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Social Choice Theory

“Social choice theory is the study of collective decision processes and procedures.
It is not a single theory, but a cluster of models and results concerning the
aggregation of individual inputs (e.g., votes, preferences, judgments, welfare) into
collective outputs (e.g., collective decisions, preferences, judgments, welfare).”

C. List. Social Choice Theory. Stanford Encyclopedia of Philosophy, 2013.

http://plato.stanford.edu/entries/social-choice/
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Profiles

Fix infinite sets V and X of voters and candidates, respectively.

Definition
Given nonempty finite V ⊆ V and X ⊆ X , a (V ,X )-profile is a function P
assigning to each i ∈ V a binary relation Pi on X .

We write V (P) for P’s set of voters and X (P) for P’s set of candidates.
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Collective choice rules

Definition
A (V ,X )-collective choice rule (or (V ,X )-CCR) is a function f such that for
any (V ,X )-profile P ∈ dom(f ), f (P) is a binary relation on X .

We assume that f (P) is at least asymmetric, reflecting our interpretation of
(x , y) ∈ f (P) as meaning that x is strictly socially preferred to y , or x defeats y .
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Preferences (Rankings)

Suppose that B ⊆ X × X is a binary relation.

asymmetry: if xBy , then not yBx ;

negative transitivity: if xBy , then xBz or zBy .



Negative transitivity

if xBy , then xBz or zBy

Negative transitivity is equivalent to the condition that if not xBz and not zBy ,
then not xBy , which explains the name.

Together negative transitivity and asymmetry imply that B is transitive:

transitivity: if xBy and yBz , then xBz .
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B is a strict weak order if and only if B satisfies asymmetry and negative
transitivity

B is a strict linear order if and only if it satisfies asymmetry, transitivity, and
weak completeness: for all x , y ∈ X , if x 6= y , then xBy or yBx .

B(X ) is the set of all asymmetric binary relations on X ;

O(X ) is the set of all strict weak orders on X ;

L(X ) is the set of all strict linear orders on X .
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Non-compariability

Let xNy if and only if neither xBy nor yBx . We call N the relation of
non-comparability.

If B is a strict weak order, then N satisfies the following for all x , y , z ∈ X :

transitivity of non-comparability: if xNy and yNz , then xNz .



Profiles

A (V ,X )-profile P of strict weak orders is an element of O(X )V , i.e., a function
assigning to each i ∈ V a relation Pi ∈ O(X ).

For x , y ∈ X , let:

P(x , y) = {i ∈ V | xPiy};

P|{x ,y} = the function assigning to each i ∈ V

the relation Pi ∩ {x , y}2.



Postulates: Domain conditions

universal domain (UD): dom(f ) = O(X )V .

f : O(X )V → B(X )

linear domain (LD): dom(f ) = L(X )V .

f : L(X )V → B(X )
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Postulates: Codomain conditions (rationality postulates)

transitive rationality (TR): for all P ∈ dom(f ), f (P) is transitive.

full rationality (FR): for all P ∈ dom(f ), f (P) is a strict weak order.



Interprofile conditions

independence of irrelevant alternatives (IIA): for all P,P′ ∈ dom(f ) and
x , y ∈ X , if P|{x ,y} = P′

|{x ,y}, then xf (P)y if and only if xf (P′)y .



Postulates: Decisiveness conditions

Pareto (P): for all P ∈ dom(f ) and x , y ∈ X , if P(x , y) = V , then xf (P)y .

dictatorship: there is an i ∈ V such that for all P ∈ dom(f ) and x , y ∈ X , if
xPiy , then xf (P)y .



Arrow’s Theorem

Theorem (Arrow, 1951) Assume that |X | ≥ 3 and V is finite. Then any
(V ,X )-CCR satisfying UD, IIA, FR, and P is a dictatorship.

K. Arrow. Social Choice and Individual Values. Yale University Press (1951, 2nd ed., 1963, 3rd
ed., 2012).



M. Morreau (2019). Arrow’s Theorem. Stanford Encyclopedia of Philosophy, https://plato.
stanford.edu/entries/arrows-theorem/.

J. S. Kelly (1978). Arrow Impossibility Theorems. New York: Academic Press.

Eric Maskin and Amartya Sen (2014). The Arrow Impossibility Theorem. (Kenneth J. Arrow
Lecture Series), Columbia University Press.

