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Actions

Actions restrict the set of possible future histories:

Actions as transitions between states, or situations:

s t

a
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Propositional Dynamic Logic

Language: The language of propositional dynamic logic is
generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | [π]ϕ

where p ∈ At and α is generated by the following grammar:

a | π ∪ τ | π; τ | π∗ | ϕ?

where a ∈ Act and ϕ is a formula.

Semantics: M = 〈W , {Ra | a ∈ P},V 〉 where for each a ∈ P,
Ra ⊆W ×W and V : At→ ℘(W )

[π]ϕ means “after doing π, ϕ will be true”

〈π〉ϕ means “after doing π, ϕ may be true”
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M,w |= [π]ϕ iff for each v , if wRπv then M, v |= ϕ

M,w |= 〈π〉ϕ iff there is a v such that wRπv and M, v |= ϕ
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Union

Rπ∪τ := Rπ ∪ Rτ
6-12 CHAPTER 6. LOGIC AND ACTION

s

s1

s2

s3

sn

s01
s02
s03

s0m

Then performing action a [ b (the choice between a and b) in s will get you in one of the
states in {. . . , sn} [ {s01, . . . , s

0
m}. More generally, if action symbol a is interpreted as

the relation Ra, and action symbol b is interpreted as the relation Rb, then a [ b will be
interpreted as the relation Ra [ Rb (the union of the two relations).

Test A notation that is often used for the equality relation (or: identity relation is I . The
binary relation I on S is by definition the set of pairs given by:

I = {(s, s) | s 2 S}.

A test ?' is interpreted as a subset of the identity relation, namely as the following set of
pairs:

R?' = {(s, s) | s 2 S, s |= '}

From this we can see that a test does not change the state, but checks whether the state
satisfies a condition.

To see the result of combining a test with another action:
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Sequence

Rπ;τ := Rπ ◦ Rτ

6.3. VIEWING ACTIONS AS RELATIONS 6-11

Sequence Given that action symbol a is interpreted as binary relation Ra on S, and that
action symbol b is interpreted as binary relation Rb on S, what should be the interpretation
of the action sequence a; b? Intuitively, one can move from state s to state s0 just in case
there is some intermediate state s0 with the property that a gets you from s to s0 and b gets
you from s0 to s0. This is a well-known operation on binary relations, called relational
composition. If Ra and Rb are binary relations on the same set S, then Ra � Rb is the
binary relation on S given by:

Ra � Rb = {(s, s0) | there is some s0 2 S : (s, s0) 2 Raand (s0, s
0) 2 Rb}.

If basic action symbol a is interpreted as relation Ra, and basic action symbol b is inter-
preted as relation Rb, then the sequence action a; b is interpreted as Ra � Rb. Here is a
picture:

s

s1

s2

s3

sn

s11

s12

s13

s1m

If the solid arrows interpret action symbol a and the dashed arrows interpret action sym-
bol b, then the arrows consisting of a solid part followed by a dashed part interpret the
sequence a; b.

Choice Now suppose again that we are in state s, and that performing action a will get
us in one of the states in {s1, . . . , sn}. And supposse that in that same state s, performing
action b will get us in one of the states in {s01, . . . , s

0
m}.
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Test
Rϕ? = {(w ,w) | M,w |= ϕ}

6.4. OPERATIONS ON RELATIONS 6-13

s

s1

s2

s3

sn

t

t1

t2

t3

tm

The solid arrow interprets a test ?' that succeeds in state s but fails in state t. If the
dashed arrows interpret a basic action symbol a, then, for instance, (s, s1) will be in the
interpretation of ?'; a, but (t, t1) will not.

Since > is true in any situation, we have that ?> will get interpreted as I (the identity
relation on S). Therefore, ?>; a will always receive the same interpretation as a.

Since ? is false in any situation, we have that ?? will get interpreted as ; (the empty
relation on S). Therefore, ??; a will always receive the same interpretation as ??.

Before we handle repetition, it is useful to switch to a more gereral perspective.

6.4 Operations on Relations

Relations were introduced in Chapter 4 on predicate logic. In this chapter we view actions
as binary relations on a set S of situations. Such a binary relation is a subset of S ⇥ S,
the set of all pairs (s, t) with s and t taken from S. It makes sense to develop the general
topic of operations on binary relations. Which operations suggest themselves, and what
are the corresponding operations on actions?

In the first place, there are the usual set-theoretic operations. Binary relations are sets of
pairs, so taking unions, intersections and complements makes sense (also see Appendix
A). We have already seen that taking unions corresponds to choice between actions.

