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Even-Chance Tiebreaking

All anonymous and neutral voting methods F may select more than one winner
in a profile P.

When F (P) is not a singleton set, one option is to use an even-chance lottery on
F (P) to break the tie and select a unique ultimate winner.

Definition
For a voting method F , let F eve be the probabilistic voting method such that for
any profile P and x ∈ X (P), F eve(P)(x) = 1/|F (P)| if x ∈ F (P) and
F eve(P)(x) = 0 otherwise.
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F. Brandt. Rolling the Dice: Recent Results in Probabilistic Social Choice. Handbook of
Computational Social Choice, 2016.



Let V be a set of voters, X a set of m alternatives.

The set of all lotteries over X is:

∆(X ) = {p ∈ RX | p(x) ≥ 0 for all x ∈ X and
∑
x∈X

p(x) = 1}

For p ∈ ∆(X ), supp(p) = {x | p(x) > 0}

p is degenerate when |supp(p)| = 1.

We write lotteries as convex combinations of alternatives, e.g., the uniform
lottery on {a, b} where p(a) = p(b) = 1/2 is denoted as 1/2a + 1/2b.



Probabilistic Voting Methods

A probabilistic social choice function (PSCF) is a map
F : O(X )V → ℘(∆(A)) \ ∅ such that for all P, F (P) is a convex set of lotteries.

Anonymity and neutrality can be defined as usual.



Random (Serial) Dictator

Random dictatorship: A voter is picked uniformly at random and this voter’s
most-preferred alternative is selected. Thus, the probabilities assigned by RD are
directly proportional to the number of agents who top-rank a given alternative
(or, in other words, the alternative’s plurality score).

Random serial dictatorship (RSD): RSD selects a permutation of the agents
uniformly at random and then sequentially allows agents in the order of the
permutation to narrow down the set of alternatives to their most preferred of the
remaining ones.



Proportional Borda

Proportional Borda: Assign probabilities to the alternatives that are
proportional to their Borda scores.
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Margin Matrix/Graph
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If the output of a neutral PSCF F only depends on the margin matrix/graph M ,
F is called pairwise. An advantage of pairwise PSCFs is that they are applicable
even when individual preferences are incomplete or intransitive.
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Maximal Lotteries
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Maximal Lotteries
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Maximal Lotteries

M admits a (weak) Condorcet winner if M contains a nonnegative row, i.e., there
is a standard unit vector v such that

vTM ≥ 0

1 1 1
a b c
b a a
c c b1

0
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T  0 1 1
−1 0 1
−1 −1 0

 =
(
0 1 1

)
≥ 0
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Maximal Lotteries

A lottery p is maximal if pTM ≥ 0:

I randomized Condorcet winner

I p is “at least as good” as any other lottery:

the expected number of agents who prefer the alternative returned by p to
that returned by q is at least as large as the expected number of agents who
prefer the outcome returned by q to that returned by p
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Maximal Lotteries

A lottery p is maximal if pTM ≥ 0:
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Maximal Lotteries

I always exist due to the Von Neumann Minimax Theorem.

I almost always unique

I set of profiles with multiple maximal lotteries has measure zero

I always unique for odd number of voters with strict preferences

I does not require asymmetry, completeness, or even transitivity of individual
preferences
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a b c( )a 0, 0 94,−94 −4, 4
b −94, 94 0, 0 2,−2
c 4,−4 −2, 2 0, 0

There is no pure strategy Nash equilibrium

There is a mixed Nash equilibrium: 2/100a + 4/100b + 94/100c .



Maximal Lotteries can be efficiently computed via linear programming

https://voting.ml

https://voting.ml


Maximal Lottery Schemes

Every maximal lottery scheme is based on an odd and monotone function
τ : Z→ R with τ(1) = 1.

MLτ (R) = {p ∈ ∆(X ) |
∑
x ,y∈X

p(x)q(y)τ(mxy ) ≥ 0 for all q ∈ ∆(X )}





C1-ML: ML schemes based on the sign function.

C2-ML: ML schemes based on the identity function.
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C1-ML: 1/3a + 1/3b + 1/3c

C2-ML: 2/100a + 4/100b + 94/100c
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Theorem (Brandl, Brandt and Stricker) For any pair of ML schemes MLτ and
MLσ, there is a preference profile R such that MLτ (R) = {p} and
MLσ(R) = {q} and supp(p) ∩ supp(q) = ∅.