J. Geanakoplos (2005). Three brief proofs of Arrow’s Impossibility Theorem. Economic Theory,
26, pp. 211 - 215.

https://plato.stanford.edu/entries/arrows-theorem/
https://plato.stanford.edu/entries/arrows-theorem/
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Decisive coalitions

Much of the literature on Arrow’s Impossibility Theorem is focused on reasoning
about decisive coalitions of voters.

W. Holliday and EP (2020). Arrow’s Decisive Coalitions. Social Choice and Welfare Social, 54,
pp. 463 - 505.

The goal of this paper is a fine-grained analysis of reasoning about decisive
coalitions, formalizing how the concept of a decisive coalition gives rise to a
social choice theoretic language and logic all of its own.
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Decisive coalitions

A coalition A ⊆ V is decisive for x over y according to f if for all
(V ,X )-profiles P, if xPiy for all i ∈ A, then xf (P)y .
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Decisive representation

Definition
Let f be a (V ,X )-CCR.

Define Df : X 2 → ℘(℘(V )) as follows:

Df (x , y) = {A ⊆ V | A is decisive for x over y according to f }.

Definition
A function D : X 2 → ℘(℘(V )) is decisively represented by a (V ,X )-CCR f if
D = Df .

Definition
Let K be a class of (V ,X )-CCRs. A function D : X 2 → ℘(℘(V )) is decisively
representable in K if D is decisively represented by some f ∈ K .
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Theorem (H. and Pacuit 2020)
Let V and X be nonempty sets with |X | ≥ 3. A function D : X 2 → ℘(℘(V )) is
decisively representable in the class of (V ,X )-CCRs satisfying IIA and transitivity
(resp. the SWF condition) if and only if

for all A,B ,C ⊆ V and x , y , z ∈ X with
x 6= y , y 6= z , and x 6= z :

1. A ∈ D(x , x) if and only if A 6= ∅;

2. if A ∈ D(x , y) and A ∩ B = ∅, then B 6∈ D(y , x);

3. for transitive CCRs: if A ∈ D(x , y), B ∈ D(y , z), and A ∩ B ⊆ C ⊆ A ∪ B ,
then C ∈ D(x , z);

4. for SWFs: if A ∈ D(x , y) and B ∩ C ⊆ A ⊆ B ∪ C , then B ∈ D(x , z) or
C ∈ D(z , y);

5. if A ∈ D(x , y) and A ⊆ B , then B ∈ D(x , y).
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Complete logics and formal proofs

We turn the representation theorem on the previous slide into a completeness
theorem for a formal logic for reasoning about decisive coalitions, using atomic
formulas of the form Dx>y (t) where t is a Boolean algebraic term.

In the semantics, we evaluate formulas at CCRs: f |= ϕ.
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Language, I

Let Coal be a nonempty set, called the set of coalition labels. The set Term of
coalition terms is generated by the following grammar:

t := a | 0 | 1 | −t | (t u t) | (t t t)

where a ∈ Coal.



Language, II

Let Alt be a set with |Alt| = |X |, called the set of alternative labels. The set
Form of formulas is generated by the following grammar:

ϕ ::= t ≡ t | Dx>y (t) | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ)

where t ∈ Term and x , y ∈ Alt.

We define the following abbreviation:

(s v t) := s u t ≡ s

D(t) :=
∧

x ,y∈Alt, x 6=y

Dx>y (t),



Semantics, I

Definition. A coalition labeling is a function α mapping each coalition label to
a subset of V , i.e., α : Coal→ ℘(V ). We extend α to a function
α̇ : Term→ ℘(V ) as follows:

1. α̇(a) = α(a) for a ∈ Coal;

2. α̇(0) = ∅;

3. α̇(1) = V ;

4. α̇(−t) = α̇(t)c ;

5. α̇(s u t) = α̇(s) ∩ α̇(t);

6. α̇(s t t) = α̇(s) ∪ α̇(t).



Semantics, II

Definition. An alternative labeling is a function β mapping each alternative
label to an element of X , i.e., β : Alt→ X .



Semantics, III

Definition. Let f be a CCR, α a coalition labeling, and β an alternative
labeling. We inductively define the notion of a formula ϕ being true of f relative
to α, β (notation: f |=α,β ϕ) as follows:

1. f |=α,β s ≡ t if and only if α̇(s) = α̇(t);

2. f |=α,β Dx>y (t) if and only if α̇(t) ∈ Df (β(x), β(y));

3. f |=α,β ¬ϕ if and only if f 6|=α ϕ;

4. f |=α,β ϕ ∧ ψ if and only if f |=α,β ϕ and f |=α,β ψ;

5. f |=α,β ϕ ∨ ψ if and only if f |=α,β ϕ or f |=α,β ψ;

6. f |=α,β ϕ→ ψ if and only if f 6|=α,β ϕ or f |=α,β ψ.