Example 6.2 The union of the relations ‘mother’ and ‘father’ is the relation ‘parent’.

Example 6.3 The intersection of the relations ✓ and ◆ is the equality relation =.
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Iteration

Rπ∗ := ∪n≥0Rn
π

where Rn
π = R ◦ Rn−1

π and R0 = R
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Propositional Dynamic Logic

1. Axioms of propositional logic

2. [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ)

3. [π ∪ τ ]ϕ↔ [π]ϕ ∧ [τ ]ϕ

4. [π; τ ]ϕ↔ [π][τ ]ϕ

5. [ψ?]ϕ↔ (ψ → ϕ)

6. ϕ ∧ [π][π∗]ϕ↔ [π∗]ϕ

7. ϕ ∧ [π∗](ϕ→ [π]ϕ)→ [π∗]ϕ

8. Modus Ponens and Necessitation (for each program π)
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3. [π ∪ τ ]ϕ↔ [π]ϕ ∧ [τ ]ϕ

4. [π; τ ]ϕ↔ [π][τ ]ϕ

5. [ψ?]ϕ↔ (ψ → ϕ)

6. ϕ ∧ [τ ][τ∗]ϕ↔ [τ∗]ϕ (Fixed-Point Axiom)

7. ϕ ∧ [τ∗](ϕ→ [τ ]ϕ)→ [τ∗]ϕ (Induction Axiom)

8. Modus Ponens and Necessitation (for each program τ)
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Actions and Ability

An early approach to interpret PDL as logic of actions was put
forward by Krister Segerberg.

Segerberg adds an “agency” program to the PDL language δA
where A is a formula.

K. Segerberg. Bringing it about. Journal of Philosophical Logic, 18(4), 327 -
347, 1989.
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Actions and Agency

The intended meaning of the program ‘δA’ is that the agent
“brings it about that A’: formally, δA is the set of all paths p such
that

1. p is the computation according to some program π, and

2. π only terminates at states in which it is true that A

Interestingly, Segerberg also briefly considers a third condition:

3. p is optimal (in some sense: shortest, maximally efficient,
most convenient, etc.) in the set of computations satisfying
conditions (1) and (2).

The axioms:

1. [δA]A

2. [δA]B → ([δB]C → [δA]C )
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Coalitional Logic

M. Pauly. A Modal Logic for Coalitional Powers in Games. Journal of Logic and
Computation, 12:1, pp. 149 - 166, 2002.

M. Pauly. Logic for Social Software. PhD Thesis, Institute for Logic, Language
and Computation, 2001.
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Strategic Game Forms

〈N, {Si}i∈N ,O, o〉

I N is a finite set of players;

I for each i ∈ N, Si is a non-empty set (elements of which are
called actions or strategies);

I O is a non-empty set (elements of which are called
outcomes); and

I o : Πi∈NSi → O is a function assigning an outcome
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Bob

A
nn

U t1 t2 C

s1 o1 o2 U

s2 o2 o3 U

s3 o4 o1 U
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α-Effectivity

S = Πi∈NSi are called strategy profiles. Given a strategy profile
s ∈ S , let si denote i ’s component and s−i the profile of strategies
from s for all players except i .

A strategy for a coalition C is a sequence of strategies for each
player in C , i.e., sC ∈ Πi∈CSi (similarly for sC , where C is N − C ).

Suppose that G = 〈N, {Si}i∈N ,O, o〉 be a strategic game form.
An α-effectivity function is a map EαG : ℘(N)→ ℘(℘(O)) defined
as follows: For all C ⊆ N, X ∈ EαG (C ) iff there exists a strategy
profile sC such that for all sC ∈ Πi∈N−CSi , o(sC , sC ) ∈ X .
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α-Effectivity vs. β-Effectivity

∃ “something a player/a coalition can do” such that ∀ “actions of
the other players/nature”...