(cf. B. Dutta and J.-F. Laslier. Comparison functions and choice
correspondences. Social Choice and Welfare, 16(4):513-532, 1999)



An SDS is homogenous when replacing every voter with a fixed number of
identical clones (i.e., voters with the same preferences) does not change the
outcome.

Theorem (Brandl, Brandt and Stricker) MLτ is homogenous if and only if τ is
based on τ ′ where there is a t ≥ 0 such that τ ′(k) = k t for all k ∈ N.



Efficiency

Pareto Efficiency: no voter can be made better off without making another voter
worse off.

To define this, we need assumptions about how voters rank lotteries.



Suppose that �i is voter i ’s weak preference relation.

p �DD′
i q if and only if x �i y for all x ∈ supp(p) and y ∈ supp(q)
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(supp(p) \ supp(q)) �i (supp(p) ∩ supp(q)) �i (supp(q) \ supp(p))
and p(x) = q(x) for all x ∈ supp(p) ∩ supp(q)

Suppose that a �i b �i c . Then,
2/3a + 1/3b �DD′

i c
2/3a + 1/3b �DD

i 1/2b + 1/2c
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Suppose that �i is voter i ’s weak preference relation.

p �DD′
i q if and only if x �i y for all x ∈ supp(p) and y ∈ supp(q)

p �DD
i q if and only if x �i y for all x ∈ supp(p) and y ∈ supp(q)

p �ST
i q if and only if

(supp(p) \ supp(q)) �i (supp(p) ∩ supp(q)) �i (supp(q) \ supp(p))
and p(x) = q(x) for all x ∈ supp(p) ∩ supp(q)

Suppose that a �i b �i c . Then,
2/3a + 1/3b �DD′

i c
2/3a + 1/3b �DD

i 1/2b + 1/2c
1/2a + 1/2b �ST

i 1/2b + 1/2c



Bilinear Dominance

p �BD
i q if and only if p(x)q(y) ≥ p(y)q(x) for all x , y ∈ X with x �i y

Suppose that a �i b �i c . Then,
1/2a + 1/2b �BD

i 1/3a + 1/3b + 1/3c

(Fishburn 1984): p bilinearly dominates q iff p is preferable to q for every
skew-symmetric bilinear (SSB) utility function consistent with �i
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Stochastic Dominance
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i q if and only if

∑
y�ix

p(y) ≥
∑

y�ix
q(y) for all x ∈ X

Suppose that a �i b �i c . Then,
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p stochastically dominates q iff p is preferable to q for every von
Neumann-Morgenstern utility function consistent with �i
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�DD′ ⊆ �DD ⊆ �BD �DD′ ⊆ �ST ⊆ �BD �BD ⊆ �SD ⊆ �PC



A lottery p is SD-efficient for a preference profile R if there is no lottery
q ∈ ∆(X ) such that q �SD

i p for all i and q �SD
j p for some j . (Similar

definitions for other preferences over lotteries).



Theorem (Fishburn, 1984) Every MLτ is ex post efficient: whenever there are
alternatives x and y such that x �i y for all i and x �j y for some j , then y
should receive probability 0.

Theorem (Brandl, Brandt and Stricker). Every C2-ML schemes is SD-efficient.
No other ML scheme is SD-efficient for all numbers of voters and candidates.

Theorem (Brandl, Brandt and Stricker). Suppose that m is the number of
candidates and n is the number of voters. Every majoritarian and neutral SPSC
violates SD-efficiency for m ≥ 9 (and n = 5, n − 7 or n ≥ 9), even when
preferences are strict.









F. Brandl and F. Brandt. A Natural Adaptive Process for Collective Decision-Making.
manuscript, 2021.



Consider an urn filled with balls, each labeled with one of several possible
collective decisions. Now, draw two balls from the urn, let a random voter pick
her more preferred as the alternative, relabel the losing ball with the collective
decision, put both balls back into the urn, and repeat. In order to prevent the
permanent disappearance of some types of balls, once in a while, a randomly
drawn ball is labeled with a random alternative.

Brandl and Brandt prove that this process will almost surely converge to the
C2-ML.
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