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M. Pivato. Voting rules as statistical estimators. Social Choice and Welfare, 40:581 - 630, 2013.



S is a set of states where s∗ ∈ S is the unknown true state.

I i s a collection of voters

X is a set of outcomes (alternatives, rankings, judgements, etc.) and V is a set
of signals, or votes.

A profile is an element v ∈ VI

A voting method is a function F : VI → ℘(X ) assigning a non-empty subset of
X to each profile v



For all i ∈ I, let v i ∈ V be a message indicating the beliefs of voter i about the
true state, i.e., v i is a ‘noisy signal’ of s∗.

For i ∈ I, s ∈ S and v ∈ V , let ρis(v) be the conditional probability that voter i
will send the signal v when the true state is s. An error model is a function:

ρ : I × S → ∆(V)

An error model is anonymous when ρ(i , s) = ρ(j , s) for all i , j and s. Then we
can represent an anonymous error model as ρ : S → ∆(V).



The conditional probability of seeing profile v is R : S → ∆(VI) defined by

R(s; v) = Πi∈Iρs(i , v
i)

Let α ∈ ∆(S) be a prior probability density on S. For all s ∈ S, the posterior
probability of s, denoted ωv (s), is

ωv (s) =
R(s; v)α(s)

R(v)
, where R(v) =

∫
S
R(s; v)α(s)ds



The maximum a posteriori (MAP) estimator is the set of all s ∈ S which have
maximal a posteriori probability:

MAPSα,ρ(v) = argmaxs∈Sωv (s) = argmaxs∈S(R(s; v)α(s))

If we assume the prior probability α is uniformly distributed over S, thenS, then
MAPSα,ρ(v) coincides with the maximum likelihood estimator (MLE), defined as

MLESρ (v) = argmaxs∈SR(s; v)

The Condorcet Jury Theorem says that the majority voting rule is an MLE when
S = V = {1,−1}. Which other voting rules can function as MAP or MLE for
other choices of ρ and α?
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Assume that X = S.

A voting rule F : VI → X is MAP-rationalizable if there is a prior probability
density α ∈ ∆(X ) and an error model ρ : I × X → ∆(V) such that
F (v) = MAPXα,ρ(v) for all v ∈ VI .

F is MLE -rationalizable if F is MAP-rationalizable for the uniform prior
probability density function on X .



Theorem (Pivato)

1. F is MAP-rationalizable if and only if F is a scoring rule.

2. F is MLE-rationalizable if and only if F is a balanced scoring rule.

3. F is anonymously MLE -rationalizable if and only if F is an anonymous,
balanced scoring rule.

See, also:

H. P. Young. Optimal voting rules. Journal of Economic Perspectives, 9(1):51 - 64, 1995.

V. Conitzer and T. Sandholm. Common voting rules as maximum likelihood estimators. In: 21st
Annual conference on uncertainty in artificial intelligence (UAI-05), pp 145 - 152, 2005.

L. Xia and V. Conitzer. A maximum likelihood approach towards aggregating partial orders. In:
23rd International joint conference on artificial intelligence (IJCAI-11), pp 446 - 451, 2011.



Borda

To MLE -rationalize Borda, suppose each voter is most likely to choose a
preference order that judges x∗ (the “correct outcome”) to be best, and less
likely to choose a preference order where x∗ has lower rank, with probability
exponentially decreasing according to the rank of x∗.

Let S(v , x) be the score of x in the ranking v and let ε ∈ (0, 1). For all x ∈ X
and v ∈ V (a ranking) suppose that:

ρx(v) =
εS(v ,x)

C
, where C = (N − 1)!

εN − 1

ε− 1



Theorem (Pivato). Let X be a finite set. Let V be an arbitrary set. Let
F ∗ : V∗ → X be a neutral, anonymous, variable-population voting rule. Then F ∗

is MLE-rationalizable if and only if F ∗ satisfies reinforcement and
overwhelming majority.