∀ “(joint) actions of the other players”, ∃ “something the
agent/coalition can do”...
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Bob

A
nn

U t1 t2 C

s1 o1 o2 U

s2 o2 o3 U

s3 o4 o1 U

EαG0
({A}) = sup({{o1, o2}, {o2, o3}, {o1, o4}})

EαG0
({B}) = sup({{o1, o2, o4}, {o1, o2, o3}})

EαG0
({A,B}) = sup({o1}, {o2}, {o3}, {o4}}) = ℘(O)− ∅

EαG0
(∅) = {{o1, o2, o3, o4, o5, o6}}
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Playable Effectivity Functions

1. (Liveness) For all C ⊆ N, ∅ 6∈ E (C )

2. (Safety) For all C ⊆ N, O ∈ E (C )

3. (N-maximality) For all X ⊆ O, if X ∈ E (N) then X 6∈ E (∅)

4. (Outcome-monotonicity) For all X ⊆ X ′ ⊆ O, and C ⊆ N, if
X ∈ E (C ) then X ′ ∈ E (C )

5. (Superadditivity) For all subsets X1,X2 of O and sets of
agents C1,C2, if C1 ∩ C2 = ∅, X1 ∈ E (C1) and X2 ∈ E (C2),
then X1 ∩ X2 ∈ E (C1 ∪ C2)

John F. Horty Eric Pacuit 19
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Characterizing Playable Effectivity Functions

Theorem (Pauly 2001; Goranko, Jamorga and Turrini 2013). If
E : ℘(N)→ ℘(℘(O)) is a function that satisfies the conditions 1-6
given above, then E = EαG for some strategic game form.

V. Goranko, W. Jamroga, and P. Turrini. Strategic Games and Truly Playable
Effectivity Functions. Journal of Autonomous Agents and Multiagent Systems,
26(2), pgs. 288 - 314, 2013.

M. Pauly. Logic for Social Software. PhD Thesis, Institute for Logic, Language
and Computation, 2001.
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Coalitional Models

A coalitional logic model is a tuple M = 〈W ,E ,V 〉 where W is a
set of states, E : W → (℘(N)→ ℘(℘(W ))) assigns to each state a
playable effectivity function, and V : At→ ℘(W ) is a valuation
function.

M,w |= [C ]ϕ iff [[ϕ]]M = {w | M,w |= ϕ} ∈ E (w)(C )
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Coalitional Logic: Axiomatics

1. (Liveness) For all C ⊆ N, ∅ 6∈ E (C )

2. (Safety) For all C ⊆ N, O ∈ E (C )

3. (N-maximality) For all X ⊆ O, if X ∈ E (N) then X 6∈ E (∅)

4. (Outcome-monotonicity) For all X ⊆ X ′ ⊆ O, and C ⊆ N, if
X ∈ E (C ) then X ′ ∈ E (C )

5. (Superadditivity) For all subsets X1,X2 of O and sets of
agents C1,C2, if C1 ∩ C2 = ∅, X1 ∈ E (C1) and X2 ∈ E (C2),
then X1 ∩ X2 ∈ E (C1 ∪ C2)
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Coalitional Logic: Axiomatics
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Coalitional Logic: Axiomatics

1. (Liveness) ¬[C ]⊥

2. (Safety) [C ]>

3. (N-maximality) [N]ϕ→ ¬[∅]¬ϕ
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4. (Outcome-monotonicity) [C ](ϕ ∧ ψ)→ ([C ]ϕ ∧ [C ]ψ) asdf
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4. (Outcome-monotonicity) [C ](ϕ ∧ ψ)→ ([C ]ϕ ∧ [C ]ψ) asdf
asdf asdf asdf asdf asdf asdfasdf asdf

5. (Superadditivity) ([C1]ϕ1 ∧ [C2]ϕ2)→ [C1 ∪ C2](ϕ1 ∧ ϕ2),
where C1 ∩ C2 = ∅ asdf asdf as df asd fa sdf asdf asdf asdf
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From Temporal Logic to Strategy Logic

I Linear Time Temporal Logic: Reasoning about computation
paths:

Fϕ: ϕ is true some time in the future.

A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on
Foundations of Computer Science (1977).

I Branching Time Temporal Logic: Allows quantification over
paths:

∃Fϕ: there is a path in which ϕ is eventually true.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization
Skeletons using Branching-time Temproal-logic Specifications. In Proceedings
Workshop on Logic of Programs, LNCS (1981).
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From Temporal Logic to Strategy Logic

I Coalitional Logic: Reasoning about (local) group power.

[C ]ϕ: coalition C has a joint action to bring about ϕ.

M. Pauly. A Modal Logic for Coalition Powers in Games. Journal of Logic and
Computation 12 (2002).

I Alternating-time Temporal Logic: Reasoning about (local and
global) group power:

〈〈A〉〉Gϕ: The coalition A has a joint action to ensure that ϕ
will remain true.

