}



Violating Positive Involvement: Beat Path

1 1 1 1 2 1 1 1 1 1
a d c c a b a d d b
d c a b c d b c b a
c b b d b c d a c d
b a d a d a c b a c

a

b d

c

1 1

3

3

1

3

Beat Path winners: {a, b, c , d}

1 1 1 1 2 1 1 1 1 1 1
a d c c a b a d d b b
d c a b c d b c b a a
c b b d b c d a c d c
b a d a d a c b a c d

a

b d

c

2

4

2 2

Beat Path winners: {a}



A logic for resolute social choice correspondences

G. Ciná and U. Endriss. Proving classical theorems of social choice theory in modal logic.
Autonomous Agents and Multi-Agent Systems, 30, pp. 963 - 989, 2016.

N. Troquard, W. van der Hoek, and M. Wooldridge. Reasoning about social choice functions.
Journal of Philosophical Logic 40(4), 473 - 498 (2011).

T. Agotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment
aggregation. Journal of Autonomous Agents and Multiagent Systems 22(1), 4 - 30 (2011).



Language

Atomic Propositions:

I Pref [V ,X ] := {pi
x�y | i ∈ V , x , y ∈ X} is the set of preference atomic

propositions, where pi
x�y means i prefers y to x .

I Each x ∈ X is an atomic proposition.

Modality:

I ♦Cϕ: C can ensure the truth of ϕ.

p | ¬ϕ | ϕ ∧ ψ | ♦Cϕ



Language

Atomic Propositions:

I Pref [V ,X ] := {pi
x�y | i ∈ V , x , y ∈ X} is the set of preference atomic

propositions, where pi
x�y means i prefers y to x .

I Each x ∈ X is an atomic proposition.

Modality:

I ♦Cϕ: C can ensure the truth of ϕ.

p | ¬ϕ | ϕ ∧ ψ | ♦Cϕ



Model

A model is a triple M = 〈N ,X ,F 〉, consisting of a finite set of agents N (with
n = |N |), a finite set of alternatives X , and a resolute SCC F : L(X )V → X .

A world is a profile (P1, . . . ,Pn)



Truth

Let w = (P1, . . . ,Pn)

I M ,w |= pi
x�y iff xPiy

I M ,w |= x if and only if F (P1, . . . ,Pn) = x

I M ,w |= ¬ϕ if and only if M ,w 6|= ϕ

I M ,w |= ϕ ∧ ψ if and only if M ,w |= ϕ and M ,w |= ψ

I M ,w |= ♦Cϕ if and only if M ,w ′ |= ϕ for some w ′ = (P′1, . . . ,P
′
n) with

Pj = P′j for all j ∈ N − C .



(1) pi
x�x

(2) pi
x�y ↔ ¬pi

y�x for x 6= y

(3) pi
x�y ∧ pi

y�y → pi
x�z

balloti(w) = pi
x1�x2 ∧ · · · ∧ pi

xm−1�xm

profile(w) = ballot1(w) ∧ · · · ∧ ballotn(w)



(1) pi
x�x

(2) pi
x�y ↔ ¬pi

y�x for x 6= y

(3) pi
x�y ∧ pi

y�y → pi
x�z

balloti(w) = pi
x1�x2 ∧ · · · ∧ pi

xm−1�xm

profile(w) = ballot1(w) ∧ · · · ∧ ballotn(w)



8 Giovanni Ciná, Ulle Endriss

We write Nw
x<y to denote both the set of agents and the formula; the context will

disambiguate the intended meaning. Note that
V

x,y2X Nw
x<y is logically equivalent to

profile(w): this reflects the fact that a profile can either be presented by specifying
the preferences of each individual or by specifying the sets of agents preferring one
alternative over another, for all pairs of alternatives.