Semantics, III

We say that ϕ is simply true of f if and only if ϕ is true of f relative to every
coalition labeling and alternative labeling.



Since the semantics supplies a notion of a formula ϕ being true of a CCR f , for
any class K of CCRs we can ask the following key logical question:

Is there a finite formal calculus for deriving all and only the formulas that are
true of all CCRs in K?



Logic, I

A decisiveness logic is any set L of formulas—called the theorems of L—that
contains all instances of the following axioms 1–3 and is closed under rules 4 and
5:

1. all valid equations s ≡ t;

2. Leibniz’s law s ≡ t → (ϕ[s/u]↔ ϕ[t/u]), where ψ[u′/u] is the result of
replacing all occurrences in ψ of the term u by the term u′;

3. all tautologies of propositional logic;

4. if ϕ and ϕ→ ψ are theorems of L, then ψ is a theorem of L;

5. if ϕ is a theorem of L, then so is any formula obtained from ϕ by uniformly
substituting coalition terms for coalition labels in ϕ, or by uniformly
substituting alternative labels that do not occur in ϕ for alternative labels in
ϕ.



Logic, III

Let T be the smallest decisiveness logic that contains the following axioms for
a, b, c ∈ Coal and x , y , z ∈ Alt such that x 6= y , x 6= z , and y 6= z :

1. Dx>x(a)↔ ¬(a ≡ 0);

2. (Dx>y (a) ∧ ((a u b) ≡ 0))→ ¬Dy>x(b);

3. (Dx>y (a) ∧ (a v b))→ Dx>y (b);

4. transitivity axiom:(
Dx>y (a) ∧ Dy>z(b) ∧ (a u b v c) ∧ (c v a t b)

)
→ Dx>z(c).

Let W be the smallest decisiveness logic that contains the axioms of T as well as
the following for a, b, c ∈ Coal and x , y , z ∈ Alt such that x 6= y , x 6= z , and
y 6= z :

5. negative transitivity axiom:(
Dx>y (a) ∧ (b u c v a) ∧ (a v b t c)

)
→
(
Dx>z(b) ∨ Dz>y (c)

)
.



Soundness and Completeness Theorems

1. Soundness: if ϕ is a theorem of T (resp. W), then for any nonempty set V ,
ϕ is true of all CCRs satisfying UD, IIA, and TR (resp. FR), according to
the decisiveness semantics.

2. Completeness: if for any finite nonempty sets V , ϕ is true of all CCRs
satisfying UD, IIA, and TR (resp. FR), then ϕ is a theorem of T (resp. W),
according to the decisiveness semantics.

3. The set of theorems of T (resp. W) is decidable.



Existential assumptions, I

Pareto := D(1).

Yet we are also interested in weaker assumptions (implied by Pareto, assuming
UD).

Let the existential assumption (EA) be

EA :=
∧

x ,y∈Alt

Dx>y (cx ,y ).



Existential assumptions, II

Let the weak existential assumption (WEA) be

WEA :=
∧

x ,y∈Alt, x 6=y

¬Dx>y (cx ,y ).

If we interpret D as decisiveness, then WEA is equivalent to the well-known
condition of

non-imposition (NI): a CCR f satisfies non-imposition if and only if for every
x , y ∈ X , there exists a profile P ∈ dom(f ) such that not xf (P)y .



Existential assumptions, III

Finally, let non-emptiness (NE) be

NE := Ds>t(e).

Note that EA implies WEA and NE, but not vice versa.



We use the logic to give formal proofs of Arrow’s Impossibility Theorem and
some generalizations, which closely match how social choice theorists reason.

By a “formal proof of Arrow’s Theorem” here we mean formal proofs of the
formulas expressing that the family of decisive coalitions is an ultrafilter .

That is the social-choice theoretic content of Arrow’s proof, and then some basic
set theory—any ultrafilter on a finite set is principal—delivers the dictatorship.
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Transitivity Axiom

(
Dx>y (a) ∧ Dy>z(b) ∧ (a u b v c ) ∧ ( c v a t b)

)
→ Dx>z( c )

(
D x > y (a) ∧ D y > z (b) ∧ (a u b v c) ∧ (c v a t b)

)
→ D x > z (c)



Intersection

(
Dx>y (a) ∧ Dy>z(b) ∧ (a u b v a u b ) ∧ ( a u b v a t b)

)
→ Dx>z( a u b )

Lemma. Assume x 6= y , y 6= z , and x 6= z .