R. Alur, T. Henzinger and O. Kupferman. Alternating-time Temproal Logic.
Jouranl of the ACM (2002).
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Example: Suppose that there are two agents: a server (s) and a
client (c). The client asks to set the value of x and the server can
either grant or deny the request. Assume the agents make
simultaneous moves.

deny grant

set1

set2
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Example: Suppose that there are two agents: a server (s) and a
client (c). The client asks to set the value of x and the server can
either grant or deny the request. Assume the agents make
simultaneous moves.

deny grant

set1 q0 ⇒ q0, q1 ⇒ q0
set2 q0 ⇒ q1, q1 ⇒ q1
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Example: Suppose that there are two agents: a server (s) and a
client (c). The client asks to set the value of x and the server can
either grant or deny the request. Assume the agents make
simultaneous moves.

deny grant

set1 q ⇒ q q0 ⇒ q0, q1 ⇒ q0
set2 q ⇒ q q0 ⇒ q1, q1 ⇒ q1
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Multi-agent Transition Systems

x = 1q0

x = 2q1

〈set2, grant〉 〈set1, grant〉

〈∗, deny〉

〈∗, deny〉

(Px=1 → [s]Px=1) ∧ (Px=2 → [s]Px=2)
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〈∗, deny〉

Px=1 → ¬[s]Px=2
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4.1 Axiomatizing ATL

The axiomatic system for ATL extends the Coalition Logic from [11] (the
?,>,ß and S axioms and the hhAii g-Monotonicity rule) with the fixed-point
axioms for 2 and U , and the 2-Necessitation rule.

Definition 27 The axiomatic system for ATL consists of the following ax-
ioms and rules of inference, where A,A1, A2 µ ß:

Axioms:

(TAUT) Enough propositional tautologies.
(?) ¬hhAii g?
(>) hhAii g>
(ß) ¬hh?ii g¬' ! hhßii g'
(S) hhA1ii g'1 ^ hhA2ii g'2 ! hhA1 [ A2ii g('1 ^ '2) for disjoint A1 and A2

(FP2) hhAii2' $ ' ^ hhAii ghhAii2'
(GFP2) hh?ii2(µ ! (' ^ hhAii gµ)) ! hh?ii2(µ ! hhAii2')
(FPU) hhAii'1U'2 $ '2 _ ('1 ^ hhAii ghhAii'1U'2)
(LFPU) hh?ii2(('2 _ ('1 ^ hhAii gµ)) ! µ) ! hh?ii2(hhAii'1U'2 ! µ)

Rules of inference:

(Modus Ponens)
'1,'1 ! '2

'2

(hhAii g-Monotonicity)
'1 ! '2

hhAii g'1 ! hhAii g'2

(hh?ii2-Necessitation)
'

hh?ii2'

Proposition 28 The following are derivable in ATL:

(1) Regularity hhAii g' ! ¬hhß\Aii g¬',
(2) Outcome monotonicity: hhAii g('1 ^ '2) ! hhAii g'1,
(3) Coalition-monotonicity: hhA1ii g' ! hhA1 [ A2ii g' if A1 \ A2 = ? 1 ,

and therefore: if A1 µ A2 then ATL` hhA1ii g' ! hhA2ii g'.
(4) hhAii2-Monotonicity:

'1 ! '2

hhAii2'1 ! hhAii2'2

1 This condition is not necessary. Once the property is proved for this particular
case, the general case follows quite easily.

19

V. Goranko and G. van Drimmelen. Complete Axiomatization and Decidability of
the Alternating-time Temporal Logic. Theoretical Computer Science, 353(1-3),
93 - 117, 2006.
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Comparing Semantics

V. Goranko and W. Jamroga. Comparing Semantics for Logics of Multi-agent
Systems. Synthese 139(2), 241 - 280, 2004.

J. Broersen, A. Herzig and N. Troquard. From Coalition Logic to STIT. Pro-
ceedings of the Third International Workshop on Logic and Communication in
Multi-Agent Systems (LCMAS 2005).

J. Broersen, A. Herzig and N. Troquard. Embedding alternating-time temporal
logic in strategic STIT logic of agency. Journal of Logic and Computation, 16(5),
559 - 578, 2006.

R. Ciuni and E. Lorini. Comparing semantics for temporal STIT logic. Logique
& Analyse, 61(243), 2018.
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Logic of Knowledge (and Belief)
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Epistemic Logic

Let KaP informally mean “agent a knows that P (is true)”.