For any two alternatives x,y 2 X , we define profile(w)(x,y) as the formula fixing
the relative ordering of x and y for all agents as in profile w:

profile(w)(x,y) := Nw
x<y ^Nw

y<x

This formula will be used to express the fact that two profiles ‘agree’ on the prefer-
ences concerning the alternatives x and y.

We now state the remaining axioms defining the logic L[N,X ]:

(4) all propositional tautologies
(5) 2i(j ! y) ! (2ij !2iy) (K(i))
(6) 2ij ! j (T(i))
(7) j !2i3ij (B(i))
(8) 3i2 jj $2 j3ij (confluence)
(9) 2C12C2 j $2C1[C2j (union)

(10) 2 /0j $ j (empty coalition)
(11) (3i p^3i¬p) ! (2 j p_2 j¬p), where i 6= j (exclusiveness)
(12) 3iballoti(w) (ballot)
(13) 3C1d1 ^3C2d2 !3C1[C2(d1 ^d2) (cooperation)
(14)

W
x2X (x^Vy2X\{x} ¬y) (resoluteness)

(15) (profile(w)^j) !2N(profile(w) ! j) (functionality)

Here j and y range over arbitrary formulas, x over atomic propositions in X , i and
j over agents, C1 and C2 over coalitions, and w over profiles. In axiom (11), p is
ranging only over atomic propositions in the set Pref [N,X ], and in axiom (13) d1 and
d2 do not contain any common atoms.

Axioms (4)–(8) describe well-known properties of normal modal logics [6]. Ax-
iom (9) describes the capability of a coalition to enforce a certain formula in terms of
the capabilities of its sub-coalitions. Axiom (10) states that the empty coalition cannot
enforce any formula. Axiom (11) enforces a division among the atomic propositions
of the shape pi

x<y: if an atom is controlled by an agent i, then other agents cannot
change its value. Axiom (12) ensures that every agent can express every possible
preference. Due to axiom (13), if two formulas d1 and d2 do not contain a common
atom and two coalitions C1 and C2 can each enforce one of the formulas, then the
joint coalition can enforce the conjunction d1 ^ d1. Axiom (14) expresses that any
outcome associated with a profile must be a single winning alternative. Thus, this
axioms encodes the resoluteness of the SCF in question. Finally, axiom (15) ensures
that every profile is associated with a single outcome, i.e., it encodes the fact that the
SCF being modelled must be a function.

The inference rules of the logic are modus ponens and necessitation w.r.t. all
modalities of the form 2i [6]:

– (MP) from j ! y and j , infer y



Theorem (Ciná and Endriss) The logic L[V ,X ] is sound and complete w.r.t. the
class of models of resolute social choice correpsondences.



Pareto

Par :=
∧

x∈X

∧

y∈X−{x}

[(∧

i∈N

pi
x�y

)
→ ¬y

]



IIA

IIA :=
∧

w∈L(X )n

∧

x∈X

∧

y∈X−{x}

[♦V (profile(w) ∧ x)→ (profile(w)(x , y)→ ¬y)]

I Nw
x�y =

∧{pi
x�y | xPiy in w}

I profile(w)(x , y) := Nw
x�y ∧ Nw

y�x



Dictatorship

Dic :=
∨

i∈N

∧

x∈X

∧

y∈X−{x}

(pi
x�y → ¬y)



Arrow’s Theorem

Theorem (Ciná and Endriss) Consider a logic L[V ,X ] with a language
parameterised by X such that |X | > 3. Then we have:

` Par ∧ IIA→ Dic



Strong Monotonicity

SM :=
∧

w∈L(X )n

∧

x∈X


♦V (profile(w) ∧ x) ∧


 ∧

y∈X\{x}

Nw
x�y


→ x






Surjectivity

Sur :=
∧

x∈X

∧

w∈L(X )V

♦V (profile(w) ∧ x)



Theorem (Ciná and Endriss) Consider a logic L[V ,X ] with a language
parameterised by X such that |X | ≥ 3. Then we have:

` SM ∧ Sur → Dic