...the statistical rationalization approach begins with a familiar voting
rule, and then contrives some probabilistic scenario to rationalize it as a
statistical estimator ex post facto. But this is backwards. One should
begin by specifying the scenario which best describes the epistemic prob-
lem faced by the voters, and then derive the correct statistical estimator
for this scenario.

M. Pivato. Realizing epistemic democracy. in The future of economic design (J.-F. Laslier, H.
Moulin, R. Sanver, and W. S. Zwicker, eds.), Springer-Verlag 2019, pp. 103 -112.



Voters
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Majority Rule

All voting methods reduce to majority rule on 2-candidate profiles.

Proposition
For any VCCR f , the following are equivalent:

1. f coincides with majority rule on two-candidate profiles;

2. f satisfies the following axioms with respect to two-candidate profiles:
Anonymity, Neutrality, Monotonicity, Pareto, and Upward Neutral Reversal.

W. Holliday and EP. Axioms for Defeat in Democratic Elections. Forthcoming Journal of Theo-
retical Politics, https://arxiv.org/pdf/2008.08451.pdf, 2021.

https://arxiv.org/pdf/2008.08451.pdf


Theorem (Smith 1973, Young 1974)
A voting method satisfies Anonymity, Neutrality and Reinforcement if and only
if F is a scoring rule.

Saari’s argument, Balinski and Laraki (2010, pg. 77); Zwicker (2016, Proposition
2.5): Multiple districts paradox, f cancels properly.

2 2 2
a b c
b c a
c a b

1 2
a b
b a
c c

I no Condorcet winner in the left profile

I b is the Condorcet winner in the right profile

I a is the Condorcet winner in the combined profiles



Condorcet’s Other Paradox

# voters 30 1 29 10 10 1

s2 a a b b c c

s1 b c a c a b

s0 c b c a b a

Condorcet’s Other Paradox: No scoring rule will work...
Score(a) = s2 × 31 + s1 × 39 + s0 × 11
Score(b) = s2 × 39 + s1 × 31 + s0 × 11
Score(a) > Score(b)⇒ 31s2 + 39s1 > 39s2 + 31s1 ⇒ s1 > s2

b >BC a >BC c a >M b >M c



Condorcet’s Other Paradox

# voters 30 1 29 10 10 1

s2 a a b b c c

s1 b c a c a b

s0 c b c a b a

Theorem (Fishburn 1974). For all m ≥ 3, there is some voting situation
with a Condorcet winner such that every scoring rule will have at least m− 2
candidates with a greater score than the Condorcet winner.

P. Fishburn. Paradoxes of Voting. The American Political Science Review, 68:2, pgs. 537
- 546, 1974.
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Theorem (Brandl et al., 2016) ML is the only anonymous PSCF satisfying
population-consistency, cloning-consistency, and Condorcet-consistency when
preferences are strict.

Population-consistency: whenever two disjoint electorates agree on a lottery, this
lottery should also be chosen by the union of both electorates (aka.
reinforcement).

Cloning-consistency: the probability that an alternative receives is unaffected by
introducing new variants of another alternative. Alternatives are variants of each
other if they bear the same relationship to all other alternatives and therefore
constitute a contiguous interval in each voter’s preference ranking.

F. Brandl, F. Brandt, and H. G. Seedig. Consistent probabilistic social choice. Econometrica,
84(5), pgs. 1839 - 1880, 2016.



We are interested in voting methods that:

X respond in a reasonable way to new candidates joining the election
(Stability for Winners, Immunity of Spoilers);

X respond in a reasonable way to new voters joining the election
(Positive Involvement, Negative Involvement).



Split
Cycle

Ranked
Pairs

Beat
Path

Mini-
max Copeland Borda Coombs

Instant
Runoff Plurality

Condorcet
Winner X X X X X − − − −

Condorcet
Loser X X X − X X X X −

Monotonicity X X X X X X − − X
Immunity to
Spoilers X − − X X − − − −

Stability for
Winners X − − − − − − − −

Positive
Involvement X − − X − X − X X

Negative
Involvement X − − X − X X − X



Thank you!