Ka(P → Q): “Ann knows that P implies Q”

KaP ∨ ¬KaP: “either Ann does or does not know P”

KaP ∨ Ka¬P: “Ann knows whether P is true”

¬Ka¬P: “P is an epistemic possibility for Ann”

KaKaP: “Ann knows that she knows that P”
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

(1, 2)

w1

(1, 3)

w2

(2, 3)

w3

(2, 1)

w4

(3, 1)

w5

(3, 2)

w6
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

Ann receives card 3 and card 1
is put on the table

(1, 2)

w1

(1, 3)

w2

(2, 3)
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(2, 1)
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

Suppose Hi is intended to
mean “Ann has card i”

Ti is intended to mean “card i
is on the table”

Eg., V (H1) = {w1,w2}

(1, 2)
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

M,w1 |= KaH1

M,w1 |= Ka¬T1
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

M,w1 |= ¬Ka¬T2

H1,T2

w1

H1,T3

w2

H2,T3

w3

H2,T1

w4

H3,T1

w5

H3,T2
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

M,w1 |= Ka(T2 ∨ T3)

H1,T2

w1

H1,T3

w2

H2,T3

w3

H2,T1

w4

H3,T1

w5

H3,T2

w6
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Multiagent Epistemic Logic

Many of the examples we are interested in involve more than one
agent!

KaP means “Ann knows P”

KbP means “Bob knows P”

I KaKbϕ: “Ann knows that Bob knows ϕ”

I Ka(Kbϕ ∨ Kb¬ϕ): “Ann knows that Bob knows whether ϕ

I ¬KbKaKb(ϕ): “Bob does not know that Ann knows that Bob
knows that ϕ”

John F. Horty Eric Pacuit 35



Multiagent Epistemic Logic

Many of the examples we are interested in involve more than one
agent!

KaP means “Ann knows P”

KbP means “Bob knows P”

I KaKbϕ: “Ann knows that Bob knows ϕ”

I Ka(Kbϕ ∨ Kb¬ϕ): “Ann knows that Bob knows whether ϕ

I ¬KbKaKb(ϕ): “Bob does not know that Ann knows that Bob
knows that ϕ”

John F. Horty Eric Pacuit 35



Multiagent Epistemic Logic

Many of the examples we are interested in involve more than one
agent!

KaP means “Ann knows P”

KbP means “Bob knows P”

I KaKbϕ: “Ann knows that Bob knows ϕ”

I Ka(Kbϕ ∨ Kb¬ϕ): “Ann knows that Bob knows whether ϕ

I ¬KbKaKb(ϕ): “Bob does not know that Ann knows that Bob
knows that ϕ”

John F. Horty Eric Pacuit 35



Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

Suppose that Ann receives card
1 and card 2 is on the table.

H1,T2

w1

H1,T3

w2

H2,T3

w3

H2,T1

w4

H3,T1

w5

H3,T2

w6

John F. Horty Eric Pacuit 36



Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
Bob is given one of the cards
and the third card is put back
in the deck.

Suppose that Ann receives card
1 and Bob receives card 2.

A1,B2

w1

A1,B3

w2

A2,B3

w3

A2,B1

w4

A3,B1

w5

A3,B2

w6

John F. Horty Eric Pacuit 36



Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
Bob is given one of the cards
and the third card is put back
in the deck.

Suppose that Ann receives card
1 and Bob receives card 2.

A1,B2

w1

A1,B3

w2

A2,B3

w3

A2,B1

w4

A3,B1

w5

A3,B2

w6

John F. Horty Eric Pacuit 36



Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
Bob is given one of the cards
and the third card is put back
in the deck.

Suppose that Ann receives card
1 and Bob receives card 2.

A1,B2

w1

A1,B3

w2

A2,B3

w3

A2,B1

w4

A3,B1

w5

A3,B2

w6

John F. Horty Eric Pacuit 36



Example

Suppose there are three cards:
1, 2 and 3.
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Bob is given one of the cards
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1 and Bob receives card 2.
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College Park and Amsterdam

Suppose agent c , who lives in College Park, knows that agent a
lives in Amsterdam. Let r stand for ‘it’s raining in Amsterdam’.
Although c doesn’t know whether it’s raining in Amsterdam, c
knows that a knows whether it’s raining there:

¬(Kc r ∨ Kc¬r) ∧ Kc(Kar ∨ Ka¬r).