`T
(
Dx>z(a) ∧ Dz>y (b)

)
→ Dx>y (a u b).

Proof.

1.
(
Dx>y (a) ∧ Dy>z(b) ∧ (a u b v a u b) ∧ (a u b v a t b)

)
→ Dx>z(a u b)

2. (a u b v a u b) ∧ (a u b v a t b), true Boolean inequalities

3.
(
Dx>z(a) ∧ Dz>y (b)

)
→ Dx>y (a u b) from (1) and (2).



1. `T EA→ ((D(a) ∧ D(b))→ D(a u b)).

2. `T D(1)→ ((D(a) ∧ D(b))→ D(a u b)).



Contagion Lemma from EA(
Dx>y (a) ∧ Dy>v (c) ∧ (a u c v a ) ∧ ( a v a t c)

)
→ Dx>v ( a )

Lemma Assume x 6= y , x 6= v , y 6= v , x 6= w , and y 6= w .

1. `T Dy>v (c)→
(
Dx>y (a)→ Dx>v (a)

)
.

2. `T Dw>x(c)→
(
Dx>y (a)→ Dw>y (a)

)
.

For part 1, we have:

1.
(
Dx>y (a) ∧ Dy>v (c) ∧ (a u c v a) ∧ (a v a t c)

)
→ Dx>v (a), instance of

transitivity axiom

2. (a u c v a) ∧ (a v a t c), valid Boolean inequalities

3.
(
Dx>y (a) ∧ Dy>v (c)

)
→ Dx>v (a) from 1 and 2 by propositional logic

4. Dy>v (c)→
(
Dx>y (a)→ Dx>v (a)

)
from 3 by propositional logic.



The proof for part 2 is analogous, starting with:

(1′)
(
Dw>x(c) ∧ Dx>y (a) ∧ (c u a v a) ∧ (a v c t a)

)
→ Dw>y (a), instance of

transitivity axiom.



Contagion Lemma from Pareto

Lemma. Assume x 6= y .

1. `T EA→ (Dx>y (a)→ D(a)).

2. `T D(1)→ (Dx>y (a)→ D(a)).



Filter Lemmas

I `T D(1)→
(
(D(a) ∧ a v b)→ D(b)

)
.

I `T D(1)→
(
D(a u b)→ (D(a) ∧ D(b))

)
.

I `T D(1)→ ¬D(0).

I Ultrafilter Lemma `W (WEA ∧ NE )→ (D(a) ∨ D(−a)).



Arrow’s Theorem

In the logic W, we have:

1. `W D(1)→ ¬D(0);

2. `W D(1)→ (D(a) ∨ D(−a));

3. `W D(1)→
(
D(a u b)↔ (D(a) ∧ D(b))

)
.



Stronger Arrow’s Theorem

In the logics T and W, we have:

1. `T D(1)→ ¬D(0);

2. `W (WEA ∧ NE )→ (D(a) ∨ D(−a));

3. `T EA→
(
(D(a) ∧ D(b))→ D(a u b)

)
and

`W WEA→
(
(D(a) ∧ D(b))→ D(a u b)

)
;

4. `T D(1)→
(
D(a u b)→ (D(a) ∧ D(b))

)
.



I Other notions of decisiveness and related impossibility theorems

I Escaping impossibility



Decisive coalitions

A coalition A ⊆ V is decisive for x over y according to f if for all
(V ,X )-profiles P, if xPiy for all i ∈ A, then xf (P)y .

Voters

A
x
y

f
=⇒

Social Relation

x
y

A is decisive according to f if for all distinct x , y , A is decisive for x over y .



Almost decisive coalitions
A coalition A is almost decisive for x over y according to f if and only if for
all P ∈ dom(f ), if A = P(x , y) and Ac = P(y , x), then xf (P)y

Voters

A

P(x , y) P(y , x)

x
y

y
x

f
=⇒

Group Ranking

x
y

A is almost decisive according to f if for all distinct x , y , A is almost decisive
for x over y .