The following picture depicts a situation in which this is true,
where an arrow represents compatibility with one’s knowledge:

r

w1 w2

c
c , a c , a
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Now suppose that agent c doesn’t know whether agent a has left
Amsterdam for a vacation. (Let v stand for ‘a has left Amsterdam
on vacation’.) Agent c knows that if a is not on vacation, then a
knows whether it’s raining in Amsterdam; but if a is on vacation,
then a won’t bother to follow the weather.

Kc(¬v → (Kar ∨ Ka¬r)) ∧ Kc(v → ¬(Kar ∨ Ka¬r)).

r

w1 w2

v , r

w3

v

w4

c

c c
c

c , a c , a

c, a
c , a

c , a
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r

w1 w2

v , r

w3

v

w4

c

c c
c

c , a c , a

c, a
c , a

c , a

John F. Horty Eric Pacuit 38



Epistemic Logic: The Language

ϕ is a formula of Epistemic Logic (L) if it is of the form

ϕ := p | ¬ϕ | ϕ ∧ ψ | Kaϕ
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I p ∈ At is an atomic fact.

• “It is raining”
• “The talk is at 2PM”
• “The card on the table is a 7 of Hearts”
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I p ∈ At is an atomic fact.

I The usual propositional language (L0)

I Kaϕ is intended to mean “Agent a knows that ϕ is true”.

I The usual definitions for →,∨,↔ apply

I Define Laϕ (or K̂a) as ¬Ka¬ϕ
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Epistemic Logic: The Language

ϕ is a formula of Epistemic Logic (L) if it is of the form

ϕ := p | ¬ϕ | ϕ ∧ ψ | Kaϕ

Ka(p → q): “Ann knows that p implies q”

Kap ∨ ¬Kap: “either Ann does or does not know p”

Kap ∨ Ka¬p: “Ann knows whether p is true”

Laϕ: “ϕ is an epistemic possibility”

KaLaϕ: “Ann knows that she thinks ϕ is
possible”

John F. Horty Eric Pacuit 39



Epistemic Logic: Kripke Models

M = 〈W , {Ra}a∈A,V 〉
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Epistemic Logic: Kripke Models

M = 〈W , {Ra}a∈A,V 〉

I W 6= ∅ is the set of all relevant situations (states of affairs,
possible worlds)

I Ra ⊆W ×W represents the agent a’s knowledge

I V : At→ ℘(W ) is a valuation function assigning propositional
variables to worlds

John F. Horty Eric Pacuit 40



Epistemic Logic: Truth in a Model

Given ϕ ∈ L, a Kripke model M = 〈W , {Ra}a∈A,V 〉 and w ∈W

M,w |= ϕ means “in M, if the actual state is w , then ϕ is true”
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Epistemic Logic: Truth in a Model

Given ϕ ∈ L, a Kripke model M = 〈W , {Ra}a∈A,V 〉 and w ∈W

M,w |= ϕ is defined as follows:

I M,w |= p iff w ∈ V (p) (with p ∈ At)

I M,w |= ¬ϕ if M,w 6|= ϕ

I M,w |= ϕ ∧ ψ if M,w |= ϕ and M,w |= ψ

I M,w |= Kaϕ if for each v ∈W , if wRav , then M, v |= ϕ

M,w |= Laϕ if there exists a v ∈W such that wRav and
M, v |= ϕ
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Kaϕ: “Agent a is informed that ϕ”, “Agent a knows that ϕ”

M,w |= Kaϕ iff for all v ∈W , if wRav then M, v |= ϕ

I.e., Ra(w) = {v | wRav} ⊆ [[ϕ]]M = {v | M, v |= ϕ}:

I wRav if “everything a knows in state w is true in v

I wRav if “agent a has the same experiences and memories in
both w and v”

I wRav if “agent a has cannot rule-out v , given her evidence
and observations (at state w)”

I wRav if “agent a is in the same local state in w and v”
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Laϕ iff there is a v ∈W such that M, v |= ϕ

I.e., Ra(w) = {v | wRav} ∩ [[ϕ]]M = {v | M, v |= ϕ} 6= ∅

I Laϕ: “Agent a thinks that ϕ might be true.”

I Laϕ: “Agent a considers ϕ possible.”

I Laϕ: “(according to the model), ϕ is consistent with what a
knows (¬Ka¬ϕ)”.
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Laϕ iff there is a v ∈W such that M, v |= ϕ

I.e., Ra(w) = {v | wRav} ∩ [[ϕ]]M = {v | M, v |= ϕ} 6= ∅

I /////Laϕ://////////“Agent///a////////thinks//////that//ϕ////////might////be////////true.”

I Laϕ: “Agent a considers ϕ possible.”

I Laϕ: “(according to the model), ϕ is consistent with what a
knows (¬Ka¬ϕ)”.
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Taking Stock

Multi-agent language: ϕ := p | ¬ϕ | ϕ ∧ ψ | �iϕ

I �iϕ: “agent i knows that ϕ” (write Kiϕ for �iϕ)

I �iϕ: “agent i believes that ϕ” (write Biϕ for �iϕ)

Kripke Models: M = 〈W , {Ri}i∈Agt ,V 〉

Truth: M,w |= �iϕ iff for all v ∈W , if wRiv then M, v |= ϕ

John F. Horty Eric Pacuit 44



Modal Formula Corresponding Property

�(ϕ→ ψ)→ (�ϕ→ �ψ) —
�ϕ→ ϕ Reflexive
�ϕ→ ��ϕ Transitive
¬�ϕ→ �¬�ϕ Euclidean

¬�⊥ Serial
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The Logic S5

The logic S5 contains the following axioms and rules:

Pc Axiomatization of Propositional Calculus
K K (ϕ→ ψ)→ (Kϕ→ Kψ)
T Kϕ→ ϕ
4 Kϕ→ KKϕ
5 ¬Kϕ→ K¬Kϕ

MP
ϕ ϕ→ ψ

ψ

Nec
ϕ

Kψ

Theorem
S5 is sound and strongly complete with respect to the class of
Kripke frames with equivalence relations. adfasd fa sdf asd fas df
asdf as df asd fas df
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The Logic KD45

The logic S5 contains the following axioms and rules:

Pc Axiomatization of Propositional Calculus
K B(ϕ→ ψ)→ (Bϕ→ Bψ)
D ¬B⊥ (Bϕ→ ¬B¬ϕ)
4 Bϕ→ BBϕ
5 ¬Bϕ→ B¬Bϕ

MP
ϕ ϕ→ ψ

ψ

Nec
ϕ

Bψ

Theorem
KD45 is sound and strongly complete with respect to the class of
Kripke frames with pseudo-equivalence relations (reflexive,
transitive and serial).
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Truth Axiom/Consistency

Kϕ→ ϕ

¬B⊥

John F. Horty Eric Pacuit 48



Negative Introspection

¬�ϕ→ �¬�ϕ

(� = K ,B)

John F. Horty Eric Pacuit 49



Why would an agent not know some fact ϕ? (i.e., why would
¬Kiϕ be true?)

I The agent may or may not believe ϕ, but has not ruled out all
the ¬ϕ-worlds

I The agent may believe ϕ and ruled-out the ¬ϕ-worlds, but
this was based on “bad” evidence, or was not justified, or the
agent was “epistemically lucky” (e.g., Gettier cases),...

I The agent has not yet entertained possibilities relevant to the
truth of ϕ (the agent is unaware of ϕ).
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Positive Introspection

�ϕ→ ��ϕ

(� = K ,B)

John F. Horty Eric Pacuit 51



How Many Modalities?

Fact. In S5 and KD45, there are only three modalities (�, ♦, and
the “empty modality”)

Y. Ding, W. Holliday, and C. Zhang. When Do Introspection Axioms Matter for
Multi-Agent Epistemic Reasoning?. Proceedings of TARK 2019.
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“Common Knowledge” is informally described as what any fool
would know, given a certain situation: It encompasses what is
relevant, agreed upon, established by precedent, assumed, being
attended to, salient, or in the conversational record.

It is not Common Knowledge who “defined” Common Knowledge!
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The first formal definition of common knowledge?
M. Friedell. On the Structure of Shared Awareness. Behavioral Science (1969).

R. Aumann. Agreeing to Disagree. Annals of Statistics (1976).

The first rigorous analysis of common knowledge
D. Lewis. Convention, A Philosophical Study. 1969.

Fixed-point definition: γ := i and j know that (ϕ and γ)
G. Harman. Review of Linguistic Behavior. Language (1977).

J. Barwise. Three views of Common Knowledge. TARK (1987).

Shared situation: There is a shared situation s such that (1) s
entails ϕ, (2) s entails everyone knows ϕ, plus other conditions
H. Clark and C. Marshall. Definite Reference and Mutual Knowledge. 1981.