Another Representation Theorem

Theorem Let X and V be nonempty sets with |X | ≥ 3. A function
D : X 2 → ℘(℘(V )) is almost-decisively representable in the class of CCRs for
〈X ,V 〉 satisfying LD, IIA, and TR (resp. FR) if and only if for all A,B ,C ⊆ V
and x , y , z ∈ X with x 6= y , y 6= z , and x 6= z :

1. A ∈ D(x , x);

2. if A ∈ D(x , y), then Ac 6∈ D(y , x);

3. for TR: if A ∈ D(x , y), B ∈ D(y , z), and A ∩ B ⊆ C ⊆ A ∪ B , then
C ∈ D(x , z);

4. for FR: if A ∈ D(x , y) and B ∩ C ⊆ A ⊆ B ∪ C , then B ∈ D(x , z) or
C ∈ D(z , y).



Almost decisive logics

Sound and complete logic with respect to the almost decisiveness semantics,
defined as above except with a modified clause for D:

2.′ f |=α,β Dx>y (t) if and only if α̇(t) ∈ D̂f (β(x), β(y)).



Oligarchies

Let f be a CCR for 〈X ,V 〉. For any x , y ∈ X and A ⊆ V :

A is almost semi-decisive for x over y according to f if and only if for
all P ∈ dom(f ), if A = P(x , y) and Ac = P(y , x), then not yf (P)x ;

Sx>y (a) := ¬Dy>x(−a)

S(a) :=
∧

x ,y∈Alt

Sx>y (a).



Oligarchies

Let f be a CCR and A ⊆ V .

1. A is an almost oligarchy according to f if and only if A is almost decisive
according to f and for each i ∈ A, {i} is almost semi-decisive according to f .

Theorem Assume that |X | ≥ 3 and V is finite. If a CCR f satisfies UD, IIA, EA,
and TR, then there exists a strong almost oligarchy according to f .

A. Gibbard (2014). Intransitive social indifference and the Arrow dilemma. Review of Economic
Design, 18, pp. 3 - 10.



Inverse Decisiveness

Let f be a CCR for 〈X ,V 〉. For any x , y ∈ X and A ⊆ V :

1. A is almost inversely decisive for x over y according to f if and only if for all
P ∈ dom(f ), if A = P(x , y) and Ac = P(y , x), then yf (P)x ;

2. A is inversely decisive for x over y according to f if and only if for all
P ∈ dom(f ), if A ⊆ P(x , y), then yf (P)x ;

Ix>y (a) := Dy>x(−a);

I (a) := D(−a).



Almost Wilson’s Theorem

In the logics T and W, we have:

1. `W (WEA ∧ NE )→ (D(1) ∨ I (1));

2. `W D(1)→ (D(a) ∨ D(−a));

3. `T D(1)→
(
D(a u b)↔ (D(a) ∧ D(b))

)
;

4. `W I (1)→ (I (a) ∨ I (−a));

5. `T I (1)→
(
I (a u b)↔ (I (a) ∧ I (b))

)
.

R. Wilson (1972). Social choice theory without the Pareto principle. Journal of Economic
Theory, 5, pp. 478 - 486.



Dropping IIA

So far, all of our results have assumed IIA. We show how our approach can be
applied in a setting without IIA, namely the setting of Sen’s Impossibility
Theorem concerning the “Paretian liberal”



Dropping IIA

For any S ⊆ N:

I ARS : for any P ∈ dom(f ) and n ∈ S , there are no distinct x0, . . . , xn ∈ X
such that for all k < n, xk f (P)xk+1 and xnf (P)x0.

Theorem (Sen’s Impossibility Theorem)

`A{1,2,3}
EA→ ¬

(
Dx>y (a) ∧ Dy>x(a) ∧ Dz>w (b) ∧ Dw>z(b) ∧ (a u b ≡ 0)

)
.

A. Sen (1970). The impossibility of a Paretian liberal. Journal of Political Economy, 78(1), pp.
15 - 157.



Escaping impossibility

Key assumptions in Arrow’s Theorem:

I The number of voters is finite

P. Fishburn (1970). Arrow’s impossibility theorem: concise proof and infinitely many
voters. Journal of Economic Theory, 2, pp. 103 - 106.

I Universal domain

W. Gaertner (2001). Domain Conditions in Social Choice Theory. Cambridge University
Press.

E. Elkind, M. Lackner, and D. Peters (2022). Preference Restrictions in Computational
Social Choice: A Survey. https://arxiv.org/abs/2205.09092.

I There are at least 3 alternatives

I IIA

https://arxiv.org/abs/2205.09092