M. Gilbert. On Social Facts. Princeton University Press (1989).
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P. Vanderschraaf and G. Sillari. “Common Knowledge”, The Stanford Encyclo-
pedia of Philosophy (2009).
http://plato.stanford.edu/entries/common-knowledge/.
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The “Standard” Account

E

W

R. Aumann. Agreeing to Disagree. Annals of Statistics (1976).

R. Fagin, J. Halpern, Y. Moses and M. Vardi. Reasoning about
Knowledge. MIT Press, 1995.
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The “Standard” Account

E

W

W is a set of states or worlds.
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The “Standard” Account

E

W

An event/proposition is any (definable) subset E ⊆W
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The “Standard” Account

E

W

At each state, agents are assigned a set of states they
consider possible (according to their information).
The information may be (in)correct, partitional, ....
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The “Standard” Account

E

W

Knowledge Function: Ki : ℘(W ) → ℘(W ) where
Ki (E ) = {w | Ri (w) ⊆ E}
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The “Standard” Account

E

W

w

w ∈ KA(E ) and w 6∈ KB(E )
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The “Standard” Account

E

W

w

The model also describes the agents’ higher-order
knowledge/beliefs
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The “Standard” Account

E

W

w

Everyone Knows: K (E ) =
⋂

i∈A Ki (E ), K 0(E ) = E ,
Km(E ) = K (Km−1(E ))
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The “Standard” Account

E

W

w

Common Knowledge: C : ℘(W )→ ℘(W ) with

C (E ) =
⋂
m≥0

Km(E )
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The “Standard” Account

E

W

w

w ∈ K (E ) w 6∈ C (E )
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The “Standard” Account

E

W

w

w ∈ C (E )
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Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).
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Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).

Suppose you are told “Ann and Bob are going together,”’
and respond “sure, that’s common knowledge.” What
you mean is not only that everyone knows this, but also
that the announcement is pointless, occasions no
surprise, reveals nothing new; in effect, that the situation
after the announcement does not differ from that before.
...the event “Ann and Bob are going together” — call it
E — is common knowledge if and only if some event —
call it F — happened that entails E and also entails all
players’ knowing F (like all players met Ann and Bob at
an intimate party). (Aumann, pg. 271, footnote 8)
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Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).

An event F is self-evident if Ki (F ) = F for all i ∈ A.

Fact. An event E is commonly known iff some self-evident event
that entails E obtains.

John F. Horty Eric Pacuit 56



Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).

An event F is self-evident if Ki (F ) = F for all i ∈ A.

Fact. An event E is commonly known iff some self-evident event
that entails E obtains.

Fact. w ∈ C (E ) if every finite path starting at w ends in a state
in E

The following axiomatize common knowledge:

I C (ϕ→ ψ)→ (Cϕ→ Cψ)

I Cϕ→ (ϕ ∧ ECϕ) (Fixed-Point)

I C (ϕ→ Eϕ)→ (ϕ→ Cϕ) (Induction)
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The Fixed-Point Definition

Separating the fixed-point/iteration definition of common
knowledge/belief:

J. Barwise. Three views of Common Knowledge. TARK (1987).

J. van Benthem and D. Saraenac. The Geometry of Knowledge. Aspects of
Universal Logic (2004).

A. Heifetz. Iterative and Fixed Point Common Belief. Journal of Philosophical
Logic (1999).
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Some Issues

. What does a group know/believe/accept? vs. what can a
group (come to) know/believe/accept?

C. List. Group knowledge and group rationality: a judgment aggregation per-
spective. Episteme (2008).

I Other “group informational attitudes”: distributed knowledge,
common belief, . . .

I Where does common knowledge come from?
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Distributed Knowledge

M,w |= DGϕ iff for all v if w
⋂
i∈G

Riv then M, v |= ϕ}

I Ki (p) ∧ Kj(p → q)→ D{i ,j}(q)

I DG (ϕ)→ ∧
i∈G Kiϕ

F. Roelofsen. Distributed Knowledge. Journal of Applied Nonclassical Logic
(2006).
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I Logics of knowledge and belief: KX ⊃ BX , BX ⊃ BKX ,
BX ⊃ KBX , . . .

I Logical omniscience: from X ⊃ Y , infer KX ⊃ KY ;
K (X ⊃ Y ) ⊃ (KX ⊃ KY ), (KX ∧ KY ) ≡ K (X ∧ Y );
from X ≡ Y infer KX ≡ KY , . . .

I Awareness logics, justification logic

I Dynamic epistemic logic: [B]KX , ¬[X ∧ ¬KX ]KX , [X ]CX

I Logics of belief: Plausibility structures, probabilistic beliefs
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